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1. Introduction 

New brain imaging techniques, such as functional Magnetic Resonance Imagery (fMRI), 

allow for recording and analysis of brain activity over time. A fMRI image is a great source 

of information about brain behaviour; it is a considerable amount of data (approximately 

300000 voxels, "three-dimensional pixels", for which between 100 and 1000 observations are 

collected). More information about fMRI concepts, studies, data and applications can be 

found on a publicly accessible repository [1].  

From the view point of the data mining, the brain is the most complex object to analyze. In 

general, the identification of the voxels of the brain that represent real activity is very 

difficult because of a weak signal-to-noise ratio and of the presence of artefacts. The first 

tests of the current classification algorithms in this field showed that their performances and 

their qualities of recognition are weak [2]. Because of the difficulty caused by a very large 

amount of registered data, the main stream of the research projects is focused on testing a 

model of brain behaviour by the means of univaried statistics. This is a principle of image 

processing software such as Statistical Parametric Mapping (SPM) [3], AFNI [4] or 

BrainVoyager [5], which consists of highlighting the more active voxels under comparable 

conditions. The statistical methods are powerful, but cannot provide conclusions apart from 

those prefixed by the model. Using these methods, results must inevitably be anticipated, 

which is not always possible.  

In this article, a new interactive data-driven approach to fMRI mining will be presented. The 

concept of data mining appears useful as complement or as replacement of the classical 

methods when it is difficult to predict what will occur during acquisition. In our system, a 

number of clustering methods have been implemented within an interactive tool to 

emphasize the active zones without having to use a model. The originality of the approach 

is not only due to real-time clustering, but also to the insertion of domain knowledge and 

interactivity, directly integrating the expert-physician into the process of the discovery of 
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functional zones in the brain and their organization. In general, the fMRI data can be 

analyzed from various perspectives. The three dimensional data recorded temporally can 

correspond to one or several patients or to the history of the same patient, and, finally, it can 

be completed by medical knowledge. This article focuses on the first two aspects, where the 

spatial and temporal dimensions of brain activity are crucial.  Important consideration is 

given to the high volume of data, the processing time, and the noise of image acquisition. 

The article is structured in the following way. In section 2, the data mining system 

architecture oriented toward brain exploration is described. Section 3 describes the three 

implemented clustering algorithms: Kohonen’s Self Organizing Map [6], Fritzke’s Growing 
Neural Gaz [7], and Goua’s Clustering using Representatives (CURE) [8]. Section 4 presents 

the principles of user interface and tools for brain visualization. Section 5 illustrates cases of 

studies carried out on synthetic and real data. The final section concludes the first 

experiments and indicates further research perspectives. 

2. Data-guided approach 

The proposed interactive exploration of fMRI images can be classified as a data-guided 

approach assisted directly by an expert knowledge and by gathered experience. The process 

of data mining is composed of five phases: the acquisition and selection of the data, pre-

processing, clustering, the extraction of rules and concepts, and validation [9].  

The source fMRI data comes from the scanner in a form of sequences of 3D images. The 

cerebral activity is registered as variations of voxels intensity over time. Typically, the 

patient is never completely motionless and, moreover, other factors interfere with the 

signals of interest. Therefore the specific pre-processing must then be adapted to each 

identified artefact. In the clustering phase, classes are created that are composed of voxels 

with similar behaviour in time. In the knowledge extraction phase, the classification rules 

are generated describing each cluster of voxels. Once validated, the rules are saved in the 

knowledge base, and if required, can be reused in following diagnosis. Figure 1 presents a 

simplified functional schema of the system, from the fMRI acquisition to interpretation 

and the validation by the expert-physician, who can interact with the system on all 

phases. 

In many cases the interpretation of fMRI data has to be done very quickly. Frequently, the 

physician, after obtaining the preliminary results of image clustering, is forced to change the 

acquisition parameters and redefine geometrical or temporal parameters (resolution, zoom, 

etc). The clustering and cluster explanation (shown on the right part of fig.1) help the expert 

to discover and understand the generated classes, and if necessary to modify the experiment 

directly. These modifications are based on the assumptions about cerebral activities, 

knowledge of brain anatomy, or about other sources of medical information.  

