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1. Introduction

Many communities obtain their drinking water from underground sources called aquifers.
Official water suppliers or public incorporations drill wells into soil and rock aquifers look‐
ing for groundwater contained there in order to supply the population with drinking water.
An aquifer can be defined as a geologic formation that will supply water to a well in enough
quantities to make possible the production of water from this formation. The conventional
estimation of the exploration flow involves many efforts to understand the relationship be‐
tween the structural and physical parameters. These parameters depend on several factors,
such as soil properties and hydrologic and geologic aspects [1].

The transportation of water to the reservoirs is usually done through submerse electrical
motor pumps, being the electric power one of the main sources to the water production.
Considering the increasing difficulty to obtain new electrical power sources, there is then
the need to reduce both operational costs and global energy consumption. Thus, it is impor‐
tant to adopt appropriate operational actions to manage efficiently the use of electrical pow‐
er in these groundwater hydrology problems. For this purpose, it is essential to determine a
parameter that expresses the energetic behavior of whole water extraction set, which is here
defined as Global Energetic Efficiency Indicator (GEEI). A methodology using artificial neural
networks is here developed in order to take into account several experimental tests related
to energy consumption in submerse motor pumps.

The GEEI of a depth is given in Wh/m3.m. From a dimensional analysis, we can observe that
the smaller numeric value of GEEI indicates the better energetic efficiency to the water ex‐
traction system from aquifers.

© 2013 da Silva et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



For such scope, this chapter is organized as follows. In Section 2, a brief summary about wa‐
ter exploration processes are presented. In Section 3, some aspects related to mathematical
models applied to water exploration process are described. In Section 4 is formulated the ex‐
pressions for defining the GEEI. The neural approach used to determine the GEEI is intro‐
duced in Section 5, while the procedures for estimation of aquifer dynamic behavior using
neural networks are presented in Section 6. Finally, in Section 7, the key issues raised in the
chapter are summarized and conclusions are drawn.

2. Water Exploration Process

An aquifer is a saturated geologic unit with enough permeability to transmit economical
quantities of water to wells [10]. The aquifers are usually shaped by unconsolidated sands
and crushed rocks. The sedimentary rocks, such as arenite and limestone, and those volcanic
and fractured crystalline rocks can also be classified as aquifers.

After the drilling process of groundwater wells, the test known as Step Drawdown Test is car‐
ried out. This test consists of measuring the aquifer depth in relation to continue withdrawal
of water and with crescent flow on the time. This depth relationship is defined as Dynamic
Level of the aquifer and the aquifer level at the initial instant, i.e., that instant when the
pump is turned on, is defined as Static Level. This test gives the maximum water flow that
can be pumped from the aquifer taking into account its respective dynamic level. Another
characteristic given by this test is the determination of Drawdown Discharge Curves, which
represent the dynamic level in relation to exploration flow [2]. These curves are usually ex‐
pressed by a mathematical function and their results have presented low precision.

Since aquifer behavior changes in relation to operation time, the Drawdown Discharge Curves
can represent the aquifer dynamics only in that particular moment. These changes occur by
many factors, such as the following: i) aquifer recharge capability; ii) interference of neigh‐
boring wells or changes in its exploration conditions; iii) modification of the static level
when the pump is turned on; iv) operation cycle of pump; and v) rest time available to the
well. Thus, the mapping of these groundwater hydrology problems by conventional identi‐
fication techniques has become very difficult when all above considerations are taken into
account. Besides the aquifer behavior, other components of the exploration system interfere
on the global energetic efficiency of the system.

On the other hand, the motor-pump set mounted inside the well, submersed on the water
that comes from the aquifer, receives the whole electric power supplied to the system. From
an eduction piping, which also supports physically the motor pump, the water is transport‐
ed to the ground surface and from there, through an adduction piping, it is transported to
the reservoir, which is normally located at an upper position in relation to the well. To trans‐
port water in this hydraulic system, it is necessary several accessories (valves, pipes, curves,
etc.) for its implementation. Figure 1 shows the typical components involved with a water
extraction system by means of deep wells.
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The resistance to the water flow, due to the state of the pipe walls, is continuous along all
the tubing, and will be taken as uniform in every place where the diameter of the pipe to be
constant.

