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1. Introduction

Since the appearance of Simulated Annealing algorithm it has shown to be an efficient method
to solve combinatorial optimization problems such as Boolean Satisfiability problem. New
algorithms based on two cycles: one external for temperatures and other internal, named
Metropolis, have emerged. These algorithms usually use the same Markov chain length in the
Metropolis cycle for each temperature. In this paper we propose a method based on linear
regression to find the Metropolis equilibrium. Experimentation shows that the proposed
method is more efficient than the classical one, since it obtains the same quality of the final
solution with less processing time.

Today we have a considerable interest for developing new and efficient algorithms to solve
hard problems, mainly those considered in the complexity theory (NP-complete or NP-hard)
[8]. The Simulated Annealing algorithm proposed by Kirkpatrick et al. [18] and Cerny [5, 6] is
an extension of the Metropolis algorithm [23] used for the simulation of the physical annealing
process and is specially applied to solve NP-hard problems where it is very difficult to find
the optimal solution or even near-to-optimum solutions.

Efficiency and efficacy are given to Simulated Annealing algorithm by the cooling scheme
which consists of initial (ci) and final (c f ) temperatures, the cooling function ( f (ck)) and the
length of the Markov chain (Lk) established by the Metropolis algorithm. For each value
of the control parameter (ck) (temperature), Simulated Annealing algorithm accomplishes a
certain number of Metropolis decisions. In this regard, in order to get a better performance of
the Simulated Annealing algorithm a relation between the temperature and Metropolis cycles
may be enacted [13].

The Simulated Annealing algorithm can get optimal solutions in an efficient way only if
its cooling scheme parameters are correctly tuned. Due this, experimental and analytical
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parameters tuning strategies are currently being studied; one of them known as ANDYMARK
[13] is an analytical method that has been shown to be more efficient. The objective of
these methods is to find better ways to reduce the required computational resources and to
increment the quality of the final solution. This is executed applying different accelerating
techniques such as: variations of the cooling scheme [3, 27], variations of the neighborhood
scheme [26] and with parallelization techniques [12, 26].

In this chapter an analytic adaptive method to establish the length of each Markov chain in
a dynamic way for Simulated Annealing algorithm is presented; the method determines the
equilibrium in the Metropolis cycle using Linear Regression Method (LRM). LRM is applied
to solve the satisfiability problems instances and is compared versus a classical ANDYMARK
tune method.

2. Background

In complexity theory, the satisfiability problem is a decision problem. The question is: given
the expression, is there some assignment of TRUE and FALSE values to the variables that will
make the entire expression true? A formula of propositional logic is said to be satisfiable if
logical values can be assigned to its variables in a way that makes the formula true.

The propositional satisfiability problem, which decides whether a given propositional formula
is satisfiable, is of critical importance in various areas of computer science, including
theoretical computer science, algorithmics, artificial intelligence, hardware design, electronic
design automation, and verification. The satisfiability problem was the first problem refered
to be as NP complete [7] and is fundamental to the analysis of the computational complexity
of many problems [28].

2.1. Boolean satisfiability problem (SAT)

An instance of SAT is a boolean formula which consists on the next components:

• A set S of n variables x1, x2, x3, ..., xn.

• A set L of literals; a literal li, is a variable xi or its negation x̃i.

• A set of m clauses: C1, C2, C3, ..., Cm where each clause consists of literals li linked by the
logical connective OR (∨).

This is:
Φ = C1 ∧ C2 ∧ C3 ∧ ... ∧ Cm (1)

where Φ, in Equation 1, is the SAT instance. Then we can enunciate the SAT problem as
follows:

Definition 1. Given a finite set {C1, C2, C3, . . . , Cm} of clauses, determine whether there is an
assignment of truth-values to the literals appearing in the clauses which makes all the clauses true.

NP-completeness in SAT problem, only refers to the run-time of the worst case instances.
Many of the instances that occur in practical applications can be solved much faster, for
example, SAT is easier if the formulas are restricted to those in disjunctive normal form, that
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is, they are disjunction (OR) of terms, where each term is a conjunction (AND) of literals. Such
a formula is indeed satisfiable if and only if at least one of its terms is satisfiable, and a term
is satisfiable if and only if it does not contain both x and x̃ for some variable x, this can be
checked in polynomial time.

SAT is also easier if the number of literals in a clause is limited to 2, in which case the problem
is called 2 − SAT, this problem can also be solved in polynomial time [2, 10]. One of the
most important restrictions of SAT is HORN-SAT where the formula is a conjunction of Horn
clauses (a Horn clause is a clause with at most one positive literal). This problem is solved by
the polynomial-time Horn-satisfiability algorithm [9].