The work presented in this article is primarily focused on the clustering phase, emphasizing 

interactive and dynamic aspects of algorithms of unsupervised learning. In general, it 

consists of regrouping voxels that have similar characteristics and behaviours into a limited 

number of relatively homogeneous clusters. Many clustering algorithms have already been 
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applied to fMRI data. The most common are statistical methods such as K-means [9, 10, 11, 

12, 13, 14, 15], Principal Component Analysis [15, 16,], and Independent Component 

Analysis [18, 19, 20, 21, 22]. Interesting results have been also obtained using fuzzy 

classification [17], hierarchical classifications [17; 23, 24], Kohonen’s Self-Organizing Maps 

[25, 26]. The advantage of these methods consists of a higher level of interpretation, but 

these algorithms are very costly in terms of computing time and memory space. 

 

 Schema of interactive exploration of fMRI data 

In our research, we have been focused on real-time clustering algorithms able to discover as 

quickly as possible classes of voxels in fMRI data, allowing experts to insert their 

preferences, medical knowledge and spatio-temporal constraints. The interested reader may 

find more technical details in our previous reports and publications [27, 28, 29, 30].  

3. Clustering algorithms 

Clustering algorithms usually depend on a distance. A distance between voxels has to be 

defined. A 3D distance between voxels is irrelevant to identify voxels having the same 

activity. Taking the 3D distance into account would make close voxels - close from a 3D 

perspective - look more similar than far-away voxels having the same activity. The distance 

between voxels should only be defined according to their activities. It should be noted that a 

clustering based on the activity of the voxels without any influence of their localisation is 

clearly different from segmentation techniques also used to identify areas in fMRI images 

that relies on a comparison of neighbouring voxels. 

The fMRI data are very highly noisy. The sources are many: heterogeneity of the magnetic 

field, thermal noises, thermal noises of examined tissues, head movements, eyes 
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movements, breathing, internal movement  related to the blood flow pulsation [27]. This list 

of noise disturbances is only related to the image acquisition, but not associated with the 

sensory or cognitive noise. Therefore a number of pre-processing operations are required to 

obtain the data to be analyzed. The most commonly used pre-processing refers to co-

registration (correction of movements), rephasing of the brain cuts, normalisation, 

smoothing, spatial and temporal filtering, segmentation. More about the pre-processing 

methods can be found in  [1, 2, 3, 4, 10]. 

Before clustering, the representation of each voxel has to be carefully chosen. The attributes 

to describe the sequence of voxel values have to be selected in such a way that the 

relationships and distances between voxel activities will be well established. But in 

clustering, the cause of difficulties may be weak a priori knowledge. The same set of data 

can be differently clustered depending on selected attributes and distance measure. Note 

that the activity of a voxel is a continuous signal. Therefore a sampling method for a signal 

is extremely important. One approach consists in generating different attributes describing 

the signal, e.g. its average, minimum and maximum values, and then using those attribute-

values in a traditional attribute-value clustering system. In such an approach, the built-in 

distance measure of the clustering system is calculated on the intermediate attributes, e.g. 

the Euclidian distance between the respective average, minimum and maximum values of 

each voxel. Its success depends on how well the built-in distance and the generated 

attributes fit together. Lots of attributes can be tested. For instance, in [3] applied wavelets to 

transform the signal, though they made use of hidden Markov models rather than a 

clustering technique. 

We considered an alternative approach, where the distance is directly calculated on the 

fMRI data. The fMRI data are transformed into a time series of voxel intensity variations 

relative to its average as follows: 

Iaave = 1/n  Iai 

where Iaave is an average intensity of voxel a of a series of n images; 

Sa = {1,2,…,n},  i = Iaave - Iai 

where Sa is fMRI signal. 

The distances between two fMRI signals Sa and Sb may be computed as Euclidian distance: 

dE =√a ibi )2 

or Manhattan distance: 

dM = a ibi )|. 