This resistance makes the motor pump to supply an additional pressure (or a load) in order
to water can reach the reservoir. Thus, the effect created by this resistance is also called
“load loss along the pipe”. Similar to the tubing, other elements of the system cause a resist‐
ance to the fluid flow, and therefore, load losses. These losses can be considered local, locat‐
ed, accidental or singular, due to the fact that they come from particular points or parts of
the tubing.

Regarding the hydraulic circuit, it is observed that the load loss (distributed and located) is
an important parameter, and that it varies with the type and the state of the material.

Figure 1. Components of the pumping system.

Therefore, old tubing, with aggregated incrustation along the operational time, shows a load
loss different of that present in new tubing. A valve turned off twice introduces a bigger
load loss than that when it is totally open. A variation on the extraction flow also creates
changes on the load loss. These are some observations, among several other points, that
could be done.

Another important factor concerning the global energetic efficiency of the system is the geo‐
metrical difference of level. However, this parameter does not show any variation after the
total implantation of the system. Concerning this, two statements can be done: i) when
mathematical models were used to study the lowering of the piezometric surface, these
models should frequently be evaluated in certain periods of time; ii) the exploration flow of
the aquifer assumes a fundamental role in the study of the hydraulic circuit and it should be
carefully analyzed.

In order to overcome these problems, this work considers the use of parameters, which are
easily obtained in practice, to represent the capitation system, and the use of artificial neural
networks to determine the exploration flow. From these parameters, it is possible to deter‐
mine the GEEI of the system.
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3. Mathematical Models Applied to Water Exploration Process

One of the most used mathematical models to simulate aquifer dynamic behavior is the
Theis’ model [1,9]. This model is very simple and it is used to transitory flow. In this model,
the following hypotheses are considered: i) the aquifer is confined by impermeable forma‐
tions, ii) the aquifer structure is homogeneous and isotropic in relation to its hydro-geologi‐
cal parameters, iii) the aquifer thickness is considered constant with infinite horizontal
extent, and iv) the wells penetrate the entire aquifer and their pumping rates are also consid‐
ered constant in relation to time.

The model proposed by Theis can be represented by the following equations:

¶ ¶ ¶
+ × = ×

¶ ¶¶

2
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r r T tr
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=( ,0) 0s r (2)
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where:

s is the aquifer drawdown;

Q is the exploration flow;

T is the transmissivity coefficient;

r is the horizontal distance between the well and the observation place.

Applying the Laplace’s transform on these equations, we have:
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where:
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w is the Laplace’s parameter;

S is the storage coefficient.

Thus, the aquifer drawdown in the Laplace’s space is given by:
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This equation in the real space is as follows:
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The Theis’ solution is then defined by:
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Finally, from Equation (10), we have:
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where:

L-1 is the Laplace’s inverse operator.

K0 is the hydraulic conductivity.

From analysis of the Theis’ model, it is observed that to model a particular aquifer is indis‐
pensable a high technical knowledge on this aquifer, which is mapped under some hypothe‐
ses, such as confined aquifer, homogeneous, isotropic, constant thickness, etc. Moreover,
other aquifer parameters (transmissivity coefficient, storage coefficient and hydraulic con‐
ductivity) to be explored must be also defined. Thus, the mathematical models require ex‐
pert knowledge of concepts and tools of hydrogeology.
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It is also indispensable to consider that the aquifer of a specific region shows continuous
changes in its exploration conditions. The changes are normally motivated by the companies
that operate the exploration systems, by drilling of new wells or changes of the exploration
conditions, or still, motivated by drilling of illegal wells. These changes have certainly re‐
quired immediate adjustment on the Theis’ model. Another fact is that the aquifer dynamic
level modifies in relation to exploration flow, operation time, static level, and obviously
with those intrinsic characteristics of the aquifer under exploration. In addition, neighboring
wells will also be able to cause interference on the aquifer.

