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1. Introduction 

The ultimate goal of collecting data is to gain meaningful information about a physical 
system. However, in many situations, the quantities that we would like to determine are 
different from the ones which we are able to have measured. If the data we measured 
depends on the quantities we want, it contains at least some information about them. 
Therefore, our general interest is to subtract this information from data.  

Let the vector θ  contain the parameters to be estimated from the (measurements) vector ,D  

which is the output of the physical system that one wants to be modeled. The physical 
system is described by a vector function f  in the form: 

 ( ) ( ; ),y t f t θ   (1) 

where t represents time. In many experiments, the recorded data 1 2{ , ,..., }Nd d dD  are 

sampled from an unknown function ( )y t  together with errors ( )e t  at discrete times

1 2( , ,..., )T
Nt t t :  

 

  ( ) ( ), ( 1,..., ).i i id y t e t i N    (2) 

The measurement errors ( )e t  are generally assumed to be drawn independently from a zero 

mean Gaussian probability distribution with a standard deviation of . On the other hand, 
different signal models correspond to different choices of signal model function ( , )f t θ . In 

this chapter, we restrict our attention to the static1 sinusoidal model given by  

                                                                 
1 Static refers to that the amplitudes of the sinusoids do not change with time. 
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where jB ’s represent the amplitudes of the signal model and  
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      .   (4) 

The goal of data analysis is usually to use the observed data ,D  to infer the values of 

parameters { , }θ ω B . Besides estimating the values of the parameters, there are two 

additional important problems. The one is to obtain an indication of the uncertainties 
associated with each parameter, i.e. some measures of how far they are away from the true 
parameters. The other we will not consider here is to assess whether or not the model is 
appropriate for explaining the data.  

Sinusoidal parameter estimation in additive white noise within a Bayesian framework has 
been an important problem in signal processing and still now is an active research area 
because of its wide variety of applications in multiple disciplines such as sonar, radar, 
digital communications and biomedical engineering. The purpose of this research is 
therefore to develop accurate and computationally efficient estimators for sinusoidal 
parameter, namely, amplitudes and frequencies. In above problem, one may or may not 
know the number of sinusoids. When it is unknown, it is called model selection (Andrieu 
and Doucet, 1999; Üstündag, 2011) and is not subject to this chapter. Under an assumption of a 
known number of sinusoids, several algorithms have already been used in the parameter 
estimation literature, such as least-square fitting (Press et al., 1995), discrete Fourier transform 
(Cooley & Tukey, 1964), and periodogram (Schuster, 1905). With least square fitting, the model 
is completely defined and the question remaining is to find the values of the parameters by 
minimizing the sum of squared residuals. The discrete Fourier transform has been a very 
powerful tool in Bayesian spectral analysis since Cooley and Tukey introduced the fast Fourier 
transform (FFT) technique in 1965, followed by the rapid development of computers. In 1987, 
Jaynes derived periodogram directly from the principles of Bayesian inference. After his work, 
researchers in different branches of science have given much attention to the relationship 
between Bayesian inference and parameter estimation and they have done excellent works in 
this area for last fifteen years (Bretthorst, 1990; Üstündag et al., 1989, 1991; Harney, 2003; 
Gregory, 2005; Üstündag & Cevri, 2008, 2011; Üstündag, 2011).   
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In this chapter, we studied Bayesian recovery of sinusoids using estimation approach 
proposed by Bretthorst for a general signal model equation and combined it with a 
simulated annealing (SA) algorithm to obtain a global maximum of the posterior probability 

density function (PDF)  ,P Iω D  for frequencies . Unfortunately, conventional algorithms 

(Press et al., 1995) based on the gradient direction fail to converge for this problem. Even 
when they converge, there is no assurance that they have found the global, rather than a 

local maximum. This is because the logarithm of the PDF  ,P Iω D  is so sharply peaked 