In the system different clustering algorithms can be easily developed. Currently, the five 

algorithms are available, notably K-means, LBG, CURE, and two neural models: Kohonen’s 
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Self Organizing Map, and Fritzke’s Growing Neural Gaz. The algorithms K-means and LGB 

are well known and described in many publications. Algorithms like ICA and PCM separate 

the fMRI signals into a set of well defined components, but have to deal with constraints of 

their independency and orthogonality. Therefore in the paper, the description of algorithms 

is only given to the three less known algorithms that enable the expert interactively to 

improve his or her understanding of the human brain.  

Self-Organizing Maps is a topology-preserving clustering algorithm that maps high-

dimensional fMRI data into low-dimensional space [24, 25]. SOM  creates the map that 

represents the fine cluster structures and cluster relations. The specification of SOM 

algorithm is given below: 

 

However, its fixed topological structure would not help in our application, since there is no 

a priori topological relationship between the classes. The problem to solve concerned the 

validity of discovered clusters and  choosing the number of selected clusters. 

Thus we have preferred the Growing Neural Gas (GNG) algorithm [7]. Its main advantage 

is that the number of classes is not fixed in advance, as in most clustering algorithms. The 

class centres can increase as well as decrease during the learning process. Moreover this 

algorithm easily fits in an interactive knowledge discovery application. The specification of 

GNG algorithm is given below: 

Algorithm Self-Organizing Map 

Parameters: 

t: time units 

tmax: duration of computing 

drs = |i-k| + |j-m| : Manhattan distance between two classes r=aij and s=akm 

i, f, i and f : initial and final coefficients of adaptation 

i =iiI) t/tmax : neighbouring coefficient 

i =iiI) t/tmax : adaptation coefficient 

hrs = exp (-d2rs / 2(t)2) : neighbouring function between classes r and  s 

l * h : size of the grid ; number of classes 

Procedure 

1. Choose parameters values: size of the grid l * h, the duration tmax, the adaptation 

coefficients:i, f, i and f 

2. Grid initialization taking values respecting neighbouring class proximity 

3. Select at random an input signal . 

4. Search for a=g() of the winning class of ; the closest vector of reference 

5. Adapt each class according to the formula wa =wa + (t) . ha. (- wa) 

6. Increment the time t=t+1 

7. If t<tmax, then return to step 3, else stop. 
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The third algorithm, called CURE (Clustering Using REpresentatives), is an agglomerative 

algorithm where disjoint clusters are successively merged until the number of clusters 

reduces to the desired number of clusters. CURE can identify clusters that are not spherical 

as well as clusters with wide variances in cluster size. These features are particularly 

interesting while clustering medical images. The specification of CURE algorithm is given 

below: 

Algorithm Growing Neural Gas 

Parameters 

age(a1,a2) : age of connection between two classes a1 and a2 

agemax : maximal age of connection 

a : error of class a 

b ,b : coefficient of adaptation of winning class and its neighbours 

Procedure 

8.  

1. Initialize two classes A = {c1, c2}, t=0. Initialize the connection set. 

2. Select at random an input signal . 

3. Determine the winner s1 and the second-nearest cluster s2 ,the closest to . 

4. If a connection between s1 and s2 does not exist already, create it. Set the age of the 

connection to 0  

C = C U {(s1,s2 )}.age(s1,s2) = 0 

5. Add the squared distance between the input signal and the winner to a local error 

variable:  

s1 = II  - wsiII2. 

6. Adapt the reference vectors of the winner and its direct topological neighbours by 

fractions : 

wsi = b*( -wsi) , wi = n*( -wn) 

7. Increment the age of all edges emanating from si 

8. Remove edges with an age larger than amax. If this unit has no more emanating edges, 

remove the unit as well.  

9. If the number of input signals generated so far is an integer multiple of a parameter l, 

add a new unit r to the network and interpolate its reference vector from q and f, 

decrease the error variables of q and f. 

10. If a stopping criterion (e.g., net size or some performance measure) is not yet fulfilled, 

continue, return to step 2. 
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Algorithm CURE 

Parameters 

S: n voxels in d-dimensional space 

k: number of clusters 

u,v w, and x: clusters 

u.rep: the set of representative points in u cluster 

u.closest: the closest cluster to u 

kd_tree: data structure that stores the representative points for every cluster 

the heap: data structure that stores the entries for various clusters u arranged in the 

increasing order of the distances 

Procedure cluster (S,k) 

11.  