Therefore, although to be possible the estimation of aquifer behavior using mathematical
models, such as those presented in [11]-[16], they present low precision because it is more
difficult to consider all parameters related to the aquifer dynamics. For these situations, in‐
telligent approaches [17]-[20] have also been used to obtain a good performance.

4. Defining the Global Energetic Efficiency Indicator

As presented in [3], “Energetic Efficiency” is a generalized concept that refers to set of ac‐
tions to be done, or then, the description of reached results, which become possible the re‐
duction of demand by electrical energy. The energetic efficiency indicators are established
through relationships and variables that can be used in order to monitor the variations and
deviations on the energetic efficiency of the systems. The descriptive indicators are those
that characterize the energetic situation without looking for a justification for its variations
or deviations.

The theoretical concept for the proposed Global Energetic Efficiency Indicator will be pre‐
sented using classical equations that show the relationship between the absorbed power
from the electric system and the other parameters involved with the process.

As presented in [3], the power of a motor-pump set is given by:

× ×
=

×75
T

mp
mp

� Q H
P

� (13)

where:

Pmp is the power of the motor-pump set (CV);

γis the specific weight of the water (1000 kgf/m3);

Q is the water flow (m3/s);

HT is the total manometric height (m);

ηmpis the efficiency of the motor-pump set (ηmotor ⋅ηpump).

Artificial Neural Networks – Architectures and Applications230



Substituting the following values {1 CV ≅ 736 Watts;1 m3/s = 1/3600 m3/h; γ= 1000 kgf/m3 } in
equation (13), we have:

× ×
=

2.726 T
mp

mp

Q H
P

� (14)

The total manometric height (HT) in elevator sets to water extraction from underground
aquifers is given by:

HT = Ha + Hg + Δh f t (15)

where:

HT is the total manometric height (m);
Ha is the dynamic level of the aquifer in the well (m);
Hg is the geometric difference in level between the well surface and the reservoir (m);
Δhft is total load loss in the hydraulic circuit (m).

From analyses on the variables in (15), it is observed that only the variable corresponding to
the geometric difference in level (Hg) can be considered constant, while other two will
change along the operation time of the well.

The dynamic level (Ha) will change (to lower) since the beginning of the pumping until the
moment of stabilization. This observation is verified in short period of time, as for instance,
a month. Besides this variation, which can present a cyclic behavior, it is possible that other
types of variation, due to interferences from other neighboring wells, can take place as well
as alterations in the aquifer characteristics.

The total load loss will also vary during the pumping, and it is dependent on hydraulic cir‐
cuit characteristics (diameter, piping length, hydraulic accessories, curves, valves, etc.).

These characteristics can be considered constant, since they usually do not change after in‐
stalled. However, the total load loss is also dependent on other characteristic of the hydraul‐
ic circuit, which frequently changes along the useful life of the well. These variable
characteristics are given by: i) roughness of the piping system, ii) water flow, and iii) opera‐
tional problems, such as semi-closed valves, leakage, etc.

Observing again Figure 1, it is verified that the necessary energy to transport the water from
the aquifer to the reservoir, overcoming all the inherent load losses, it is supplied by the
electric system to the motor-pump set. Thus, using these considerations and substituting
(15) in (14), we have:

Pel =
2.726⋅Q ⋅ (Ha + Hg + Δh f t)

ηmp
(16)
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where:

Pel is the electric power absorbed from electric system (W);

Q is the water flow (m3/h);

Ha is the dynamic level of the aquifer in the well (m);

Hg is the geometric difference of level between the well surface and the reservoir (m);

Δhft is the total load loss in the hydraulic circuit (m);

ηmpis the efficiency of the motor-pump set (ηmotor ⋅ηpump).

From (16) and considering that an energetic efficiency indicator should be a generic descrip‐
tive indicator, the Global Energetic Efficiency Indicator (GEEI) is here proposed by the follow‐
ing equation:

GEEI =
Pel

Q ⋅ (Ha + Hg + Δh f t)
(17)

Observing equation (17), it is verified that the GEEI will depend on electric power, water
flow, dynamic level, geometric difference of level, and total load loss of the hydraulic circuit.

