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1. Introduction

Simulated annealing has been applied to a wide range of problems: combinatorial and

continuous optimizations. This work approaches a new class of problems in which the

objective function is discrete but the parameters are continuous. This type of problem arises in

rotational irregular packing problems. It is necessary to place multiple items inside a container

such that there is no collision between the items, while minimizing the items occupied area.

A feedback is proposed to control the next candidate probability distribution, in order to

increase the number of accepted solutions. The probability distribution is controlled by

the so called crystallization factor. The proposed algorithm modifies only one parameter

at a time. If the new configuration is accepted then a positive feedback is executed to

result in larger modifications. Different types of positive feedbacks are studied herein. If

the new configuration is rejected, then a negative feedback is executed to result in smaller

modifications. For each non-placed item, a limited depth binary search is performed to find a

scale factor that, when applied to the item, allows it to be fitted in the layout. The proposed

algorithm was used to solve two different rotational puzzles. A geometrical cooling schedule

is used. Consequently, the proposed algorithm can be classified as simulated quenching.

This work is structured as follows. Section 2 presents some simulated annealing and

simulated quenching key concepts. In section 3 the objective function with discrete values and

continuous parameters is explained. Section 4 explains the proposed adaptive neighborhood

based on the crystallization factor. Section 5 explains the computational experiments and

section 6 presents the results. Finally, section 7 rounds up the work with the conclusions.

2. Background

Simulated annealing is a probabilistic meta-heuristic with a capacity of escape from local

minima. It came from the Metropolis algorithm and it was originally proposed in the area

of combinatorial optimization [9], that is, when the objective function is defined in a discrete

©2012 Tsuzuki et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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domain. The simulated annealing was modified in order to apply to the optimization of

multimodal functions defined on continuous domain [4]. The choices of the cooling schedule

and of the next candidate distribution are the most important decisions in the definition of a

simulated annealing algorithm [13]. The next candidate distribution for continuous variables

is discussed herein.

In the discrete domain, such as the traveling salesman and computer circuit design problems,

the parameters must have discrete values; the next point candidate xk+1 corresponds to a

permutation in the list of cities to be visited, interchanges of circuit elements, or other discrete

operation. In the continuous application of simulated annealing a new choice of the next point

candidate must be executed. Bohachevsky et al. [1] proposed that the next candidate xk+1 can

be obtained by first generating a random direction vector u, with |u| = 1, then multiplying it

by a fixed step size Δr, and summing the resulting vector to the current candidate point xk.

Brooks & Verdini [2] showed that the selection of Δr is a critical choice. They observed that an

appropriate choice of this parameter is strictly dependent on the objective function F(x), and

the appropriate value can be determined by presampling the objective function.

The directions in [1] are randomly sampled from the uniform distribution and the step size is

the same in each direction. In this way, the feasible region is explored in an isotropic way and

the objective function is assumed to behave in the same way in each direction. But this is not

often the case. The step size to define the next candidate point xk+1 should not be equal for all

the directions, but different directions should have different step sizes; i.e. the space should

be searched in an anisotropic way. Corana et al. [4] explored the concept of anisotropic search;

they proposed a self-tuning simulated annealing algorithm in which the step size is configured

in order to maintain a number of accepted solutions. At each iteration k, a single variable of

xk is modified in order to obtain a new candidate point xk+1, and iterations are subdivided

into cycles of n iterations during which each variable is modified. The new candidate point is

obtained from xk in the following form xk+1 = xk + v · Δri · ei. Where v is a uniform random

number in [−1, 1], and Δri is the step size along direction ei of the i-th axis. The anisotropy is

obtained by choosing different values of Δri for all the directions. The step size is kept fixed

for a certain number of cycles of variables, and the fraction of accepted moves in direction ei

is calculated. If the fraction of accepted moves generated in the same direction is below 0.4,

then the step size Δri along ei is decreased. It is assumed that the algorithm is using too large

steps along ei thus causing many moves to be rejected. If the fraction is between 0.4 and 0.6

the step size is left unchanged. If the fraction is above 0.6 then Δri is increased. It is assumed

that the step size is too small thus causing many moves to be accepted.