12. T:= build_kd_tree(S)  /*all voxels are inserted into the k-d tree */ 

13. Q := build_heap(S) /*each input voxel is considered as a separate cluster */ 

14. while size(Q) > k do{ 

15.         u := extract_min(Q) /*extract the top element in Q */ 

16.         v := u.closest 

17.         delete(Q,u) 

18.         w := merge(u,v)  /*merge the closest pair of clusters u and v and compute new 

    representative point for the new merged cluster w which is  

   inserted into T */ 

19.         delete_rep(T,u); delete_rep(T,v); insert_rep(T,w) 

20.         w.closest := x  /* x is an arbitrary cluster in Q*/ 

21.         for each x  Q do { 

22.              if dist(w,x) < dist(w, w.closest) 

23.                 w.closest := x 

24.              if x.closest is either u or v { 

25.                 if dist(x,x.closest)< dist(x,w) 

26.                    x.closest := closest_cluster (T,x,dist(x,w)) 

27.                 else 

28.                    x.closest :=w 

29.                 relocate(Q,x) 

30.               } 

31.               else if dist(x,x.closest) > dist(x,w) { 

32.                    x.closest := w 

33.                    relocate(Q,x) 

34.               } 

35.            } 

36.            Insert(q,w) 

37.    } 
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The algorithm CURE, in contrast to the previous algorithms, does not favor clusters with 

spherical shapes and similar volumes. The computational complexity of CURE is quadratic, 

so for large fMRI data it was necessary to employ random sampling of voxels, sacrificing 

clustering quality. More detailed discussion of CURE performance can be found in [8] 

While the current approach supposes that the human expert builds up the hypothesis and 

the software, e.g. SPM [3], is only used to validate that hypothesis, data mining techniques 

can complement that approach by guiding the expert in his generation of new hypotheses, 

in particular by automatically showing up activated areas, and highlighting dependencies 

between those areas. 

We have extended the SLICER system for clustering and interactive exploration of fMRI 

images features. In its current version, our software environment allows the physician to 

interact graphically with the clustering process, e.g. by modifying parameters of the 

algorithm, by focusing on a specific region of the brain, etc. 

4. Visual data mining  

The fMRI mining system integrates two functional parts: interactive clustering algorithms 

and visualisation package 3DSlicer developed by Harvard Medical School and AI Lab of the 

Massachusetts Institute of Technology (http://www.slicer.org [33]). The visualization 

package allows observing in 2D and 3D of the evolution of clusters discovered by data 

mining algorithms. The interface for interactive clustering has been also designed to engage 

the expert in the process of discovery. Therefore all clustering algorithms implemented in 

our system can be run in an interactive mode. The expert can follow the classification 

evolution from the beginning at regular time intervals.  

Four levels of interaction can be distinguished. The lowest level corresponds to 

measurements provided on the state of classification and makes it possible for the user to 

make a decision when to interrupt the process. This interruption can be thus called upon 

systematically with regular intervals of times to take absolute measures on the classification 

and to visualize the intermediate results. This makes it possible to store or modify the 

current state of clustering. Thus, the expert may access the clustering algorithm and modify 

it at any point during its execution. Not only the parameters of the algorithm, but also the 

data space can be modified and refined during the clustering process. The second level 

concerns the definition and resizing of the data volume. The third level of interaction 

concerns the algorithms with the parameters that can be dynamically changed. Beyond 

these three levels of interaction, the management of saving and restoring the states of 

clustering constitutes the last level of classification interactions. Figure 2 illustrates the 

concepts of visual mining of fMRI data.  

Three types of information are provided: statistical, temporal, and spatial. On the left part, 

the statistics describes the evolution of clusters; the user can examine the evolution of the 

errors, intra-class and inter-class inertias, the number of voxels connected to the center of 

each class, and the number of voxels which change class per unit time. The system provides 

http://www.slicer.org/
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also information that describes the dispersion of the clusters, the convergence of algorithm 

and the stability of clusters. Temporal information associated with each cluster represents 

graphically the fMRI signals over time. The signals are visualized in the form of curves on a 

graph. A paradigm, as in a sequence of stimuli and the model of the response, if available, 

can also be shown and compared online. On the right part, spatial information is 

simultaneously visualized in two manners: as 3D image, and as three perpendicular cuts 

across the brain. It is important to notice that during the clustering, the generated clusters 

are displayed in 2D and 3D. To facilitate interpretation, the 3D image of clusters can be 

superimposed, depending on the case, with a structural MRI of the subject or a standardized 

volume acting as an anatomical atlas.  