The efficiency of the motor-pump set does not take part in (17) because its behavior will
be  reflected inversely by the GEEI.  Thus,  when the efficiency of  the motor-pump set  is
high, the GEEI will be low. Therefore, the best GEEI will be those presenting the smallest
numeric values.

Another reason to exclude the efficiency of the motor-pump set in (17) is the difficulty to
obtain this value in practice. Since it is a fictitious value, it is impossible to make a direct
measurement and its value is obtained through relationships between other quantities. After
the beginning of the pumping, it is occurred the lowering of water level inside the well.
Then, the manometric height changes and as result the water flow also changes. The effi‐
ciency of a motor-pump set will also change along its useful life due to the equipment wear‐
ing, piping incrustations, leakages in the hydraulic system, obstructions of filters inside the
well, closed or semi-closed valves, etc.

Therefore, converting all variables in (17) to meters, the most generic form of the GEEI is
given by:

=
.
el

T

P
GEEI

Q H (18)

The GEEI defined in (18) can be used to analyze the well behavior along the time.
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5. Neural Approach Used to Determine the Global Energetic Efficiency
Indicator

Among all necessary parameters to determine the proposed GEEI, the determination of the
exploration flow is the most difficult to obtain in practice. The use of flow meters, as the
electromagnetic ones, is very expensive. The use of rudimentary tests has provided impre‐
cise results.

To overcome this practical problem, it is proposed here the use of artificial neural networks
to determine the exploration flow from other parameters that have been measured before
determining the GEEI.

Artificial Neural Networks (ANN) are dynamic systems that explore parallel and adaptive
processing architectures. They consist of several simple processor elements with high degree
of connectivity between them [4]. Each one of these elements is associated with a set of pa‐
rameters, known as network weights, that allows the mapping of a set of known values (net‐
work inputs) to a set of associated values (network outputs).

The process of weight adjustment to suitable values (network training) is carried out
through successive presentation of a set of training data. The objective of the training is the
minimization between the output (response) generated by the network and the respective
desired output. After training process, the network will be able to estimate values for the
input set, which were not included in the training data.

In this work, an ANN will be used as a functional approximator, since the exploration flow
of the well is a dependent variable of those ones that will be used as input variables. The
functional approximation consists of mapping the relationship between the several variables
that describe the behavior of a real system [5].

The ability of neural artificial networks to mapping complex nonlinear functions makes
them an attractive tool to identify and to estimate models representing the dynamic behav‐
ior of engineering processes. This feature is particularly important when the relationship be‐
tween several variables involved with the process is nonlinear and/or not very well defined,
making its modeling difficult by conventional techniques.

A multilayer perceptron (MLP), as that shown in Figure 2, trained by the backpropagation
algorithm, was used as a practical tool to determine the water flow from the measured pa‐
rameters.

The input variables applied to the proposed neural network were the following:

• Level of water in meters (Ha) inside the well at the instant t.

• Manometric height in meters of water column (Hm) at the instant t.

• Electric power in Watts (Pel) absorbed from the electric system at the instant t.

Recurrent Neural Network Based Approach for Solving Groundwater Hydrology Problems
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The unique output variable was the exploration flow of the aquifer (Q), which is expressed
in cubic meters per hour. It is important to observe that for each set of input values at a cer‐
tain instant t, the neural network will return a result for the flow at that same instant t.

The determination of GEEI will be done by using in equation (18) the flow values obtained
from the neural network and other parameters that come from experimental measurements.

To training of the neural network, all these variables (inputs and output) were measured
and provided to the network. After training, the network was able to estimate the respective
output variable. The values of the input variables and the respective output for a certain
pumping period, which were used in the network training, are given by a set composed by
40 training patterns (or training vectors).

Figure 2. Multilayer perceptron used to determine the water flow.