The 3-satisfiability (3-SAT) is a special case of k-satisfiability (k-SAT), when each clause
contains exactly k = 3 literals. 3-SAT is NP-complete and it is used as a starting point for
proving that other problems are also NP-hard [31]. This is done by polynomial-time reduction
from 3-SAT to the other problem [28].

3. Simulated Annealing algorithm

Simulated Annealing improves this strategy through the introduction of two elements. The
first is the Metropolis algorithm [23], in which some states that do not improve energy are
accepted when they serve to allow the solver to explore more of the possible space of solutions.
Such "bad" states are allowed using the Boltzman criterion: e−ΔJ/T

> rnd(0, 1), where ΔJ is
the change of energy, T is a temperature, and rnd(0, 1) is a random number in the interval
[0, 1). J is called a cost function and corresponds to the free energy in the case of annealing
a metal. If T is large, many "bad" states are accepted, and a large part of solution space is
accessed.

The second is, again by analogy with annealing of a metal, to lower the temperature. After
visiting many states and observing that the cost function declines only slowly, one lowers the
temperature, and thus limits the size of allowed "bad" states. After lowering the temperature
several times to a low value, one may then "quench" the process by accepting only "good"
states in order to find the local minimum of the cost function.

The elements of Simulated Annealing are:

• A finite set S.

• A cost function J defined on S. Let S∗ ⊂ S be the set of global minima of J.

• For each i ∈ S, a set S(i) ⊂ S − i is called the set of neighbors of i.

• For every i, a collection of positive coefficients qij, j ∈ S(i), such that ∑j∈S(i) qij = 1. It is

assumed that j ∈ S(i) if and only if i ∈ S(j).

• A nonincreasing function T : N → (0, ∞), called the cooling schedule. Here N is the set of
positive integers, and T(t) is called the temperature al time t.

• An initial state x(0) ∈ S.

The Simulated Annealing algorithms consists of a discrete time inhomogeneus Markov chain
x(t) [4]. If the current state x(t) is equal to i, chose a neighbor j of i at random; the probability
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that any particular j ∈ S(i) is selectec is equal to qij. Once j is chosen, the next state x(t + 1) is
determined as follows:

if J(j) ≤ J(i) then x(t + 1) = j
if J(j) ≤ J(i) then

x(t + 1) = j with probability e−(J(j)−J(i))/T(t)

else
x(t + 1) = i

(2)

In a formal way:

P [x(t + 1) = j|x(t) = i] =

{
qije

[
− 1

T(t) max{0,J(j)−J(i)}
]

j 	= i, j ∈ S(i)
0 j 	= i, j /∈ S(i)

(3)

In Simulated Annealing algorithm we are considering a homogeneus Markov chain xT(t)
wich temperature T(t) is held at a constant value T. Let us assume that the Markov chain
xT(t) is irreducible and aperiodic and that qij = xji∀i, j, then xT(t) is a reversible Markov

chain, and its invariant probability distribution is given by:

πT(i) =
1

ZT
e

[
− J(i)

T

]

(4)

In Equation 4 ZT is a normalized constant and is evident that as T → 0 the probability πT is
concentrate on the set S∗ of global minima of J, this property remains valid if the condition
qij = qji is relaxed [11].

In the optimization context we can generate an optimal element with high probability if we
produce a random sample according to the distribution πT , known as the Gibbs distribution.
When is generated an element of S accomplished by simulating Markov chain xT(t) until it
reaches equilibrium we have a Metropolis algorithm [23].

The Simulated Annealing algorithm can also be viewed as a local search method occasionally
moves to higher values of the cost function J, this moves will help to Simulated Annealing
escape from local minima. Proof of convergence of Simulated Annealing algorithm can be
revised [4].

3.1. Traditional Simulated Annealing algorithms

Figure 1 shows the classic algorithm simulated annealing. In the algorithm, we can see the

cycle of temperatures between steps 2 and 5. Within this temperature cycle, are the steps 3

and 4 which correspond to the Metropolis algorithm.

As described in the simulated annealing algorithm, Metropolis cycle is repeated until thermal

equilibrium is reached, now we use the formalism of Markov chains to estimate how many

times it is necessary to repeat the cycle metropolis of so that we ensure (with some probability)

that all solutions of the search space are explored.

Similarly we can estimate a very good value for the initial and final temperature of the

temperature cycle. All these estimates were made prior to running the simulated annealing

algorithm, using data information SAT problem is solved.

