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1. Introduction

In the early 60’s a young researcher in Darmstadt looked for a good representation for

communicating systems processes that were mathematically sound and had, at the same

time, a visual intuitive flavor. This event marked the beginning of a schematic approach that

become very important to the modeling of distributed systems in several and distinct areas

of knowledge, from Engineering to biologic systems. Carl Adam Petri presented in 1962 his

PHD which included the first definition of what is called today a Petri Net. Since its creation

Petri Nets evolved from a sound representation to discrete dynamic systems into a general

schemata, capable to represent knowledge about processes and (discrete and distributed)

systems according to their internal relations and not to their work domain. Among other

advantages, that feature opens the possibility to reuse some experiences acquired in the design

of known and well tested systems while treating new challenges.

In the conventional approach, the key issue for modeling is the partial ordering among

constituent events and the properties that arise from the arrangement of state and transitions

once some basic interpretation rules are preserved. Such representation can respond from

several systems of practical use where the foundation for analysis is based in reachability and

other property analysis. However, there are some cases where such approach is not enough

to represent processes completely, for instance, when the assumption that all transitions can

fire instantaneously is no longer a good approximation. In such cases a time delay can be

associated to firing transitions. This is absolutely equivalent (in a broader sense) to say that

firing pre-conditions must hold for a time delay before the firing is completed. The first

approach is called T-time Petri Net and the second P-time Petri Nets.

Thus, what we have in conclusion is that even in a hypothesis that we should consider

only firing pre-conditions1 [31][19] a time delay is associated with a transition location and

consequently to its firing. Several applications in manufacturing, business, workflow and

1 In many text books and review articles the enabling condition is presented using only firing pre-conditions as a
requirement. This can be justified since the use of this week firing condition is sufficient if a complete net, that is,
that includes its dual part, is used
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other processes can use this approach to represent processes in a more realistic way. It is also

true tat even with a simple approach a strong representation power can be derived, including

the possibility to make some direct performance analysis [29][42]. This is called a time slice or

a time interval approach. In general, this augmented nets with time delay (P-time, T-time or

even both) are called Timed Petri Nets2.

There are also cases where it is necessary to use more than time delays. In such cases the time is

among the variables that describes the state (a set of places in Petri Nets). Notice that raising

the number of variables that characterize a state would make untreatable the enumeration

of a net state space. Therefore, a more direct approach is adopted, where each transition is

associated to a time interval tmin and tmax where the first would stand for the minimal waiting

time since the enabling until a firing can occur. Similarly, tmax stands for the maximum waiting

time allowed since enabling up to a firing.

If the time used in the model is a real number, then we call that a Time Petri Net. It should

be also noticed that if tmin = tmax the situation is reduced to the previous one where a

deterministic time interval is associated to a transition. Thus, Time Petri Net is the more

general model which can be used to model real time systems in several work domains, from

electronic and mechatronic systems to logistic a business domains.

In this chapter we focus in the timed systems and its application which are briefly described

in section 2. In section 3 we will present a perspective and demand for a framework to model,

analysis and simulation of timed (and time) systems mentioning the open discussion about

algorithms and approaches to represent the state space. That discussion will be oriented by the

recent advances to establish a standard to Petri Nets in general that includes Timed and Time

Petri Nets as a extension. Such standard is presented in ISO/IEC 15.909 proposal launched for

the first time in 2004. A short presentation of what could be a general formalization to Time

Petri Nets is done in section 4. Concluding remarks are in section 5.

2. A schematic description of time dependent systems

Petri Nets are an abstract formal model for describing and studying information processing

systems that are characterized as being concurrent, asynchronous, distributed, parallel,

non-deterministic and/or stochastic [31]. Since its creation the formalism has been extended

by practitioners and theoreticians for dealing with complex systems attached to many

application fields. One of those important extensions were proposed to deal with timed

systems.

Among several proposed extensions to deal with time we detach two basic models:

Ranchamdani’s Timed Petri nets [34] and Merlin Time Petri nets [30]. These two temporal

Petri net models are included in t-time nets because time inscriptions are always associated

to transitions. Other time extensions have been published including some approaches where

time is associated to places or even to both places and arcs (see [13] for a survey).

Formally, Petri Nets can defined as:

2 Some authors also include another possibility where time is associated to the arcs, that is, to a pair (x, y) where
x, y ∈ X = S ⊆ T where S and T denotes the set of places and transitions, respectively.