and highly nonlinear function of frequencies. In this respect, a pattern search algorithm 
described by Hook-Jevees (Hooke & Jevees, 1962) to overcome this problem has already 
been used by some researchers in literature of estimation. However, we have found out that 
this approach does not converge unless the starting point is much closer to the optimum so 
that we have developed an algorithm in which this Bayesian approach is combined with a 
simulated annealing (SA) algorithm (Kirkpatrick, et al., 1983; Corana et al., 1987; Goffe et al., 
1994; Ingber, 1996), which is a function optimization strategy based on an analogy with the 
creation of crystals from their melts. This explores the entire surface of the posterior PDF for 
the frequencies and tries to maximize it while moving both uphill and downhill steps, 
whose sizes are controlled by a parameter   that plays the role of the temperature in a 
physical system. By slowly lowering the temperature   towards zero according to a 
properly chosen schedule, one can show that the globally optimal solutions are approached 
asymptotically. Thus, it is largely independent of the starting values, often a critical input in 
conventional algorithms, and also offers different approach to finding parameter values of 
sinusoids through a directed, but random, search of the parameter space. In this context, an 
algorithm of this Bayesian approach is developed and coded in Mathematica programming 
language (Wellin at al., 2005) and also tested for recovering noisy sinusoids with multiple 
frequencies. Furthermore, simulation studies on synthetic data sets of a single sinusoid 
under a variety of signal to noise ratio (SNR) are made for a comparison of its performance 
with Cramér-Rao lower bound (CRLB), known as a lower limit on variance of any unbiased 
estimator. The simulations results support its effectiveness.  

2. Bayesian parameter estimation 

Let us now reconsider above problem within a Bayesian context (Bernardo & Smith, 2000; 
Bretthorst, 1988; Gregory, 2005; Harney, 2003; Jaynes, 2003; Ruanaidh & Fitzgerald, 1996; 
Üstündag & Cevri, 2008). As with all Bayesian calculations, the first step is to write down 

Bayes’ theorem for the joint PDF for all of the unknown parameters 2{ , , }ω B : 

         2 2 21
, , | , , , | | , , , .P P P

P
  ω B D Ι ω B Ι D ω B Ι

D|I
 (5) 

The quantity  2, , |P ω B Ι  is called the prior PDF; it represents prior knowledge of the 
parameters 2{ , , }ω B given the information I . The sampling distribution  2| , , ,P D ω B Ι  is 
the likelihood (Edwards, 1972) of the data ,D  given the model parameters. The probability 
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function ( )P D|I  is the evidence, which is a constant for parameter estimation and is used here 
for normalizing the posterior PDF  2, , | ,P ω B D Ι . Therefore, it can be dropped in Equation (5) 
so that the joint PDF for the unknown parameters turns out to be the following form: 

      2 2 2, , | , , , | | , , , .P P P  ω B D Ι ω B Ι D ω B Ι  (6) 

A key component in Bayes theorem is the likelihood function  2| , , ,P D ω B Ι which is 

proportional to the probability density of the noise. If its standard deviation   is assumed 
to be known, then the likelihood function takes on the following form:  

  2 2 2
2

| , , , (2 ) ,
2

N
NQ

P exp 


  
  

 
D ω B Ι   (7) 

where the exponent Q  is defined as follows 

 

2
2

1 1
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i j j i
i j

Q d B G t


 

 
  
 
 

  ω . (8)  

This is equivalent to 

  
2 2 2

2

1 1

2 1
; ,

N

i j j i jk j k
j i j k

Q d B G t B B
N N

  

   
    D ω   (9) 

where  

 2 2

1

1 N

i
i

d
N 

 D   (10)  

and  

    
1

; ; , ( , 1,...,2 ).
N

jk j i k i
i

G t G t j k 


    ω ω  (11) 

In order to obtain the posterior PDF forω , Equation (6) can be integrated with respect to the 

nuisance parameters B  under the knowledge of 2 :  

    , | , , | , .P P d  ω D Ι ω,B D Ι B    (12) 

With the choices of an uniform prior PDF or independent Gaussians distributions with 
mean zero and known standard deviation for the amplitudes, the integral equations in (12) 
turn out to be a Gaussian integral which can be evaluated analytically (Bretthorst, 1988). To 
do this it is simply to convert the square matrix Ω  into a special type of matrix- a so called 
diagonal matrix- that shares the same fundamental properties of the underlying matrix. In 
other words, it is equivalent to transforming the underlying system of equations into a 
special set of coordinate axes. Therefore, this diagonalization process (Bretthorst, 1988) 
effectively introduces new orthonormal model functions, 
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 
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and also gives a new expression for the signal model function in Equation (3): 

 
2

1

( ; ) ( ; ),k k
k

f t A H t




θ ω   (14) 

The new amplitudes kA  's are related to the old amplitudes jB  's by 

 
2

1

,( 1,...,2 )k k j kj
j

A B k


  


   (15) 

where kj  represents the j th component of the k th normalized eigenvector of jk , with j  

as the corresponding eigenvalue. Substituting these expressions into Equation (9) and 
defining 