These patterns were applied to a neural network of MLP type (Multilayer Perceptron) with
two hidden layers, and its training was done using the backpropagation algorithm based on
the Levenberg-Marquardt’s method [6]. A description of the main steps of this algorithm is
presented in the Appendix.

The network topology that was used is similar to that presented in Figure 2. The number of
hidden layers and the number of neurons in each layer were determined from results ob‐
tained in [7,8]. The network is here composed by two hidden layers and the following pa‐
rameters were used in the training process:

• Number of neurons of the 1st hidden layer: 15 neurons.

• Number of neurons of the 2nd hidden layer: 10 neurons.

• Training algorithm: Levenberg-Maquart.

• Number of training epochs: 5000 epochs.

At the end training process, the mean squared error obtained was 7.9x10-5, which is a value
considered acceptable for this application [7].
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After training process, values of input variables were applied to the network and the respec‐
tive values of flow were obtained in its output. These values were then compared with the
measured ones in order to evaluate the obtained precision.

Table I shows some values of flow that were given by the artificial neural network (QANN)
and those measured by experimental tests (QET).

Ha (m) Hm (m) Pel (W) QANN (m3/h) QET (m3/h)

25.10 8.25 26,256 74.99 75.00

31.69 40.50 26,155 53.00 62.00

31.92 48.00 25,987 56.00 56.00

31.12 48.00 25,953 55.00 55.00

32.50 48.00 25,970 54.08 54.00

32.74 48.00 25,970 54.77 54.50

33.05 48.00 25,937 54.15 54.00

33.26 48.00 25,954 58.54 54.00

33.59 48.00 25,869 53.01 53.00

33.83 48.00 25,886 53.49 53.50

34.15 48.00 25,887 53.50 53.00

34.41 48.00 25,886 53.48 53.50

34.71 48.00 25,785 53.25 53.30

34.95 48.00 25,870 53.14 53.00

35.00 48.00 25,801 53.14 53.00

Table 1. Comparison of results.

In this table, the values in bold were not presented to the neural network during the train‐
ing.

When the patterns used in the training are presented again, it is noticed that the difference
between the results is very small, reaching the maximum value of 0.35% of the measured
value. When new patterns are used, the highest error reaches the value of 14.5%. It is also
observed that the error value to new patterns decreases when they represent an operational
stability situation of the motor-pump set, i.e., they are far away from the transitory period of
pumping.

At this point, we should observe that it would be desirable a greater number of training pat‐
terns for the neural network, especially if it could be obtained from a wider variation of the
range of values.
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The proposed GEEI was determined by equation (18) and the measured values used were
the electric power, the dynamic level, the geometric difference of level, the pressure of out‐
put in the well, and the water flow obtained from the neural network.

Figure 3 shows the behavior of GEEI during the analyzed pumping period.

The numeric values that have generated the graphic in Figure 3 are presented in Table 2.

Operation Time

(min)

GEEI(t)

(Wh/m3.m)

Operation Time

(min)

GEEI(t)

(Wh/m3.m)

0 7.420* 40 5.054

1 4.456* 45 5.139

2 5.738* 50 5.134

3 5.245* 55 5.115

4 4.896* 60 5.073

5 4.951* 75 5.066

6 4.689* 90 5.060

7 5.078* 105 5.042

8 4.840* 120 5.037

9 5.027* 135 5.042

10 5.090* 155 5.026

11 5.100* 185 5.032

12 5.092* 215 5.030

14 5.066* 245 5.040

16 5.044* 275 5.034

18 5.015* 305 5.027

20 5.006* 335 5.017

22 5.017 365 5.025

24 5.022 395 5.030

26 5.032 425 5.031

28 5.049 455 5.020

30 5.062 485 5.015

35 4.663

* GEEI in transitory period (from 0 to 20 min of pumping).

Table 2. GEEI calculated using the artificial neural network.
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Figure 3. Behavior of the GEEI in relation to time.

6. Estimation of Aquifer Dynamic Behavior Using Neural Networks

In this section, artificial neural networks are now used to map the relationship between the
variables associated with the identification process of aquifer dynamic behavior.