360 Petri Nets – Manufacturing and Computer Science
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Definition 1. [Petri Net] A Petri net structure is a directed weighted bipartite graph

N = (P, T, A, w)

where

P is the finite set of places, P �= ∅

T is the finite set of transitions, T �= ∅

A ⊆ (P × T) ∪ (T × P) is the set of arcs from places to transitions and from transitions

to places

w : A → {1, 2, 3, . . .} is the weight function on the arcs.

We will normally represent the set of places by P = {p1, p2, . . . , pn} and the set of transitions

T = {t1, t2, . . . , tm} where |P| = n and |T| = m are the cardinality of the respective sets. A

typical arc is of the form (pi, tj) or (tj, pi) according to arc direction, where its weight w is a

positive integer greater than zero.

Definition 2. [Marked Petri Net] A marked Petri net is a five-tuple (P, T, A, w, M) where

(P, T, A, w) is a Petri Net and M is a marking, defined as a mapping M : P → N
+

Thus, a marking is a row vector with |P| elements. Figure 1 shows a possible marking for a

simple Petri Net.

Figure 1. A marked Petri net and it respective marking vector M

The relational functions Pre, Pos : P × T → N are defined to obtain the number of tokens

in places pi, pj which are preconditions or postconditions of a transition t ∈ T, that is, there

exists arcs (pi, t), (pj, t) ∈ A for the Pre function or (t, pi), (t, pj) ∈ A for the Pos function. In

Fig. 1 for instance we have Pre(b1, a3) = 1 and Pos(b3, a3) = 3.

Using Petri nets to model systems imply in associate net elements (places or transitions) to

some components and actions of the modeled system, turning out in what is called “labeled”

or “interpreted” nets. The evolution of marking in a labeled Petri nets describes the dynamic

behavior of the modeled system.

361Timed Petri Nets
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We restrict the definition of Labeled Petri Net to associate labels only to events or actions

similarly to the formalism of automata.

Definition 3. [Labeled Petri Net] A labeled Petri net is a seven-tuple

N = (P, T, A, w, E, l, M0)

where

(P, T, A, w) is a Petri net structure

E ⊆ P(T) , E �= ∅

l : T → E is the transition labeling function

M0 : P → N
+ is the initial state of the net

Labeled Petri Nets has been proved to be an efficient tool for the modeling, analysis and

control of Discrete Event System (DES). Petri Nets is a good option to model these DES

systems for wide set of applications, from manufacturing, traffic, batch chemical processes,

to computer, communications, database and software systems [27]. From now on we shall

refer to “labeled Petri nets” simply as “Petri nets”.

The state transition mechanism in Petri nets is provided by moving tokens through the net

and hence changing to a new state. When a transition is enabled, we say that it can fire or that

it can occur.

Definition 4. [Enabled Transition] A transition tj ∈ T in a Petri net is said to be enabled if

∀p ∈ P, M(p) ≥ Pre(p, tj)

In other words, a transition tj in the Petri net is enabled when the number of tokens in p is

greater then or equal to the weight of the arc connecting p to tj , for all places p that are input

to transition tj.

The set of all enabled transition at some marking M is defined as enb(M). In Fig. 1 only

transitions a2, a4 and a5 are enabled, then enb(M) = {a2, a4, a5}.

Definition 5. [State Transition] A Petri net evolves from a marking M to a marking M’ through

the firing of a transition t f ∈ T only if t f ∈ enb(M). The new marking M’ can be obtained by

∀p ∈ P|(p, t f ) ∨ (t f , p) ∈ A, M′(p) = M(p)− Pre(p, t f ) + Pos(p, t f )

The reachable markings in a Petri net can be computed using an algebraic equation. Two

incidence matrices must be defined (A− for incoming arcs, and A+ for outgoing arcs) and

a firing vector u which is a (unimodular) row vector containing “1” in the corresponding

position of the firing transition and “0” in all other positions.

The new marking can be obtained using the state equation:

M′ = M + u(A+ − A−) (1)

362 Petri Nets – Manufacturing and Computer Science
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This formalism is sufficient to represent a great amount of dynamic discrete systems, based

only in partial order sequence of transitions. However, “untimed”3 Petri nets are not powerful

enough to deal with performance evaluations, safety determination, or behavioral properties

in systems where time appears as a quantifiable and continuous parameter.

Ramchandani’s timed Petri nets were derived from Petri nets by associating a firing finite

duration to each transition in the net. Timed Petri nets and related equivalent models have

been used mainly to performance evaluation [7].