24 Simulated Annealing – Advances, Applications and Hybridizations
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1

Initializing:
Initial solution Si

Initial and final temperature: Ti and Tf

T = Ti

2 Temperatures cycle:

3

Metropolis cycle:
Generating Sj from Si

di f = J(Sj)− J(Si)
If di f < 0 then

Si = Sj

else if e
−di f

T > rnd(0,1)
Si = Sj

4

Metropolis condition:
If thermal equilibrium is reached

goto 5
Else

goto 3

5

Stop criterion:
If the final temperature Tf is reached

End
Else

Update T
goto 2

Figure 1. Simulated Annealing algorithm

It is well known that Simulated Annealing requires a well defined neighborhood structure

and other parameters as initial and final temperatures Ti and Tf . In order to determine these

paratmeters we follow the next method proposed by [30]. So following the analysis made in

[30] we give the basis of this method.

Let PA(Sj) be the accepting probability of one proposed solution Sj generated from a current

solution Si, and PR(Sj) the rejecting probability. The probability of rejecting Sj can be

established in terms of PA(Sj) as follows:

PR(Sj) = 1 − PA(Sj) (5)

Accepting or rejecting Sj only depends on the cost deterioration size that this change will

produce to the current solution, that means:

PA(Sj) = g[J(Si)− J(Sj)] = g(ΔJij) (6)

In Equation 6, J(Si) and J(Sj) are the cost associated to Si and Sj respectively, and g(ΔJij) is

the probability to accept the cost difference ΔJij = J(Si)− J(Sj).

The solution selected from Si may be any solution Sj defined by the next neighborhood

scheme:

25
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Definition 2. Let {∀Si ∈ S, ∃ a set VSi
⊂ S|VSi

= V : S −→ S} be the neighborhood of a solution

Si, where VSi
is the neighborhood set of Si, V : S −→ S is a mapping and S is the solution space of the

problem being solved.

It can be seen from the Definition 2 that neighbors of a solution Si only depends on the

neighborhood structure V established for a specific problem. Once V is defined, the maximum

and minimum cost deteriorations can be written as:

ΔJVmax
= max[J(Si)− J(Sj)], ∀Sj ∈ VSi

, ∀Si ∈ S (7)

ΔJVmin
= min[J(Si)− J(Sj)], ∀Sj ∈ VSi

, ∀Si ∈ S (8)

where ΔJVmax
and ΔJVmin

are the maximum and minimum cost deteriorations of the objective

function through J respectively.

3.2. Markov Chains and Cooling Function

The Simulated Annealing algorithm can be seen like a sequence of homogeneous Markov

chains, where each Markov chain is constructed for descending values of the control

parameter T > 0 [1]. The control parameter is set by a cooling function like:

Tk+1 = f (Tk) (9)

and Tk must satisfy the next property:

lim
k→∞

Tk = 0

Tk ≥ Tk+1 ∀k ≥ 1
(10)

At the beginning of the process Tk has a high value and the probability to accept one proposed

solution is high. When Tk decreases this probability also decreases and only good solutions

are accepted at the end of the process. In this regard every Markov chain makes a stochastic

walk in the solution space until the stationary distribution is reached. Then a strong relation

between the Markov chain length (Lk) and the cooling speed of Simulated Annealing exists:

when Tk → ∞, Lk → 0 and when Tk → 0, Lk → ∞.

Because the Markov chains are built through a neighborhood sampling method, the maximum

number of different solutions rejected at Tf when the current solution Si is the optimal one, is

the neighborhood size |VSi
|. In this regard the maximum Markov chain length is a function of

|VSi
|. In general Lk can be established as:

Lk ≤ Lmax = g(|VSi
|) (11)

In Equation 11, Lmax is the Markov chain length when Tk = Tf , and g(|VSi
|) is a function

that gives the maximum number of samples that must be taken from the neighborhood VSi

in order to evaluate an expected fraction of different solutions at Tf . The value of Lmax only

depends on the number of elements of VSi
that will be explored at Tf .