 

 Interface of fMRI mining system 

The user can easily optimize the clustering process by the online observation of statistical 

measures and their variations induced by modifications of parameters. Thus, the adjustment 

of the algorithm can be suitably carried out without continuously stopping and restarting 

the process.  



 
Data Mining Applications in Engineering and Medicine 258 

To increase the speed of execution and to reduce the complexity of the results, the expert 

may find it beneficial to reduce the volume of the data. The space of exploration can be 

adjusted in several ways. The standard version of 3DSlicer assures not only the 3D 

visualization, but also allows the selection of volumes of interest or disinterest. The novel 

functionalities of the system permit the user also to restrict the space of research using 

anatomical structures or a subset of generated clusters. For instance, a threshold may 

eliminate the space that surrounds the brain. In the case of standardized images, it is 

possible to limit research to the grey matter. Thus, the expert can continue a classification by 

focusing his interest on certain regions after having eliminated voxels belonging to other 

non-relevant clusters.  

5. Case studies 

During the process of knowledge discovery, clusters generated by unsupervised classifiers 

must be validated by an expert, who retains only the relevant ones. Each selected cluster 

corresponds to a set of voxels, or zones of the brain, with a similar hemodynamic response 

over time. These responses can be explicitly characterized via the construction of 

classification rules. These rules combine observed temporal patterns with spatial 

information, such as the activity of voxels in neighbouring zones, or domain knowledge, 

such as the atlas of functional zones regions of the brain. It is important to note that the data 

normalisation (i.e. when the images are recalibrated to correspond to one brain type; voxels 

of several series of images of one person, or of several people), the voxels on the same 

positions correspond to the same zones of the brain. Temporal patterns can be synchronized 

with the paradigm, for example, to discover the interactions between areas regions of the 

brain used for visual memory. Temporal patterns can also be independent of any paradigm, 

for example, to highlight the succession of typical activations of region areas of the brain 

associated with hallucinations.  

In the next part of the section, the performance of the clustering algorithms on the synthetic 

and real fMRI data will be described. 

The synthetic data test  

The synthetic data were composed of two parts, purely artificial simulated activations and 

real data. In the first experiment, the selected images corresponded to the auditive test 

conditions: "silence" and "talk". All the images of the "silence" condition were real data.  

Added to this series of 40 images were the synthetic activations formed by time series in 

crenel (square signal), simulating a paradigm of the block type. The localization of 

activations was a cubic volume of 5 voxels of each dimension. The level of average noise of 

these 125 voxels of the bottom was measured by taking double the variance of the intensities 

of the voxels over time. From this measurement, it was then possible to control the signal-to-

noise ratio of the activations, by adding crenels of desired intensities to the considered 

voxels.  
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The performance evaluation was based on a confusion matrix indicating the true-positive 

ratios in particular. To create this matrix, it was necessary to determine the positive and 

negative classes. The figure 3 shows, in a simplified way, how the positive classes were 

defined and their coverage of a zone of activation.  

 

 Simplified iIlustration of relation between a zone of activation and positive/negative classes 

The table 1 illustrates the results of five clustering algorithms on synthetic data varying the 

parameter Signal-to-Noise (S/N). More detailed results may be found in research reports 

[Hommet, 2003]. 