The general architecture of the neural system used in this application is shown in Figure 4,
where two neural networks of type MLP, MLP-1 and MLP-2, constituted respectively by one
and two hidden layers, compose this architecture.

Figure 4. General architecture of the ANN used for estimation of aquifer dynamic behavior.
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The first network (ANN-1) has 10 neurons in the hidden layer and it is responsible by the
computation of the aquifer operation level. The training data for ANN-1 were directly ob‐
tained from experimental measurements. It is important to note that this network has taken
into account the present level and rest time of the aquifer.

The second network (ANN-2) is responsible by the computation of the aquifer dynamic lev‐
el and it is composed by 2 hidden layers with both having 10 neurons. For this network, the
training data were also obtained from experimental measurements. As observed in Figure 4,
the ANN-1 output is provided as an input parameter to the ANN-2. Therefore, the computa‐
tion of the aquifer dynamic level takes into account the aquifer operation level, the explora‐
tion flow and operation time.

After training process of the neural networks, they were used for estimation of the aquifer
dynamic level. The simulation results obtained by the networks are presented in Table 3 and
Table 4.

Present

Level

(meters)

Rest

Time

(hours)

Operation

Level

(ANN-1)

Operation

Level

(Exact)

Relative

Error

(%)

115.55 4 103.59 104.03 0.43 %

125.86 9 104.08 104.03 0.05 %

141.26 9 105.69 104.03 1.58 %

137.41 8 102.95 104.03 1.05 %

Table 3. Simulation results (ANN-1).

Table 3 presents the simulation results obtained by the ANN-1 for a particular well. The op‐
eration levels computed by the network taking into account the present level and rest time
of the aquifer were compared with those results obtained by measurements. In this table, the
‘Relative Error’ column provides the relative error between the values estimated by the net‐
work and those obtained by measurements.

Operation

Flow

(m3/h)

Operation

Time

(hours)

Dynamic

Level

(ANN-2)

Dynamic

Level

(Exact)

Relative

Error

(%)

145 14 115.50 115.55 0.04 %

160 2 116.10 116.14 0.03 %

170 6 118.20 117.59 0.52 %

220 21 141.30 141.26 0.03 %

Table 4. Simulation results (ANN-2).
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The simulation results obtained by the ANN-2 are provided in Table 4. The dynamic level of
the aquifer is estimated by the network in relation to operation level (computed by the
ANN-1), exploration flow and operation time. These results are also compared with those
obtained by measurements. In Table 4, the ‘Relative Error’ column gives the relative error
between the values computed by the network and those from measurements.

These results show the efficiency of the neural approach used for estimation of aquifer dy‐
namic behavior. The values estimated by the network are accurate to within 1.5% of the ex‐
act values for ANN-1 and 0.5 for ANN-2. From analysis of the results presented in Table 3
and 4, it is verified that the relative error between values provided by the network and those
obtained by experimental measurements is very small. For ANN-1, the greatest relative er‐
ror is 1.58 % (Table 3) and for ANN-2 is 0.52% (Table 4).

7. Conclusion

The management of systems that explore underground aquifers includes the analysis of two
basic components: the water, which comes from the aquifer; and the electric energy, which
is necessary to the transportation of the water to the consumption point or reservoir. Thus,
the development of an efficiency indicator that shows the energetic behavior of a certain
capitation system is of great importance to efficient management of the energy consump‐
tion, or still, to convert the obtained results in actions that become possible a reduction of
energy consumption.

The obtained GEEI will indicate the global energetic behavior of the water capitation system
from aquifers and will be an indicator of occurrences of abnormalities, such as tubing breaks
or obstructions.

The application of the proposed methodology uses parameters that have easily been ob‐
tained in the water exploration system. The GEEI calculus can also be done by operators or
to be implemented by means of computational system.