Usually a Simulated Annealing algorithm uses a uniform probability distribution function
G(Tk)given by a random replacement sampling method to explore VSi

at any temperature Tk,

26 Simulated Annealing – Advances, Applications and Hybridizations
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where G(Tk) is established as follows:

G(Tk) =

{
1

|VSi
|
∀Sj ∈ VSi

0 ∀Sj /∈ VSi

(12)

In this regard, the probability to get the solution Sj in N samples is:

PA(Sj) = 1 − e
− N

|VSi | (13)

Notice in Equation 13 that PA(Sj) may be understood as the expected fraction of different
solutions obtained when N samples are taken. From Equation 13, N can be obtained as:

N = − ln(1 − PA(Sj))
∣∣VSi

∣∣ (14)

In Equation 14, we define:

= − ln(1 − PA(Sj)) = − ln(PR(Sj)) (15)

You can see that PR(Sj) = 1 − PA(Sj), PR(Sj) is the rejection probability. Constant C
establishes the level of exploration to be done In this way different levels of exploration can
be applied. For example: if a 99% of the solution space is going to be explored, the rejection
probability will be PR(Sj) = 0.01, so, from Equation 15 we obtain C = 4.60.

Definition 3. The exploration set of the search space, ΦC, is defined as follows:

• Given the set of probability of acceptance ΦPA
= {70, 75, 80, 85, 90, 95, 99, 99.9, 99.99, 99.999, ...}

• Using Equation 15: ΦC = {1.20, 1.39, 1.61, 1.90, 2.30, 3.00, 4.61, 6.91, 9.21, 11.51, ...}

Then in any Simulated Annealing algorithm the maximum Markov chain length (when Tk =
Tf ) may be set as:

Lmax = N = C|VSi
| (16)

Because a high percentage of the solution space should be explored, C varies from 1 ≤ C ≤ 4.6
which guarantees a good level of exploration of the neighborhood at Tf .

When the process is at the beginning the temperature Ti is very high. This is because in the
Boltzman distribution the acceptance probability is directly related with the cost increment

PA = e−(ΔJ/Tk); where Tk is the temperature parameter, therefore:

Tk = −
ΔJ

ln(PA)
(17)

At the beginning of the process, PA is close to one (normally 0.99, [21]) and the temperature
is extremely high. Almost any solution is accepted at this temperature; as a consequence the
stochastic equilibrium of a Markov cycle is reached with the first guess solution. Similarly,
when the process is ending the acceptance probability (tipically 0.01) and the temperature
closer to zero but the Metropolis cicle is very long.

For instance SAT values ΔJVmax
and ΔJVmin

in the energy of different states can be estimated at
the beginning of the execution on the simulated annealing algorithm. To estimate these values,
we can count the maximum number of Clauses containing any of the variables of the problem,
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the largest number of clauses that can change when we change the value of a variable, is an
upper bound to change maximum of Energy and:

Ti = −
ΔJVmax

ln(PA)
= −

max number of clauses

ln(0.99)
(18)

Similarly, the minimum of change Energy can be estimated by counting the clauses that are
changed when creating a new neighbor and obtain the lowest of these values:

Tf = −
ΔJVmin

ln(PA)
= −

min number of clauses

ln(0.01)
(19)

Some criticisms about Simulated Annealing are about the long time of execution of standard
Boltzmann-type Simulated Annealing, has many times driven these projects to utilize a
temperature schedule too fast to satisfy the sufficiency conditions required to establish a true
ergodic search. In this chapter we use a logarithmic an exponential temperature schedule that
is consistent with the Boltzmann algorithm follow:

Tk = T0e[(α−1)k], 0 < α < 1 (20)

From Equation 20 we can obtain:

ΔT

Δk
= Tk(α − 1), k ≫ 1 (21)

and
ΔT = Tk(α − 1)Δk, k ≫ 1 (22)

if in the previous expression Δk is equal to 1 then obtain the equation for two successive values
of the temperature

Tk+1 = αTk, 0 < α < 1, k ≫ 1 (23)

where Tk is the “temperature,” k is the “time” index of annealing [16, 17].

3.3. Simulated Annealing algorithm with the Markov chain Lenght dynamically

In [13, 20, 21] authors shown a strong relation between the cooling function and the length of
the Markov chain exists. For the Simulated Annealing algorithm, the stationary distribution
for each Markov chain is given by the Boltzmann probability distribution, which is a family
of curves that vary from a uniform distribution to a pulse function.

At the very beginning of the process (with Tk = Ti), Simulated Annealing has a uniform
distribution, henceforth any guess would be accepted as a solution. Besides any neighbor of
the current solution is also accepted as a new solution. In this way when Simulated Annealing
is just at the beginning the Markov chain length is really small, Lk = Li ≈ 1. When running
the temperature cycle of simulated annealing, for values of k greater than 1, the value of Tk is
decremented by the cooling function [16], until the final temperature is reached (Tk = Tf ):

Tk+1 = αTk (24)

In Equation 24 α is normally in the range of [0.7, 0.99][1].