Definition 6. [Timed Petri Net] A timed Petri net is a six-tuple

N = (P, T, A, w, M0, f )

where

(P, T, A, w, M0) is a marked Petri net

f : T → R
+ is a firing time function that assigns a positive real number to each transition

on the net

Therefore, the firing rule has to be modified in order to consider time elapses in the transition

firing. If an enabled transition tj ∈ enb(M) then it will fire after f (tj) times units since it

became enabled. The system state is not only determined by the net marking but also by a

timer attached to every enabled transition in the net.

Definition 7. [Clock State] The clock state is a pair (M, V), where M is a marking and V is a

clock valuation function, V : enb(M) → R
+

For a clock state (M, V) and t ∈ enb(M), V(t) is the value of the clock associated with a

transition t. The initial clock state is s0 = (M0, V0) where V0(t) = f (t), ∀t ∈ enb(M0).

Definition 8. [New Enabled Transition] A transition t ∈ T is said new enabled, after firing

transition t f at marking M which leads to marking M′, if it is enabled at marking M′ and it

was not enabled at M or, if it was enabled at M, it is the former fired transition t f . Formally:

new(M′) = {t ∈ enb(M′)|t = t f ∨ ∃p, (M′(p)− Pos(p, t f )) ≤ Pre(p, t)}

We denote as new(M′) the set of transitions new enabled at marking M′.

The reachability graph of a timed Pedri net can be computed using the definition of firable

transition, that is, those transitions that can be fired in a certain marking.

Definition 9. [Firable Transition] A transition t f ∈ T can fire in a marking M yielding a

marking M′ if:

t f ∈ enb(M)

VM(t f ) ≤ VM(ti) ∀ti ∈ enb(M)

3 A Petri Net where there is no event depending directly or parametrically of the time

363Timed Petri Nets
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We denote as Υ(M) the set of transitions firable at a marking M. Assuming that the firing

of transition t f leads to a new marking M′, we denote it as (M, VM)
τ

−→ (M′, VM′ ) where

τ = VM(t f ) is the time elapsed in state transition, M’ is computed using equation 1 and VM′

is computed as follows:

VM′ =

{

f (t) se t ∈ new(M′);
VM(t)− τ se t ∈ enb(M′) \ new(M′)

The reachability tree can be built including all feasible firing sequences of the timed Petri

net. Notice that in M0 all transition are new enabled, enb(M0) = new(M0). However, finite

reachability trees can be built only for bounded Petri nets (see bounded property in [31], and

an equivalent result for Time Petri in [6]).

Paths or runs in a reachability tree are sequences of state transitions in a timed Petri net. Then,

the time elapsed in some path can be computed as the summation of all the elapsed times

in the firing schedule. If a path ω = s0
τ1−→ s1

τ2−→ s2
τ3−→ s3 exists, then the time elapsed

between states s0 and s3 is τ = τ1 + τ2 + τ3.

The reachabitity tree approach has been successfully used in communication protocols

validation and in performance analyses [38, 45]. Moreover, these tests require known

computation times for the tasks (often referred by WCET as “Worst Case Execution Time”)

or process durations. Besides the difficulty to measure or estimate such times, taking into

consideration a deterministic time (even in the longest path) does not lead necessarily to the

worst case [36].

More realistic analysis can be done on communication protocols using Merlin approach, since

some network time durations or even software routines cannot be completed always in the

same time [6, 30].

Merlin defined Time Petri Nets (TPN) as nets with a time interval associated to each transition.

Assuming that a time interval [a, b] (a, b ∈ R
+) is associated with a transition ti, and that such

transition has been enabled at a marking Mi and is being continuously enabled since then in

all successive markings Mi+1, . . . , Mi+k, we define:

- a (0 ≤ a), as the minimal time that transition ti must remain continuously enabled, until it

can fire. This time is also known as Early Firing Time (EFT)

- b (0 ≤ b ≤ ∞), as the maximum time that transition can remain continuously enabled

without fire. This time is also known as Latest Firing Time (LFT)

Times a and b for transition ti are relative to the moment in which transition ti became last

enabled. If transition ti became enabled at time τ, and remains continuously enabled at τ + a

then it can be fired. After time τ + a, transition ti can remains continuously enabled without

fire until τ + b, in which it must be fired. Note that transitions with time intervals [0, ∞]
correspond to the classical "untimed" (no deterministic) Petri net behavior.

The firing semantic described here is called “strong semantic”. There also exists a called “weak

semantic” in which transitions must not necessarily be fired at its LFT, and after that time it

can no longer be fired [35]. In this chapter we will used the strong semantic.
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Time Petri nets then can model systems in which events has non-deterministic durations. State

transitions in that kind of systems may occur not in an exact time but in some time interval.