 
1

( ; ), ( 1,2,...,2 )
N

j i j i
i

h d H t j 


  ω  (16) 

to be the projection of the data onto the orthonormal model functions ( ; )jH t ω , we can then 

proceed to perform the 2  integration over jA in Equation (12) to obtain  

 
 
  
 
 

D h
D ω B

2 2
-N+2ρ

2

N - 2ρ
P( | , ,σ,Ι) σ exp

2σ
  (17) 

with  

 .h
2ρ

2 2
j

j=1

1
= h

2ρ
 (18)  

This represents the mean-square of the observed projections. If   is known, the joint 
posterior probability density of the parametersω , conditional on the data and our 
knowledge of   is given by  

    .
 
 
 
 

hωD
2

2

ρ
P , ,I exp

σ
 (19) 

If there is no prior information about noise, then   is known as a nuisance parameter and 

must also be eliminated by integrating it out. Using Jeffreys prior (Jeffreys, 1961) 
1


and 

integrating Equation (12) over   we obtain 
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  
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, 1 .
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P I
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 
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  (20) 

This has the form of the “Student t- distribution”. As well as determining the values of the ω  
parameters for which the posterior PDF for ω  is a maximum, it is also desirable to compute 
uncertainties associated with them. To do this, let us assume the case where   is known and 
let ω̂  represent the estimated values ofω . Following to Bretthorst’s work (Bretthorst, 1988), 
we can expand the function 2h  in a Taylor series at the point ω̂ , such that  

  
2

1 1

( | , )
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j k
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P I exp

 
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 
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with jkb defined as 
2 2

ˆ
ˆ

j j

k k
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j k

b  
 


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


 

 
h

 and ˆ( )j j j    for a single frequency case. For 

an arbitrary model the matrix jkb  cannot be calculated analytically; however, it can be 

evaluated numerically. The calculations of the mean and standard deviations for ω  
parameters require for evaluating Gaussian integrals by first changing to the orthogonal 
variables as was done above with the amplitudes. Let j and kju  represent the thj  

eigenvalue and eigenvector of the matrix jkb , respectively. Then the new orthogonal 

variables are given by  

  
1 1

, .k jk

j j k kj j
k k k

s u
s u

 


 
      (22)  

By using these orthogonal variables to perform the ρ  Gaussian integrals, the estimate 
variance for k  can be calculated: 

 
2

2 2

1

.jk

j j

u

 


    (23)  

Therefore, the approximations for ω  can be implemented in the form: 

 ˆ , ( 1,2,3,..., ).
jj j j         (24)  

In agree with Bretthorst, the expectation values of the amplitudes are given by j jA h   . 
From Equation (15) the expected values for the old amplitudes B becomes 
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.k j jk
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The uncertainty in jA  is  , so that the corresponding uncertainty in B  is 

 
2

1

1
( 1,2,3,...,2 )jk jk

j j

k


    


 B  (26) 

3. Implementation of Simulated Annealing (SA) algorithm 

Bayesian approach introduced by Bretthorst is briefly summarized in section 2 but, it is 
referred to Bretthorst's works (Bretthorst, 1988) for more detail information. Consequently, 
Bayesian parameter estimation turns into a global optimization problem which is a task to 
find the best possible solution ω  for Equations (19) or (20) satisfying 

   , ,max P I
ω

ω D  (27) 

in the solution space {0, }   .Because there is no variation at negative frequencies and the 

highest possible frequencies corresponds to wave that under goes a complete cycle in two 
unit intervals, so the lower limit on the range is 0 and all the variation is accounted for by 
frequencies less than  .  

Over last few decades, researchers have developed many computational algorithms to 
address such type of global optimization problems (Metropolis et al., 1953; Jeffreys, 1961; 
Kirkpatrick, et al., 1983; Laarhoven & Aarts, 1987; Stefankovic et al., 2009). Although there 
are numerous algorithms which are suggested to achieve this goal, few of them are capable 
of locating it effectively. Therefore, we follow the SA algorithm, suggested by Corana 
(Corana et. al., 1987) and modified by Goffe (Goffe et al., 1994), which is a kind of 
probabilistic algorithm for finding the global optimum of Equation (27) although its various 
alternative versions have already been used in statistical applications. A brief review of the 
most work on many algorithms based on that of SA, together with areas of applications is 
provided by Ingber and Binder (Binder, 1986; Ingber, 1994).  