28 Simulated Annealing – Advances, Applications and Hybridizations
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In this regard the length of each Markov chain must be incremented at any temperature cycle
in a similar but in inverse way that Tk is decremented. This means that Lk must be incremented
until Lmax is reached at Tf by applying an increment Markov chain factor (β). The cooling
function given by Equation 24 is applied many times until the final temperature Tf is reached.
Because Metropolis cycle is finished when the stochastic equilibrium is reached, it can be also
modeled as a Markov chain as follows:

Lk+1 = βLk (25)

In previous Equation 25, Lk represents the length of the current Markov chain at a given
temperature, that means the number of iterations of the Metropolis cycle for a Tk temperature.
So Lk+1 represents the length of the next Markov chain. In this Markov Model, β represents
an increment of the number of iterations in the next Metropolis cycle.

If the cooling function given by Equation 24 is applied over and over, n times, until Tk = Tf ,
the next geometrical function is easily gotten:

Tf = αnTi (26)

Knowing the initial (Ti) and the final (Tf ) temperature and the cooling coefficient (α), the
number of times that the Metropolis cycle is executed can be calculated as:

n =
ln Tf − ln Ti

ln α
(27)

If we make a similar process for increasing the equation of the Markov chain length, another
geometrical function is obtained:

Lmax = βnL1 (28)

Once n is known by Equation 27, the value of the increment coefficient (β) is calculated as:

β = e

(
ln Lmax−ln L1

n

)

(29)

Once Lmax (calculated form Equation 16), L1 and β are known, the length of each Markov chain
for each temperature cycle can be calculated using Equation 27. In this way Lk is computed
dynamically from L1 = 1 for Ti until Lmax at Tf . First we can obtain Ti from Equation 18 and
Tf from Equation 27, with both values and Equation 29 algorithm can calculate β [30].

In Figure 2 we can see the simulated annealing algorithm modifications using Markov chains
described above. Below we will explain how we will use the linear regression for the
simulated annealing algorithm run more efficiently without losing quality in the solution.

4. Linear Regresion Method (LRM)

We explain, in Section 3.2, how to estimate the initial and final temperature for SAT instances
that will be provided to the simulated annealing algorithm to determine if it is satisfiable or
not.

As shown in the Figure 3, the algorithm found Metropolis various configurations with
different energy at a given temperature.

The typical behavior of the energy for a given temperature can be observed in Figure 3. We
set out to determine when the cycle of Metropolis reaches the equilibrium although not all
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1

Initializing:

Initial solution Si

Initial and final temperature: Ti and Tf

Calculate n, β, Lmax

T = Ti

2
Temperatures cycle:

L = L1

3

Metropolis cycle:

Generating Sj from Si

di f = J(Sj)− J(Si)

If di f < 0 then

Si = Sj

else if e
−di f

T > rnd(0,1)

Si = Sj

4

Metropolis condition:

L = βL

if L = Lmax

goto 5

Else

goto 3

5

Stop criterion:

If Tk = Tf

End

Else

Tk = αTk

goto 2

Figure 2. Simulated Annealing algorithm with dinamically Markov chain

of the iterations required by Markov have been executed. In order to determine this zone in
adaptive way, we will fit by least squares a straight line and will stop the Metropolis cycle
if the slope of this line is equal or smaller than zero. This Linear Regression Method LRM is
a well known method but never was applied to detect Metropolis equilibrium in Simulated
Annealing.

Suppose that the data set consists of the points:

(xi, yi), i = 1, 2, 3, ..., n (30)

We want to find a function f such that f (xi) ≈ yi. To attain this goal, we suppose that the
function f is of a particular form containing some parameters (a1, a2, a3, ...., am) which need to
be determined.

30 Simulated Annealing – Advances, Applications and Hybridizations
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Figure 3. Energy of different states, explored in the Metropolis cycle, for a fixed temperature

In our problem:
yi ≈ f (xi, a, b) = axi + b (31)

In Equation 31 a and b are not yet known. In our problem f (xi, a, b) = f (i, a, b) = Ji.