This procedure may not be the best possible to process the different behavior of the objective

function along different axes. Ingber [7] proposed that the random variable should follow a

Cauchy distribution with different sensitivities at different temperatures. The maximum step

size is kept constant during the algorithm and it allows escaping from local minima even at

low temperatures. The parameter space can have completely different sensitivities for each

dimension, therefore the use of different temperatures for each dimension is suggested. This

method is often referred to as very fast simulated re-annealing (VFSR) or adaptive simulated

annealing (ASA). The sensitivity of each parameter is given by the partial derivative of the

function with relation to the i-th dimension [3].

4 Simulated Annealing – Advances, Applications and Hybridizations
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3. Integer objective function with float parameters

Irregular packing problems arise in the industry whenever one must place multiple items
inside a container such that there is no collision between the items, while minimizing the
area occupied by the items. It can be shown that even restricted versions of this problem (for
instance, limiting the polygon shape to rectangles only) are NP complete, which means that
all algorithms currently known for optimal solutions require a number of computational steps
that grow exponentially with the problem size rather than according to a polynomial function
[5]. Usually probabilistic heuristics relax the original constraints of the problem, allowing the
search to go through points outside the space of valid solutions and applying penalization to
their cost. This technique is known as external penalization. The most adopted penalization
heuristic for external solutions of packing problems is to apply a penalization based on
the overlapping area of colliding items. While this heuristic leads to very computationally
efficient iterations of the optimization process, the layout with objective function in minimum
value may have overlapped items [6].

Fig. 1 shows an example in which the cost function is the non–occupied space inside the
container. As this space can change only by adding or removing areas of items, the cost
function can assume only a finite set of values, becoming discontinuous. This particularity
of the primal problem makes it difficult to evaluate the sensibility of the cost function related
to the optimization variables.

Figure 1. Objective function behavior.

Recently, researchers used the collision free region (CFR) concept to ensure feasible layouts;
i.e. layouts in which the items do not overlap and fit inside the container [11]. This way,
the solution has discrete and continuous components. The discrete part represents the order
of placement (a permutation of the items indexes - this permutation dictates the order of
placements) and the translation that is a vertex from the CFR perimeter. The continuous part
represents the rotations (a sequence of angles of rotations to be applied to each item). The
translation parameter is converted to a placement point at the perimeter of the CFR for its
respective item. Fig. 2 shows the connection between the CFR and the translation parameter.
Notice that the rotation parameter is cyclic in nature. All arithmetic operations concerning
this parameter is performed in modulus 1 (so they always remain inside the interval [0, 1[).

5
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P4
P1

P2 P3

CFR
P5

P1
P2 P3

P4 CFR

P5

Figure 2. Consider that the container is rectangular and items P1, P2, P3 and P4 are already placed. Item
P5 is the next to be placed and to avoid collisions; it is placed at its CFR boundary. Its translation
parameter has a value of 0.5. Both figures have P4 placed at different positions, and consequently P5 is
also placed in different positions although the translation parameter is the same.

The wasted area that represents the cost function assumes only discrete values, while its
variables (the rotations for each item) are continuous. To solve this type of problem, Martins
& Tsuzuki [10] proposed a simulated quenching with a new heuristic to determine the next
candidate that managed to solve this type of problem.

3.1. Scale factor

The objective function is the wasted space in the container and is discrete, depending on which
items have been placed. In order to improve the sensibility of the cost function, intermediate
levels can be generated by scaling one of the unplaced items, and attempting to insert the
reduced version of the item into the layout. Hence, for each unplaced item, a scale factor
between [0, 1] is applied, and the algorithm attempts to place the item, if it fits, the scaled area
of the item is subtracted from the objective function. Scale factor was determined by a finite
fixed depth binary search, restricted to the interval [0, 1].

4. Adaptive neighborhood

The proposed algorithm is shown in Fig. 3. The main modification is shown in the inner loop,
where the choice is to swap two items in the placement sequence (discrete parameters) or to
modify the rotation or translation of an item (continuous parameter).