The algorithm begins with an initial guess of the frequencies 0ω , a trial step-length vector 
0v and a global parameter 0  (called the initial temperature). Each step of the SA algorithm 

replaces the current frequency with randomly generated new frequency. In other words, the 
next candidate point 1kω  is generated by varying one component  1,...,j  of the current 
point kω  at a time: 

 1 ,k k k
j j jv       (28) 

where   is a uniformly distributed random number from the interval  [-1,1]  and  k k
jvv  

is a step vector. The function value of  1 ,kP Iω D is then computed. If 

    1 , ,k kP I P I ω D ω D  (29) 
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then the point 1kω  is accepted as the  1k  th iteration point, it is replaced with kω and 

algorithm moves uphill. If  1 ,kP Iω D  is the largest posterior PDF, denoted as  ,optP Iω D

its value and 1kω  are recorded since this is the best current value of the optimum. This 
forces the system toward a state corresponding to a local maximum or possibly a global 
maximum. However, most large optimization problems, like the one given in Equation (27), 
have many local maxima and optimization algorithm is therefore often trapped in a local 

maximum. To get out of a local maximum, a decrease of the function value  1 ,kP Iω D  is 

accepted with a certain probability. This is accomplished by the Metropolis-criterion 
(Metropolis et al., 1953) which is based on the changes of obtaining new state with the 
posterior PDF of frequencies value, defined as  
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where P represents difference between the present and previous posterior PDF values of 
frequencies, e.g.,    1 , ,k kP P I P I  ω D ω D . Whenever  

     1 , ,k kP I P I ω D ω D  (31) 

 p is computed and compared to p , a uniformly distributed random number from the 
interval  0,1 . If p p , the new point 1kω  is accepted and replaced with kω  and the 
algorithm moves downhill, i.e. lower temperatures and larger differences in posterior PDF’s 
values. This continues until all   components have been altered and thus   new points 
have successively accepted or rejected according to the Metropolis criterion. After this 
process is repeated sn  times the step vector kv  is adjusted by the following rule:  
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where jn  is the number of accepted moves along the direction j  and the parameter jc , 
which is initially defined by user, controls the step variation along the j th direction. The 
aim of these variations in a step length is to maintain average percentage of accepted moves 
at about one-half of the total number of moves.  

An alternative step size of above SA algorithm is given by replacing Equation (28) with  

   1 0,1 , ( 1,2,..., ).k k k
j j k j N j          (33) 

where (0,1)N  is a standard Normal distribution, k  represents the temperature at the k th 

iteration and rescales the step size and ordering j . On the other hand, k
j  is the CRLB for 

the j th component of angular frequencies at the  1k  th iteration (Ireland, 2007) and 

provides a theoretical lower limit on how precisely parameter j can be extracted from 

noisy measurements. In this respect, it is defined in the form: 

   1
j j  J   (34)  

where the Fisher information matrix  J ω (Kay, 1993), defined by 

      2

2 2
1

ln ( , ) 1
,

T
N

j j

j

f fP I
E

 

    
   
      


ω ωD ω

J ω
ω ωω

  (35) 

is an expectation of the second derivatives of the signal function with respect to ω . 
Assuming that the matrix  J θ  is diagonal for a large N  so that its inversion is 
straightforward. In this case, the diagonal elements yield the lower bound (Stoica et al., 
1989; Lagrange, 2005) for the variance of ω̂  asymptotically and we can write, 

   
2

3 2 2

ˆ24ˆvar ,
ˆ ˆ( )

j CRLB j

j jN B B 

 


 


 (36) 

where 2̂  represents the estimated variance of the noise and is described in Equation (41). 
This whole cycle is then repeated n  times, after which the temperature is decreased by a 

factor (0,1)  . This process is generally called annealing (or cooling) schedule which is the 

heart of the algorithm and effects the number of times the temperature is decreased. If a fast 
cooling takes place then the problem will be trapped in a local maximum. Therefore, there 
are various annealing schedules suggested by different researchers (Ingber, 1994; 
Stefankovic, et al., 2009) for lowering the temperature but we choose the following: 

 

 
1 1

exp{ 1 }

k
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k 
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
 




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
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Because of being exponential rather than logarithmic, it is sometimes known as simulated 
quenching (SQ) (Vasan et al., 2009; Aguiare et al., 2012). In case of a well conditioned 
estimation problem like, say, frequency estimation problem in signal processing, it is clear 
that the convenience of SA algorithm, together with a need for some global search over local 
optima, makes a strong practical case for the use of SQ. Therefore, different parameters have 
different finite ranges and different annealing time- dependent sensitivities. Classical 
annealing algorithms have distributions that sample infinite ranges and there is no decision 
for considering differences in each parameter dimension; e.g. different sensitivities might be 
necessary to use different annealing schedules. This requires the development of a new PDF 
to embed in the desired features (Ingber, 1994) so that it leads to variants of SA that justifies 
exponential temperature annealing schedules.  