As usual, we now seek the values of a and b, that minimize the sum of the squares of the
residuals as follows:

S =
n

∑
i=1

[yi − (axi + b)]2 (32)

As it is well known regression equations are obtained by differentiating S in Equation 32 with
respect to each parameter a and b, and we obtain this system of linear equations:

a
n

∑
i=1

x2
i + b

n

∑
i=1

xi =
n

∑
i=1

xiyi (33)

a
n

∑
i=1

xi + b
n

∑
i=1

1 =
n

∑
i=1

yi (34)

In Equation 33 and Equation 34 we can define the following constants:

A =
n

∑
i=1

x2
i , B =

n

∑
i=1

xi , C =
n

∑
i=1

xiyi , D =
n

∑
i=1

yi (35)
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Then the system of equations (Equation 33 and 34) can be rewritten as:

aA + bB = C (36)

aB + bn = D (37)

We recall that parameter a, the slope of Equation 31 is:

a =
Cn − BD

An − B2
(38)

In our data xi = 1, 2, 3, ..., n, then we can write:

A =
n

∑
i=1

x2
i =

n

∑
i=1

i2 =
n(n + 1)(2n + 1)

6
(39)

and

B =
n

∑
i=1

xi =
n

∑
i=1

i =
n(n + 1)

2
(40)

in the same way:

C =
n

∑
i=1

i Ji (41)

and

D =
n

∑
i=1

Ji (42)

By substitution of equations: 39, 40, 41 and 42; in Equation 38 finally we get the equation

a =
Cn − BD

n3 − n
(43)

In order to apply LRM to traditional Simulated Annealing, we apply the following strategy:

1. Metropolis cycle is running as usual, just as explained in the Section 3.3, using the

maximum value of Markov chain length calculated by the Equation 28 LC
max, C is calculated

Pi
A ∈ ΦPA

2. When the repeats of metropolis, L, are equal to LC−1
max (LC−1

max is calculated by Equation 28

with Pi−1
A ∈ ΦPA

).

3. If the value of the slope a, in the equation of the line (Equation 31), found by Equation 43
is close to zero, then stop the cycle of Metropolis although this has not reached the value
Lmax.

Notice from Equation 43 and for Figure 4, that the computation of LRM is O(n) where n is the
number of points taken to compute the slope. So the complexity of Simulated Annealing with
LRM is not affected [19, 22].

5. Experimental results

In order to prove LRM algorithm we used the SAT instances in Table 1 and Table 2. Some of
these instances were generated using the programs proposed by Horie et al. in 1997 [15] and
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1

Initializing:

Initial solution Si

Initial and final temperature: Ti and Tf

Calculate n, β, Lmax

T = Ti

2
Temperatures cycle:

L = L1

3

Metropolis cycle:

Generating Sj from Si

di f = J(Sj)− J(Si)

If di f < 0 then

Si = Sj

else if e
−di f

T > rnd(0,1)

Si = Sj

If L ≥ LC−1
max then

calculate a

..........If a ≈ 0 then

L = Lmax

..................goto 4

4

Metropolis condition:

L = βL

if L = Lmax

goto 5

Else

goto 3

5

Stop criterion:

If Tk = Tf

End

Else

Tk = αTk

goto 2

Figure 4. Simulated Annealing algorithm with dinamically Markov chain and LRM

other are in SATLIB [14]. We generated several instances that had the same relation of clauses
and variables σ [24, 25].

The measurement of efficiency of this algorithm was based on the execution time and we also
obtained a solution quality measure (SQM), SQM is taken as the number of “true” clauses in
an instance at the end of the program execution.

33
A Simulated Annealing Algorithm for the Satisfi ability Problem 

Using Dynamic Markov Chains with Linear Regression Equilibrium



14 Will-be-set-by-IN-TECH

SAT problem Id Variables Clauses σ SAT?

aim-100-1_6-yes1-1 a1 100 160 1.60 Yes

aim-50-1_6-yes1-3 a2 50 80 1.60 Yes

aim-200-1_6-no-1 a7 200 320 1.60 No

aim-50-1_6-no-2 a8 50 80 1.60 No

g2_V100_C200_P2_I1 g1 100 200 2.00 Yes

aim-50-2_0-no-4 a10 50 100 2.00 No

aim-50-2_0-yes1-1 a3 50 100 2.00 Yes

aim-50-2_0-no-3 a9 50 100 2.00 No

dubois21 d2 63 168 2.67 No

dubois26 d1 78 208 2.67 No

dubois27 d3 81 216 2.67 No

BMS_k3_n100_m429_161 b1 100 283 2.83 Yes

g2_V300_C900_P3_I1 g15 300 900 3.00 Yes

g2_V50_C150_P3_I1 g17 50 150 3.00 Yes

BMS_k3_n100_m429_368 b2 100 308 3.08 Yes

hole6 h2 42 133 3.17 No

par8-1 p1 350 1149 3.28 Yes

aim-50-3_4-yes1-2 a4 50 170 3.40 Yes

hole7 h3 56 204 3.64 No

par8-3-c p2 75 298 3.97 Yes

par8-5-c p3 75 298 3.97 Yes

Table 1. SAT instances for testing algorithms

Both algorithms: Simulated Annealing Algorithm with the Markov Chain Lenght
dynamically (SA_C) and Simulated Annealing with Linear Regresion Method (SA_LRM),
were implemented in Dell Lattitude with 1 Gb of Ram memory and Pentium 4 processor
running at 2.13 GHz.