 

S/N GNG SOM LBG  K-means CURE 

1.2 55 0 0 15 52 

1.4 100 0 15 35 76 

1.6 100 70 55 44 72 

1.8 100 100 65 50 72 

2.0 100 100 69 70 72 

3.0 100 100 100 82 88 

 Detection frequency (%) in respect of Signal-to-Noise ratio 

Amongst implemented algorithms, two of them generated relatively stable and coherent 

clusters. The first, the Growing Neuronal Gas algorithm [7], has been adapted to the 

interactive classification of fMRI images. Contrary to the majority of the other methods, the 

originality of the GNG lies in the fact that the number of classes is not fixed in advance. In 

addition, the network topology and the number of neurons can be dynamically increased or 

decreased during the classification, making the algorithm efficient to cluster a large volume 

of data. The connections between neurons have the property of aging, and disappear when 

they reach a preset maximum age. This property is the cause of the disappearance of 

neurons, which are eliminated when they are not connected any more. The creation of the 
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new neurons is made at regular time intervals by inserting a new neuron near the neuron 

with the greatest error. The error of a neuron is evaluated using the sum of the distances 

from this neuron to the voxels that declared this neuron as a winner. Thus the network is 

reinforced near the neurons which traverse the longest distances or which bring together the 

most voxels. Our contributions pertain to two aspects of classification, in particular reducing 

the volume of data and setting the parameters of the algorithm with the assistance of 

statistical tools and visual data mining. 

 

 

 Results of clustering 
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The second algorithm, CURE [8], that has been also adapted to an interactive mode, 

generates clusters that have non-spherical forms with large variance, and, moreover, it 

allows a reduction in the processing time by aggregation and sampling fMRI data. 

That the K-means had the worst level of detection is not surprising. K-means and LBG to 

some extent are strongly dependent on their initializations. But these two algorithms were 

not stripped of usefulness insofar as they did not require any parameter apart from the 

number of classes. This simplicity often enables them to obtain better results than GNG and 

SOM when the parameter setting of the latter is not optimal. 

Block type data of a fMRI series of auditive tests 

The real data used come from the site of the London research institute, "The Wellcome 

Department of Imaging neuroscience [http://www.fil.ion.ucl.ac.uk/spm/]; they form part of 

the test set of the program SPM99. The series was composed of 96 MRI acquisitions of the 

brain recorded with a repetition time of 7 s. The paradigm of the block type alternates the 

two following situations: a condition without stimulus and a condition of auditive stimuli 

consisting of repetitions of two-syllable words. With the pre-processed series, the 

classifications were performed by the four algorithms under the same conditions. With the 

rough series, one classification has been obtained using the paradigm data. The resulting 

classifications highlighted the most significant noises, such as the movements of the 

subject’s head, which generated clusters along the most intense contrasts of the image. By 

gathering the data in agreement with the paradigm, the zone activated by the auditive test 

could be revealed. The paradigm of this test was of the block type, where two conditions 

followed one another and were repeated, forming a periodic pattern. Here, the signals tend 

towards two conditions during each of the 6 images and repeat 8 times. Therefore, the 8 

periods have been compressed into one period made up of 12 images. Classification of this 

small series preferentially reveals the expected zones in the form of compact blocks of 

voxels. However, within a class there are also scattered voxels. The treated data was 

compacted by a factor 16 compared to the pre-processed series. Amongst applied 

algorithms, two  generated relatively stable and coherent clusters: GNG and SOM. Figure 4 

illustrates clustering results of 4 independent runs of four algorithms (white coloured zones 

on fig.4 are relevant).  

This result is interesting insofar as there was no pre-processing applied and the volume of 

the data was extremely reduced, considerably increasing the speed of execution.  

6. Conclusion  

In this article, a novel approach to interactive mining of fMRI data has been presented. The 

engagement of a physician in the process of knowledge discovery has been discussed, as 

well as the specificities of fMRI clustering with weak prior knowledge. Several clustering 

algorithms were evaluated. The experiments have shown that the Growing Neural Gas 

algorithm demonstrates the highest clustering performance and acceptable robustness.  
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The results have also demonstrated that the proposed new approach could be applied in 

detecting event-related fMRI data. It is important to underline that the parameters of the 

exploration algorithms can be modified during the course of execution. This dynamic aspect 

was a determining factor in its usage in interactive data mining.  

The integration of clustering algorithms with the 3D Slicer has allowed visual exploration of 

created clusters and has provided the physician with more comprehensible information in 

quasi real time. The first results on synthetic data and block type data are encouraging and 

allow us to extend this work towards experiments with event-driven data where the signal-

to-noise ratio is particularly weak and noisy data mask the relevant information. 
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