Termination of the algorithm occurs when average function value of the sequences of the 
points after each sn n  step cycle reaches a stable state: 

 
   
   

, , ( 1,...,4)

, ,
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P I P I l
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



  

 

ω D ω D

ω D ωD
  (38) 

where  is a small positive number defined by user and l  indicates the last four successive 
iteration values of the posterior PDF of the frequencies that are being stored. Further details 
of the algorithm initialization are problem-dependent and are given in Section 5.  

4. Power spectral density 

Before we discuss the computer simulated examples, there is something we need to say 
about how to display the results. The usual way the result from a spectral analysis is 
displayed is in the form of a power spectral density that shows the strength of the variation 
(energy) as a function of frequency. In Fourier transform spectroscopy this is typically taken 
as the squared magnitude of the discrete Fourier transform of the data. In order to display 
our results in the form of a power spectral density (Bretthorst, 1988; Gregory, 2005), it is 
necessary to give an attention to its definition that shows how much power is contained in a 
unit frequency. According to Bretthorst (Bretthorst, 1988) the Bayesian power spectral 
density is defined as the expected value of the power of the signals over the joint posterior 
PDF: 

    2 2 2
1 21
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 ω ω B  (39) 

Performing integrals analytically over 1 2,...,B B   by using these orthonormal model 
functions defined in section 2, the power spectral density can therefore be approximated as  
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This function stresses information about the total energy carried by the signal and about the 
accuracy of each line. In the next section, we will present some numerical examples how 
well this technique works. 

5. Computer simulated examples 

To verify the performance of the algorithm, we generated a simulated data vector according 
to one, two and with five sinusoids. Here it  runs over the symmetric time interval T  to T  
in (2 1) 512T    integer steps and the components of the noise ie  are generated from the 
zero mean Gaussian distribution with a known deviation , initially and added to the 
simulated data. However, one of the interests in an experiment is also to estimate noise 
power 2  so that it is assumed to be unknown. In agreement with Bretthorst, this is given in 
the following form:   

 
 2 2

2
2 2

1 .
2 2 2 4

N

N N




 

  
         

D h
 (41) 

Clearly, it is seen that the accuracy of the estimate depends on how long we sample and the 
signal-to-noise ratio (SNR), defined as the ratio of the root mean square of the signal 
amplitude to the noise 2 . In addition, one may also get the following expression of SNR:  

  
2

2

2
SNR 1 .

N




 
  
 
 

h
 (42) 

When the standard deviation of the noise is unknown, an empirical SNR is obtained by 
replacing 2  in Equation (42) with the estimated noise variance in (41).  

In our first example, we generate the data set from the following equation:  

     0.001 0.5403cos 0.3 0.8415sin 0.3 ( 1,...,512).i i i id t t e i      (43) 

We then carried out the Bayesian analysis of the simulated data, assuming that we know the 
mathematical form of the model but not the value of the parameters. We first gave starting 
values to the list of frequencies to begin a multidimensional search for finding a global 
maximum of the posterior PDF of the frequencies ω  given in Equations (19) or (20). As an 
initial estimate of the frequencies 0ω  for the maximization procedure, it is possible to take 
random choices from the interval  0, . However, it is better to start with the locations of 
the peaks chosen automatically from the Fourier power spectral density graph by using a 
computer code written in Mathematica.  

In agreement with Corana (Corana, et al., 1987), reasonable values of the parameters that 
control the SA algorithm are chosen as 20sn  ,  max 100,5n    and 2, ( 1,..., )jc j   . 
Then the global optimization algorithm starts at some high temperature 0 100  . Thus the 
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sequence of points is generated until a sort of equilibrium is approached; that is a sequence 
of points 0 1 2, , ,...ω ω ω  whose average value of  ,P IωD  reaches a stable value as iteration 
proceeds. During this phase the step vector v  is periodically adjusted by the rule defined in 
Equation (32). The best point ω  reached so far is recorded. After thermal equilibration, the 
temperature   is reduced by using the annealing scheduled in Equation (37) with a factor 

0.85  and a new sequence is made starting from this best pointω , until thermal 
equilibrium is reached again and so on. The SA algorithm first builds up a rough view of the 
surface by moving large step lengths. As the temperature   falls and the step decreases, it is 
slowly focuses on the most promising area. Therefore it proceeds toward better maximum 
even in the presence of many local maxima by adjusting the step vector that can allow the 
algorithm to shape the space within it may move, to that within which ought to be as defined 
by the PDF  ,P IωD . Consequently, the process is stop at a temperature low enough that no 
more useful improvement can be expected, according to a stopping criterion in Equation (38).  
 