5.1. Experiment design

The experiments with these algorithms require a considerable run-time, because each instance
SAT, is solved several times to take average values of performance.

Another important element to consider is to guarantee that the conditions of execution on the
various algorithms are similar (because we measure time of execution on). In this regard, the
first thing we did was on the Evaluation of a set of computers with similar hardware and
software conditions.

To run this task, there were used programs available from the Internet, that perform different
computers test and give us the result of this evaluation [29, 32, 33].

In Table 3, MOS means: million operations per second, MSS million strings per second and
MBTS represent millions of bytes transferred per second. As we can see Table 3 the differences
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SAT problem Id Variables Clauses σ SAT?

g2_V100_C400_P4_I1 g3 100 400 4.00 Yes

hole8 h4 72 297 4.13 No

uuf225-045 u4 225 960 4.27 No

RTI_k3_n100_m429_150 r1 100 429 4.29 Yes

uf175-023 u1 175 753 4.30 Yes

uuf100-0789 u8 100 430 4.30 No

uf50-01 u7 50 218 4.36 Yes

uuf50-01 u9 50 218 4.36 No

ii8a2 i3 180 800 4.44 Yes

g2_V50_C250_P5_I1 g19 50 250 5.00 Yes

hole10 h1 110 561 5.10 No

ii32e1 i2 222 1186 5.34 Yes

anomaly a6 48 261 5.44 Yes

aim-50-6_0-yes1-1 a5 50 300 6.00 Yes

g2_V50_C300_P6_I1s g20 50 800 6.00 Yes

jnh201 j1 100 800 8.00 Yes

jnh215 j3 100 800 8.00 No

medium m1 116 953 8.22 Yes

jnh301 j2 100 900 9.00 Yes

Table 2. SAT instances for testing algorithms, continuation

Computer 1 2 3 4 5 6 7 8 9

Floating Point Math (MOS) 168.1 168.3 168.0 168.0 168.2 168.1 167.9 168.2 168.2

Integer Maths (MOS) 33.61 33.56 33.60 33.59 33.65 33.62 33.56 33.65 33.62

Search for prime numbers (MOS) 126.6 126.6 126.4 126.5 126.7 126.7 126.3 126.6 126.6

String Sorting (MSS) 415.6 416.0 415.3 408.3 415.9 415.8 415.7 415.6 415.7

Memory blocks transfer (MbTS) 470.9 476.6 475.9 465.7 466.4 467.4 468.7 469.0 459.7

Cache memory read (MbTS) 1141 1142 1141 1141 1142 1141 1141 1142. 1088

Non cache memory read (MbTS) 831.8 831.7 832.0 831.2 830.7 831.1 830.6 831.6 831.2

Memory write (MbTS) 377.3 379.7 378.2 378.3 378.0 379.1 378.1 378.1 377.0

Overall calculation speed 232.5 232.6 232.1 232.0 232.4 232.5 232.1 232.5 232.6

Overall memory speed 209.9 210.8 210.4 209.6 209.5 210.0 209.8 209.8 209.9

Table 3. Performance of computers used for experiments

between computers are at most equal to 1.6 percent, so we can infer that we obtain similar
results in one or another computer.

Each SAT instance was executed 100 times with a slow cooling function (0.99 in Equation 20
and we obtained the average time of the executions and the average quality of the solution.
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The SQM is established by the next expression:

SQM =
clauses true

total clauses
× 100 (44)

Both results, SA_C and SA_LRM, were compared using two quotients which we
denominated time improvement Qtime and quality improvement Qquality defined by:

Qtime =
AverageTimeSA_LRM

AverageTimeSA_C
× 100 (45)

Qquality =
SQMSA_LRM

SQMSA_C
× 100 (46)

If Qquality is close to 100% this means that both algorithm found good solutions, however
Qquality factor must decrease, which implies that the new algorithm SA_LRM is faster than
SA_C.