Real-time systems are examples of this kind of system.

Definition 10. [Time Petri Net] A time Petri net is a six-tuple

N = (P, T, A, w, M0, I)

where

(P, T, A, w, M0) is a marked Petri net

I : T → {R
+, R

+ ∪ {∞}} associates with each transition t an interval [↓ I(t), ↑ I(t)]
called its static firing interval. The bounds of the time interval are also known as EFT

and LFT respectively.

The enabling condition remains the same as in the timed Petri Net but the firing rule must

be redefined. The possibility to fire in a time interval rather than an exact time lead to

the existence of infinite clock states. Then, even for bounded Petri nets the state space will

be infinite, turning intractable any analysis technique based on that model formalism. To

overcome this problem, Berthomieu and Menasche [7] proposed a new definition for state.

Definition 11. [Interval State] A state in a TPN is a pair (M, θ) where

M is a marking

θ is a firing interval function θ : enb(M) → {R
+, R

+ ∪ {∞}}.

The firing interval associated with transition t ∈ enb(M) is θ(t) = [↓ θ(t), ↑ θ(t)].

Using that approach, a bounded TPN yields a finite number of states [6]. Note that each

Interval state contains infinite clock states, then the new state definition allow us to group

infinite clock states into one interval state satisfying the condition:

(M, V) ∈ (M′, θ) iff (M = M′) ∧ ∀t ∈ enb(M), ↓ θ(t) ≤ f (t)− V(t) ≤↑ θ(t)

An enumerative analysis technique was introduced in [7] based in what is called “state

classes”. An algorithm for enumeration of these state classes was proposed for bounded TPNs

and then used to the analysis of system. Since then, many algorithm has been proposed to

build system state space based on the state class approach [6, 9, 11, 17, 22, 44].

Definition 12. [Firable Transition] Assuming that transition t f ∈ T becomes enabled at time τ

in state (M, θ), it is firable at time τ + λ iff:

t f ∈ enb(M) : t f is enabled at (M, θ).

∀ti ∈ enb(M), ↓ t f ≤ λ ≤ min(↑ ti)

We denote as Υ(s) the set of transitions firable at state s = (M, θ) and as (M, θ)
t f ,λ
−→ (M′, θ

′)
the behavior “transition t f is firable from state (M, θ) at time λ and its firing leads to state

(M′, θ
′)”

365Timed Petri Nets
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The first condition is the usual one for Petri nets and the second results from the necessity

of firing transitions according to their firing interval. According to the second condition, a

transition t f , enabled by a marking M at absolute time τ, could be fired at the firing time λ

iff λ is not smaller than the EFT of t f and not greater than the smallest of the LFT’s of all the

transitions enabled by marking M.

Each firable transition will have its own time interval in which it can be fired. That time

depends of its EFT and of the time elapsed since it became last enabled, and of the time in

which the rest of the the enabled transitions will reach its LFTs, also according to the time

elapsed since each one became last enabled.

Definition 13. [State Class] A state class is a pair C = (M, D) where:

M is a marking;

D is the firing domain of the class.

The state class marking is shared by all states in the class and the firing domain is defined as

the union of the firing domains of all the states in the class. The domain D is a conjunction

of atomic constraints of the form (t − t′ ≺ c), (t ≺ c) or (−t ≺ c), where c ∈ R ∪ {∞,−∞},

≺∈ {=,≤,≥} and t, t′ ∈ T.

The domain of D is therefore convex and has a unique canonical form defined by:

∧

(t,t′)∈enb(M)2

t − t′ ≤ SupD(t − t′) ∧
∧

(t∈enb(M))

t ≤ SupD(t) ∧−t ≤ SupD(−t)

where SupD(t − t′), SupD(t), and SupD(−t) are respectively the supremum of t − t′, t, and

−t in the domain of D.

In [12] was proposed an implementation for the firing rule, which directly computes the

canonical form of each reachable state class in O(n2). The firing sequences beginning at some

state si has the form:

ω = si
t1,[li+1,ui+1]

−→ si+1
t2,[li+2,ui+2]

−→ si+2 . . . si+n−1
tj ,[li+n ,ui+n ]

−→ si+n (2)

where the intervals [ln, un] for each tn are respectively the minimum and maximum time in

which the transition can fire.

Once the state space is built, different verifications can be done, including model-checking

techniques which determine if some temporal formulas are true or false over the state space.