 
 
   : Known 
N  : 512 
3  : 3 

SNR  : 0.725464 

̂  : 1 
 

Bayesian Parameter estimation 

Parameters Estimated Values 
 

1  0.2998 0.0005  

1B  0.6035 0.0589  

2B  -0.8174±0.0626  

Table 1. Computer simulations for a single harmonic frequency model 

Once the frequencies are estimated, we then carried on calculating the amplitudes and 
parameter errors approximately using Equations (25), (23) and (26), respectively. However, 
an evaluation of the posterior PDF at a given point ω  cannot be made analytically. It 
requires a numerical calculation of projections onto orthonormal model functions, related to 
Eigen-decomposition of the  2 2   dimensional matrix   ω . Therefore, the proposed 
algorithm was coded in Mathematica programming language (Wellin, P., et al., 2005), that 
provides a much flexible and efficient computer programming environment. Furthermore, it 
also contains a large collection of built-in functions so that it results much shorter computer 
codes than those written in C or FORTRAN programming languages.  

The computer program was run on the workstation with four processors, which of each has 
got Intel Core 2 Quad Central Processing Unit (CPU), in two cases where the standard 
deviation of noise is known or not. The output of the computer simulations when 1   is 
illustrated in Table 1. The results when   is unknown are almost similar with that of Table 
1. Parameter values are quoted as (value) ± (standard deviation). It can be seen that a single 
frequency and amplitudes are recovered very well. The estimated value of SNR and the 
standard deviation of the noise are also shown in Table 1.  

In our second example, we consider a signal model with two close harmonic frequencies: 
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   

   
0.5403cos 0.3 0.8415sin 0.3

0.4161cos 0.31 0.9093sin 0.31 , ( 1,...,512).
i i i

i i

d t t

t t i

 

  
 (44) 

In a similar way, we produced the same size data corrupted by the zero mean Gaussian 
noise with 1  . We run our Mathematica code again in the case where the deviation of 
noise is unknown. The results, shown in Table 2, indicate that all values of the parameters 
within the calculated accuracy are clearly recovered. 
 

 
 
 
 
 
   : Unknown 
N  : 512 
3  : 6 

SNR : 1.02936 

̂  : 0.99639 

Bayesian Parameter estimation 

Parameters Estimated Values 
 

1  0.3000±0.0009

2  0.3105±0.0010

1B  0.5206±0.0632

2B  -0.8698±0.0631

3B  -0.3819±0.0634

4B  -0.8556±0.0636

Table 2. Computer simulations for two closed harmonic frequency model 

In general, we consider a multiple harmonic frequency model signal:  

 
     

   
  cos 0.1 t 1 2cos 0.15 2 5cos 0.3 3

2cos 0.31 4 3cos +5       ( 1,...,512).
i i i i

i i i

d t t

t t e i

     

    
 (45) 

The best estimates of parameters are tabulated in Table 3. Once again, all the frequencies 
have been well resolved, even the third and fourth frequencies which are too closed not to 
be separated by the Fourier power spectral density shown in Figure 3. Actually with the 
Fourier spectral density when the separation of two frequencies is less than the Nyquist step, 
defined as 2 / N , the two frequencies are indistinguishable. This is simply because there are 
no sample points in between the two frequencies in the frequency domain. If 

3 4 2 / N     theoretically the two frequencies can then be distinguished. If 3 4  is 

not large enough, the resolution will be very poor. Therefore, it is hard to tell where the two 
frequencies are located. This is just the inherent problem of the discrete Fourier power spectral 
density. In this example two frequencies are separated by 0.01, which is less than the Nyquist 
step size. There is no way by using Fourier power spectral density that one can resolve the 
closed frequencies less than the Nyquist step. However, Bayesian power spectral density 
shown in Figure 3 gives us very good results with high accuracy. Finally, we constructed the 
signal model in Equation (3), whose parameters, amplitudes and frequencies, are randomly 
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chosen from uniform distribution in the intervals 5,5    and 0,   , respectively and used it 

to generate data samples of 512N   by adding a zero mean Gaussian random noise with
1  . The proposal algorithm was rerun for recovering sinusoids from it and the results are 

tabulated in Table (4). It can be seen that frequencies are specially recovered with high 
accuracies. Ten frequencies signal model are shown in Fig.5. 