LC
max = 4.61 LC

max = 3.00 LC
max = 2.30

LC−1
max = 3.00 LC−1

max = 2.30 LC−1
max = 1.96

Instance Qquality Qtime Qquality Qtime Qquality Qtime

a1 99.4 13.0 99.3 12.9 99.2 11.7

a10 99.0 11.0 99.2 11.6 99.6 9.7

a2 99.5 11.4 98.7 11.2 99.0 9.8

a3 99.9 11.3 99.4 11.6 99.2 9.6

a4 99.2 9.8 99.6 10.4 98.9 8.8

a5 99.5 10.1 99.1 10.6 99.5 9.0

a6 99.0 34.5 99.3 32.1 99.2 27.8

a7 98.7 13.3 99.1 13.9 98.8 11.8

a8 99.6 11.3 99.2 12.2 99.4 9.8

a9 99.2 10.9 98.7 11.6 99.4 9.5

b1 99.6 54.0 99.7 51.0 99.9 46.0

b2 100.2 57.7 99.8 53.5 99.9 49.2

d1 99.2 11.8 99.4 11.6 99.2 10.1

d2 99.5 11.6 99.5 11.5 99.4 10.1

d3 100.0 11.5 99.1 11.3 99.1 9.5

g1 99.8 71.7 99.9 69.7 99.8 64.7

g15 99.7 28.7 99.7 28.3 99.9 29.0

g17 99.3 11.7 99.2 12.7 99.5 10.5

g19 99.6 11.5 98.6 11.5 99.3 9.8.0

g20 99.5 10.5 99.5 11.1 99.4 9.5.0

Table 4. Experimentals results
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LC
max = 4.61 LC

max = 3.00 LC
max = 2.30

LC−1
max = 3.00 LC−1

max = 2.30 LC−1
max = 1.96

Instance Qquality Qtime Qquality Qtime Qquality Qtime

g3 99.8 20.8 99.6 21.2 99.6 18.4

h1 100.1 54.5 99.6 53.5 99.9 47.1

h2 99.7 22.0 99.3 23.2 99.5 19.1

h3 100.1 30.5 99.7 29.7 99.5 24.9

h4 98.9 41.0 99.3 38.5 99.0 32.7

i2 99.1 55.0 98.9 54.4 99.7 45.7

i3 100.0 65.0 100.2 65.4 100.3 58.7

j1 99.7 11.6 99.7 12.8 99.6 11.1

j2 99.7 11.6 99.8 12.3 99.8 10.4

j3 99.5 11.3 99.7 12.3 99.8 10.2

m1 100.5 74.5 99.9 70.9 99.7 66.8

p1 99.9 66.0 99.9 65.4 99.9 59.7

p2 99.4 13.8 99.0 13.3 99.3 11.8

p3 99.3 14.0 99.5 12.4 99.5 11.0

r1 99.4 24.0 99.7 22.6 99.5 21.1

u1 99.6 49.6 100.0 49.8 100.0 44.5

u4 99.7 53.3 100.0 50.9 99.3 48.1

u7 99.9 14.7 100.0 15.2 99.5 13.1

u8 99.7 26.0 100.0 23.9 99.6 20.0

u9 99.1 13.8 99.5 14.0 99.2 11.9

Table 5. Experimentals results, continuation

From Table 4 and Table 5 experimental results we can obtain the average values for the
magnitudes Qtime and Qquality, as shown in the following Table 6.

As you can see, in Table 6, the quality factor of the solutions, Qquality is very close to 100%,
which implies that the SA_LRM algorithm finds solutions as good as the SA_C algorithm, it
is important to note that 37% of SAT instances used for the experiments, are not-SAT, which
implies that their respective SQM can not be equal to 100% and therefore the quality factor
must be less than 100%.

Also in Table 6, we see that the factor Qtime diminishes values less than 30%, showing that our
algorithm, SA_LRM, is 70% faster than the SA_C algorithm but maintains the same quality
of the solution.

As shown in Figure 5 are some instances in which the reduction of run time is only 25% while
other reducing runtime up to 90%.
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LC
max LC−1

max Qtime(%) Qquality(%)

4.61 3.00 99.6 27.3

3.00 2.30 99.5 26.8

2.30 1.96 99.5 23.8

Table 6. Qtime and Qquality averages for all instances tested

Figure 5. Qtime for SAT instances

6. Conclusions

In this paper a new adaptive Simulated Annealing algorithm named SA_LRM that uses least
squares method as a way to find the equilibrium zone in Metropolis cycle is presented. When
this zone is found our algorithm abort the Metropolis cycle, although the iterations calculated
with the dynamic chains of Markov have not been completed. After experimentation we show
that SA_LRM is more efficient than those tuned using only an analytical method.
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