The main concept is that rejected solutions do not contribute to the progress of the
optimization process. Therefore, the distribution of the step size for each individual
continuous parameter is adapted in order to increase the number of accepted solutions. This

6 Simulated Annealing – Advances, Applications and Hybridizations
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1 x0 ←<Initial random solution>;
2 k ← 0;
3 while <Global stop condition not satisfied> do
4 Tk+1 ← Tk ∗ α;
5 k ← k + 1;
6 while <Local stop condition not satisfied> do
7 u ← random(0, 1);

8 if u <
1
3 then

9 <Modify placement sequence>;
10 f lag ← DiscreteParameter;

11 else

12 if u <
2
3 then

13 <Select one vertex from the CFR to place the item>;
14 f lag ← DiscreteParameter;

15 else
16 i ← random(0, 1) · n;

17 xk+1 ← xk +
1
ci

∑
ci

1 random(−1/2, 1/2) · ei;

18 f lag ← ContinuousParameter;

19 ΔE = F(xk+1)− F(xk);
20 if ΔE < 0 then
21 xk ← xk+1;
22 if f lag = ContinuousParameter then
23 ci ← <positive feedback>;

24 else

25 if random(0, 1) < e−ΔE/kT then
26 xk ← xk+1;
27 if f lag = ContinuousParameter then
28 ci ← <positive feedback>;

29 else
30 if f lag = ContinuousParameter then
31 ci ← ci + 1;

Figure 3. The proposed algorithm. Different types of positive feedbacks are studied in this work.

is accomplished by the adoption of a feedback on the proposed algorithm. The next candidate
is generated by the modification of a single parameter, adding to it a summation of ci random
numbers with a uniform distribution.

xk+1 = xk +
1

ci

ci

∑
1

random(−1/2, 1/2) · ei (1)

where i is the index of the modified parameter and ci is its crystallization factor. The resulted
modification follows a Bates distribution [8, sec. 26.9] centered on 0 with amplitude 1/2. Its
standard deviation is given by 1/2

√
3ci.

7
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For ci = 1, as all operations on parameters are performed in modulus 1; the modification is

the equivalent of taking a completely new parameter uniformly distributed in the interval

[0, 1[. As ci increases, the expected amplitude of the modification decreases. When at a

given iteration, the modification applied to a parameter leads to a rejected solution; the

probability distribution (crystallization factor) for that specific parameter is modified in order

to have its standard deviation reduced (resulting in lower modification amplitude), this is

the negative feedback. When the modification leads to an accepted solution, the distribution

(crystallization factor) for that parameter is modified to increase its standard deviation

(resulting in larger modification amplitude), this is the positive feedback. Different positive

feedbacks are studied in this work (see Table 1). As can be seen, the higher the crystallization

factor for a given parameter, the smaller the modification this parameter will receive during

the proposed algorithm. The parameter is said to be crystallized.

5. Computational experiments

Crystallization factor ci controls the standard deviation of the Bates distribution. When a

solution is rejected, a negative feedback is applied and the corresponding ci is increased,

causing a decrease in the parameter standard deviation. Accordingly, positive feedback is

applied when a solution is accepted, increasing ci. In the studied problems, placement was

restricted to vertexes of the CFR and thus the only continuous parameter is the rotation.

Adopted negative feedback consists of incrementing the crystallization factor. For the positive

feedback, the four different strategies in Table 1 were tested.

Feedback Method Positive Feedback Negative Feedback

A CFi → CFi − 1 CFi → CFi + 1

B CFi → CFi/2 CFi → CFi + 1

C CFi → CFi/4 CFi → CFi + 1

D CFi → 1 CFi → CFi + 1

Table 1. Feedback strategies. CFi : Crystallization factor for item i.

The convergence of the algorithm is reached when, at a given temperature, all accepted

solutions are equivalent to the best found. This is the global stop condition of the algorithm

in Fig. 3. Although a solution as good as the final one is found in less iterations, allowing the

algorithm to reach the global convergence is the only generic way to ensure that a solution is

the best. The local stop condition shown in Fig. 3 is reached when a predefined number of

solutions are accepted.

5.1. Problem instances

All problem instances studied here have a solution in which all items can be fitted in the

container. Two puzzles cases were considered: Tangram and Larger First Fails (LF Fails).

Tangram is a classic problem and LF Fails consists of a problem which cannot be solved using

the larger first heuristic. This heuristic determines that the larger items are placed always

ahead of the smaller ones. Fig. 4 shows possible solutions to these problems.