In addition, a novel methodology for estimation of aquifer dynamic behavior using artificial
neural networks was also presented in this chapter. The estimation process is carried out by
two feedforward neural networks. Simulation results confirm that proposed approach can
be efficiently used in these types of problem. From results, it is possible to simulate several
situations in order to define appropriate management plans and policies to the aquifer.

The main advantages in using this neural network approach are the following: i) velocity:
the estimation of dynamic levels are instantly computed and it is appropriated for applica‐
tion in real time, ii) economy and simplicity: reduction of operational costs and measure‐
ment devices, and iii) precision: the values estimated by the proposed approach are as good
as those obtained by physical measurements.
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8. Appendix

The mathematic model that describes the behavior of the artificial neuron is expressed by
the following equation:

=

= × +å
1

n

i i

i

u w x b (19)

= ( )y g u (20)

where n is the number of inputs of the neuron; xi is the i-th input of the neuron; wi is the
weight associated with the i-th input; b is the threshold associated with the neuron; u is the
activation potential; g( ) is the activation function of the neuron; y is the output of the neuron.

Basically, an artificial neuron works as follows:

(a) Signals are presented to the inputs.
(b) Each signal is multiplied by a weight that represents its influence in that unit.
(c) A weighted sum of the signals is made, resulting in a level of activity.
(d) If this level of activity exceeds a certain threshold, the unit produces an output.

To approximate any continuous nonlinear function a neural network with only a hidden
layer can be used. However, to approximate non-continuous functions in its domain it is
necessary to increase the amount of hidden layers. Therefore, the networks are of great im‐
portance in mapping nonlinear processes and in identifying the relationship between the
variables of these systems, which are generally difficult to obtain by conventional techni‐
ques.

The network weights (wj) associated with the j-th output neuron are adjusted by computing
the error signal linked to the k-th iteration or k-th input vector (training example). This error
signal is provided by:

= -( ) ( ) ( )j j je k d k y k (21)

where dj(k) is the desired response to the j-th output neuron.

Adding all squared errors produced by the output neurons of the network with respect to k-
th iteration, we have:

=

= å 2

1

1
( ) ( )

2

p

j

j

E k e k (22)
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where p is the number of output neurons.

For an optimum weight configuration, E(k) is minimized with respect to the synaptic weight
wji. The weights associated with the output layer of the network are therefore updated using
the following relationship:

w ji(k + 1)←w ji(k )−η
∂E (k)
∂w ji(k ) (23)

where wji is the weight connecting the j-th neuron of the output layer to the i-th neuron of
the previous layer, and η is a constant that determines the learning rate of the backpropaga‐
tion algorithm.

The adjustment of weights belonging to the hidden layers of the network is carried out in an
analogous way. The necessary basic steps for adjusting the weights associated with the hid‐
den neurons can be found in [4].

Since the backpropagation learning algorithm was first popularized, there has been consid‐
erable research into methods to accelerate the convergence of the algorithm.

While backpropagation is a steepest descent algorithm, the Marquardt-Levenberg algorithm
is similar to the quasi-Newton method, which was designed to approach second-order train‐
ing speed without having to compute the Hessian matrix.

When the performance function has the form of a sum of squared errors like that presented
in (22), then the Hessian matrix can be approximated as

= ×TH J J (24)

and the gradient can be computed as

= ×Tg J e (25)

where e is a vector of network errors, and J is the Jacobean matrix that contains first deriva‐
tives of the network errors with respect to the weights and biases.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the
following Newton-like update:

w(k + 1)←w(k )− (J T ⋅ J + μ ⋅ I )−1⋅ J T ⋅e (26)

When the scalar μ is zero, this is Newton's method, using the approximate Hessian matrix.
When μ is large, this produces a gradient descent with a small step size. Newton’s method is
faster and more accurate near to an error minimum, so the aim is to shift toward Newton’s
method as quickly as possible.
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Thus, μ is decreased after each successful step (reduction in performance function) and is
increased only when a tentative step would increase the performance function. In this way,
the performance function is always reduced at each iteration of the algorithm [6].

This algorithm appears to be the fastest method for training moderate-sized feedforward
neural networks (up to several hundred weights).
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