  
Figure 1. Recovering signal from noisy data produced from a single harmonic frequency signal model. 

 
Figure 2. Recovering signals from noisy data produced from two closed harmonic frequency signal 
model. 
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Parameters True values Estimated values Bretthorst's results 
Fr

eq
u

en
ci

es
 

1  
0.10 0.1006 0.0004 0.0998 0.0001  

2
 

0.15 0.1495 0.0002 0.1498 0.0002  

3
 

0.30 0.3001 0.0001 0.3001 0.0002  

4
 

0.31 0.3099 0.0004 0.3120 0.0001  

5  1.00 1.0000 0.0001 0.9999 0.0001  

A
m

p
lit

u
d

es
 1a  

1.00  0.9905 0.08  0.99 0.08  

2a  
2.00  1.9600 0.08  2.08 0.08  

3a  
5.00  5.1058 0.09  4.97 0.08  

4a  
2.00  1.8199 0.09  1.95 0.08  

5a  
3.00  2.9556 0.08  2.92 0.08  

Table 3. Computer simulations for a multiple harmonic frequency model2 

On the other hand, modifications of this algorithm (Üstündag & Cevri, 2008; 2011) have 
already been made by generating the next candidate in Equation (33) from normal 
distribution with a mean of the current estimation whose standard deviation is a square root 
of the CRLB (Ireland, 2007) given in Equation (36), which is a lower limit to the variance of 
the measurement of the frequencies, so this generates a natural scale size of the search space 
around their estimated values. It is expected that better solutions lie close the ones that are 
already good and so normally distributed step size is used. Consequently, the results we 
obtained are comparable with or higher than those obtained previously. In addition, all the 
results discussed so far are also consistent with those of Bretthorst (Bretthorst, 1988) and 
also demonstrate the advantages of the Bayesian approach together with SA algorithm. 
Moreover it appears to be very reliable, in the sense that it always converged to 
neighborhood of the global maximum. The size of this neighborhood can be reduced by 
altering the control parameters of the SA algorithm, but this can be expensive in terms of 
CPU consumption. Moreover, we initially assumed that the values of the random noise in 
data were drawn from the Gaussian density with the mean 0   and the standard 

deviation .  Figure 4 shows the exact and estimate probability densities of the random 
noise in data. It is seen that the estimated (dotted) probability density is closer to the true 
(solid) probability density and the histogram of the data is also much closer to the true 
probability density. The histogram is known as a nonparametric estimator of the probability 
density because it does not depend on specified parameters.  

Computer simulations had been carried out to compare the performance of the method with 
the CRLB. To do this, we generated 64 data samples from a single real tone frequency signal 
                                                                 

2In order to compare the results with Bretthorst's in this example we converted 2 2 ,( 1,..., ).i i ia B B i     



 
Simulated Annealing – Advances, Applications and Hybridizations 82 

model  1 20.3, 1B B     and added it to the variety of noise levels. After 50 independent 
trials under different SNR ratios, the mean square errors (MSE) for the estimated 
frequencies were obtained and their logarithmic values were plotted with respect to SNR 
ratios that vary between zero and 20 dB (deci Bell). It can be seen from Figure 6 that the 
proposed estimator has threshold about 3 dB of the SNR and follows nicely the CRLB after 
this value. As expected, larger SNR gives smaller MSE. However, many of existing methods 
in signal processing literature have a MSE that is close to the CRLB when the SNR is more 
than 20 dB and they usually perform poorly when the SNR is decreased. 

 
Figure 3. Spectral analysis of multiple frequency signal model  
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Figure 4. Comparison of exact and estimate probability densities of noise in data  1  . 