8 Simulated Annealing – Advances, Applications and Hybridizations
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(a) (b)

(c) (d)

Figure 4. (a) Unique solution for problem LF Fails. (b)-(d) Solutions for the Tangram problem.

6. Results and discussion

The algorithm was implemented in C++ and compiled by GCC 4.4.4. Computational tests
were performed using an i7 860 processor with 4GB RAM. Each case was evaluated 100
times. The proposed algorithm is a simulated quenching algorithm which has the following
parameters:

• T0: Initial temperature.

• α: geometric cooling schedule factor.

• Nacc: Number of accepted solutions at a given temperature.

Value of T0 is calculated such that the number of rejected solutions at initial temperature is
approximately 10% of the total number of generated solutions. Parameter α is set to 0.99 and
Nacc is 800.

6.1. Influence of the feedback strategy

Table 2 shows results obtained using each of the proposed feedback strategy, for each problem
instance. For the Tangram problem, it can be observed that strategy A has a low convergence
percentage, when compared to other feedback strategies, 0.09 less than the rate obtained using
the feedback C method. In the case of the LF fails puzzle, results showed similar performance
and convergence rate.

Fig. 5 shows the minimum, maximum and average costs explored by the proposed algorithm
loop for the LF Fails, for all feedback strategies. The cost function discrete behavior is
observable, and it is possible to notice that the global minimum is reached only at low
temperatures. In all graphics, the optimum layout was found. One can note that, in Fig. 5.(b)
and Fig. 5.(c), the best solution (cost equals zero) was found before reaching convergence.
Variation of cost is shown in Fig. 6 and all graphs are very similar independently of the used
positive feedback. The rotation crystallization factor for the largest item is displayed in Fig. 7.
Possibility of accepting a higher cost solution is lower at low temperatures. As temperature

9
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Figure 5. Minimum, maximum and average costs for the LF Fails with different feedbacks. (a) Feedback
A. (b) Feedback B. (c) Feedback C. (d) Feedback D.

Problem Feedback Method Nconv Nmin Tconv Pconv

LF fails

A 228935 188814 17.48 1.00
B 235986 197038 17.78 0.99
C 235595 195377 17.64 1.00
D 235481 194394 17.67 1.00

Tangram

A 303517 255611 64.33 0.56
B 315019 268996 69.07 0.65
C 319440 270484 69.27 0.62
D 317403 267057 71.09 0.61

Table 2. Statistics for the LF fails and Tangram puzzles. The columns respectively represent the adopted
problem instance, the feedback method, number of iterations to converge, number of iterations to reach
the minimum, time in seconds to converge, and the percentage of runs that converged to the global
optimum.

10 Simulated Annealing – Advances, Applications and Hybridizations
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Figure 6. Variation of cost for the LF Fails with different feedbacks. (a) Feedback A. (b) Feedback B. (c)
Feedback C. (d) Feedback D.

decreases, the crystallization factor is expected to increase, which is confirmed by the graphics
in Fig 7. Positive feedback A is very stable, showing that it is less exploratory. Because of the
small number of items, it was not necessary to use the scale factor. Fig. 8 shows the specific
heat for each case considered. The specific heat is calculated as [14]

CH(T) =
σ

2(T)

T2k2
B

(2)

where T is temperature, σ
2(T) is the variation of cost, kB is a constant. A phase transition

occurs at a temperature at which specific heat is maximum, and this triggers the change in
state ordering. In several processes, it represents the transition from the exploratory to the
refining phase. However, in this specific case, this transition is not observable.

For the Tangram problem, the minimum, maximum and average costs explored by the
algorithm in one execution are shown in Fig. 9. The increase in allowable cost function values
can be observed. In each of these executions the global minimum was reached only at low

11
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Figure 7. Crystallization factor for the largest item of the LF Fails problem, with different feedbacks. (a)
Feedback A. (b) Feedback B. (c) Feedback C. (d) Feedback D.

temperatures. Independently of the used positive feedback, the proposed algorithm reached
local minima at lower temperatures, but successfully escaped from them. Cost variance is
displayed in Fig. 10. The rotation crystallization factor evolution is shown in Fig. 11, for one
of the large triangles. It is possible to observe, when adopting feedback strategies A and C,
that there are two distinguishable levels. The final level, at lower temperatures, is very high,
indicating that the rotation parameter of the item is crystallized. Again, feedback A is more
stable when compared to the others, showing that is less exploratory. As the convergence rate
is very poor, the scale factor should be used. Fig. 12 shows the specific heats obtained. In the
Tangram casem, it seems that a peak is present. However, further investigations need to be
done.

6.2. Influence of the binary search

Binary search is used to improve the sensibility of the discrete objective function, aiming
to obtain a higher percentage of convergence for puzzle problems. Its application is not
necessary in the case of the LF Fails problem, as almost all executions converged. As a

12 Simulated Annealing – Advances, Applications and Hybridizations
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Figure 8. Specific heat for the LF Fails with different feedbacks. (a) Feedback A. (b) Feedback B. (c)
Feedback C. (d) Feedback D.

consequence, the binary search was employed only in the Tangram problem. The fixed search
depth was set to 1. Table 3 shows the results of the tests. Comparing with the results obtained
in Table 2, the convergence rate is observed to be considerably higher when binary search is
adopted, reaching 98% in the best case. Drawback is the large number of iterations needed
to converge, resulting in longer execution times, approximately 3.5 times higher. As with the
previous tests, feedback strategy A obtained less optimum solutions.

The behavior of the optimization process is illustrated through cost function (energy)
histograms of the search while the temperature diminishes. For a given temperature, a
gray-level histogram of the distribution of the cost function at that temperature is plotted.
The resulting graph shows a plot of cost histograms (horizontal bars) and temperature (dots)
versus the number of iterations. Darker horizontal bars in the histogram, indicate a higher
frequency of occurrence of a particular level of energy at a given temperature. Fig. 13 shows
the histogram of the objective function value during the course of the algorithm, without the
use of the binary search. Fig. 14 shows the same type of histogram employing the binary
search with depth 1. Observing both graphics, one can note the extra levels of energy which

13
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Figure 9. Minimum, maximum and average costs for the Tangram with different feedbacks. (a)
Feedback A. (b) Feedback B. (c) Feedback C. (d) Feedback D.

Feedback Method Nconv Nmin Tconv Pconv

A 370667 290044 222.54 0.78
B 351141 299052 227.39 0.91
C 343652 327037 228.40 0.98
D 338394 312867 213.91 0.97

Table 3. Statistics for the Tangram puzzles using a binary search with unitary depth. The columns
respectively represent the feedback method, number of iterations to converge, number of iterations to
reach the minimum, time in seconds to converge, and the percentage of runs that converged to the global
optimum.

appears in Fig. 14. Higher values of the search depth were tested, however the convergence
rate deteriorates.

From the studied problems, it is possible to observe that positive and negative feedbacks must
not be opposites. The negative feedback increases the crystallization factor by a unit and the
positive feedback needs to decrease the crystallization factor at a faster speed. If this is not the
case, the parameters might get crystallized.

14 Simulated Annealing – Advances, Applications and Hybridizations
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Figure 10. Variation of cost for the Tangram with different feedbacks. (a) Feedback A. (b) Feedback B. (c)
Feedback C. (d) Feedback D.
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Figure 11. Crystallization factor for one of the large item of the Tangram problem, with different
feedbacks. (a) Feedback A. (b) Feedback B. (c) Feedback C. (d) Feedback D.
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Figure 12. Specific heat for the Tangram with different feedbacks. (a) Feedback A. (b) Feedback B. (c)
Feedback C. (d) Feedback D.
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Figure 13. Histogram for the Tangram, not employing binary search.
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Figure 14. Histogram for the Tangram, employing binary search with fixed depth equal to 1.
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7. Conclusion

This work proposed a new simulated quenching algorithm with adaptive neighborhood, in
which the sensibility of each continuous parameter is evaluated at each iteration increasing the
number of accepted solutions. The proposed simulated quenching was successfully applied to
other types of problems: robot path planning [14] and electrical impedance tomography [12].
The placement of an item is controlled by the following simulated quenching parameters:
rotation, translation and sequence of placement.
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