 
Figure 5. Spectral analysis of ten frequency signal model. 
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The computational complexity of the algorithm is dependent upon a few parameters such as 
annealing schedule, data samples and parameters. Under using same annealing schedule, 
Fig. 7 shows only CPU time of different simulations in a variety of number of data samples. 
It can be clearly seen that an increase in these numbers causes larger consumption of CPU 
time. With fixed size of components set and specifically annealing schedule of SA algorithm, 
the overall execution time of the cooling and decision is almost constant, but the runtime of 
the first two stages (move and evaluate) mostly depends on complicated design constraints 
and objective functions. Because the move and the evaluation process in the SA algorithm 
play an important role in CPU resource usage, improving the calculation ability for these 
stages will be the most feasible approach for an optimizing SA so that parallel computing is 
one of best approaches for this goal. 

 
Figure 6. The calculated MSE of the proposed method compared with CRLB versus different SNR with 
a white noise. 

 
Figure 7. CPU times versus with number of parameters and data samples. 
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6. Conclusion 

In this work we have partially developed a Bayesian approach combined with SA algorithm 
and applied it to spectral analysis and parameter algorithm for estimating parameters of 
sinusoids from noisy data. Overall, results presented here show that it provides rational 
approach for estimating the parameters, namely the frequencies and the amplitudes, can be 
recovered from the experimental data and the prior information with high accuracy, 
especially the frequency, which is the most important parameter in spectral analysis. A 
significant advantage of this approach comes from the very large posterior probabilities, 
which are sharply peaked in the neighborhood of the best fit. This helps us to simplify the 
problem of choosing starting values for the iteration and it provides a rational approach for 
estimating, in an optimal way, values of parameters by performing a random search. On the 
other hand, for sufficiently high SNR, MSEs of frequencies will attain CRLB so that it 
justifies the accuracy of the frequency estimation. Although the SA algorithm spends large 
consumption of CPU time, it is competitive when compared to the multiple runs often used 
with conventional algorithms to test different starting values. As expected, parallel 
implementation of SA algorithm reduces CPU resource usage. 

Data analysis given in this chapter has also been applied to more complicated models and 
conditions, such as signals decay, periodic but non-harmonic signals, signals with non-
stationary, etc.,. In general, we have also not addressed the problem of model selection 
which is the part of spectral analysis. In this case, one has enough prior information in a 
given experiment to select the best model among a finite set of model functions so that 
Bayesian inference helps us to accomplish it. Therefore, it will deserve further 
investigations.  

Nomenclature 

B    : Nuisance parameters 

 ,j jB B    : Amplitudes of thj sinusoidal 

 .P    : Marginal probability density function 

 . .P    : Conditional probability density function 

jkb    : A matrix defined as 
2 2

ˆ
ˆ

j j

k k
j k

 
 


  






 
h

 

jc    : A parameter which controls the step variation along the j th direction 

D    : A set of observed data  
( )e t   : Measurement errors 

    : A small positive number defined by user 

.E      : Expectation of a function or random variable 

(.;.)G   : Model functions that contains sinus and cosines terms 

h    : Projections of data onto orthonormal model functions  
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(.;.)H   : Orthonormal model functions 

2h   : Mean of square of projections  
I    : Prior information 

 .J   : Fisher information matrix 

 1 .J   : Inverse of Fisher information matrix 

    : Number of frequencies. 
N   : Number of data samples  

 0,1N     A standard Normal distribution 

jn    : The number of accepted moves along the direction j . 

k   : Number of iterations 
Q   : Least square function 

(.)S   : Bayesian power spectral density 
2s    : Sampling variance 

1 2( , ,..., )T
Nt t t  : Discrete time set 

    : Standard deviation of angular frequency  

B   : Standard deviation of amplitude 

   : Solution space of angular frequencies 

 j    : thj  Eigenvalue of the matrix jkb  

kju   : thj  Eigenvector of the matrix jkb  

   : A factor between 0 and 1.  

θ   : Parameters vector 

j    : j th component of normalized Eigenvalues of jk  

kj   : j th component of k th normalized Eigenvector of jk        

kv   : Step-length vector 
0v   : Trial step-length vector 

   : Uniformly distributed random number from the interval 1,1    
2   : Variance of noise 

2    : Expected value of noise variance     
( )k

j    : CRLB for j th component of kω  

ω   : Vector of angular frequency 
ω̂   : Estimated angular frequency vector  

0ω    : An initial guess vector for frequencies 

0   : The initial temperature 

Ω   : Diagonal matrix 

.   : Absolute value  
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CRLB  : Cramér-Rao lower bound  

PDF  : Probability Density Function  
SA    : Simulated Annealing   

SNR   : Signal to Noise Ratio 
SQ   : Simulated Quenching  
MSE  : Mean Squared Errors  
dB   : deci Bell 
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