There are severals tools that use such approach [8, 17, 20, 21, 44].

In the special case where EFT and LFT has the same value, the behavior of the TPN reproduce

the one of timed Petri Nets. Note that in paths over the graph which is built using the timed

Petri net firing rule, the elapsed time in state transitions is fixed while in the TPN it is a time

interval. In timed Petri nets states are clock states while in TPN they are interval states or state

classes that contain infinite clock states.

The Timed Automaton (TA) with guards [3] is an automaton to which is adjoined a set of

continuous variables whose dynamical evolution is time-driven. This formalism has been
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used to modeling and to a formal verification of real-time systems with success. Some tools

as KRONOS [16] and UPPAAL [28] are available for such purposes. The state space yielded

using Timed Automaton with guards is quite similar of that of TPN regarding the differences

on their constructions.

3. Towards a unified PN system framework

In spite of the great theoretical importance and applicability of Time (or Timed) Petri Nets the

PN theory was develop since the early 60’s in different directions, always seeking for a way

to face combinatorial explosion or to approximate to Fuzzy Logic or object-oriented systems.

Several extensions were developed to fit practical applications or to attend the need to treat a

new class of distributed systems, such as real-time systems. The new century started with a

good amount of work published in this area but also with some confusion about concepts and

representations. On the other hand, the raising complexity of distributed systems demanded

a unified approach that could handle from abstract models down to the split of these general

schemas in programs addressed to specific devices. In fact, integrated and flexible systems

depend on that capacity.

A ISO/IEC project were launched in the beginning of this century to provide a standard
to Petri Nets: the ISO/IEC 15909. Briefly, this project consists of three phases, where the
first one defined P/T nets and High Level Nets in a complementary view, that is, taken
P/T nets as a reduced set of the High Level Nets (HLPNs) when we reduce the color set
to only one type. That is equivalent to unfold the net. Therefore, the proposed standard
provides a comprehensive documentation of the terminology, the semantical model and
graphic notations for High-level Petri nets. It also describes different conformance levels.
Technically, the part 1 of the standard provides mathematical definitions of High-level Petri
Nets, called semantic model, and a graphical form, known as High-level Petri Net Graphs
(HLPNGs), as well as its mapping to the semantic model [23, 24].

Similarly to other situations where advances in technology and engineering demands a
standardization, the introduction of a Petri Net standard also put in check the capacity of
exchanging models among different modeling environments and tools. Thus, a Petri Net
Markup Language (PNML) was introduced as an interchange format for the Petri nets defined
in part 1 of the standard [25]. That composes the Part 2 of the standard and was published
in February 2011, after a great amount of discussion, defining a transfer format to support
the exchange of High-level Petri Nets among different tool environments [24]. The standard
defined also a transfer syntax for High-level Petri Net Graphs and its subclasses defined in the
first part of the standard, capturing the essence of all kinds of colored, high-level and classic
Petri nets.

Part 3 is of the standard is devoted to Petri nets extensions, including hierarchies, time and
stochastic nets, and is still being discussed, with a estimated time to be launched in 2013.
The main requirement is that extensions be built upon developments over the core model,
providing a structured and sound description. That also would allow user defined extensions
based on built-in extensions and would reduce the profusion of nets attached to application
domains. At least two main advantages would come out from that:

367Timed Petri Nets
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• a simple, comprehensive and structured definition of PN which would make it easier the
modeling and design of distributed systems;

• a wide range of possible applications will be using the same representation which facilitate
the re-use of modeling inside work domains;

• the expansion of reusability to cases among different work domains, reinforcing the use of
PNs as a general schema;

• the extension of the use of Petri Nets beyond the modeling phase of design, including
requirements analysis and validation.

Thus, it is very important to insert Timed Petri Nets in the proper context of the net standard,
and in the context of PN extensions. During the last years a design environment has been built,
in parallel with our study of Timed nets and its application to the design of automated and
real time systems: the General Hierarchical Enhanced Net System (GHENeSys), where timed
Petri Nets were included in a complementary way. That is, the time definition - which could
be a proposal to part 3 of the standard - is made associating to each transition (place) a time
interval, as proposed by Merlin [30] to model dense time. In the special case of deterministic
transition (place) time it suffices to make the interval collapse by making the extremes equal to
the same constant. For the case of a deterministic time PN, this imply in modifying Definition
6 to have the mapping f : T → {R

+ × R
+ ∪ {∞}}.

Besides the time extension, GHENeSys is also a hierarchical, object-oriented net which has
also the following extended elements:

• Gates: which stands for elements propagating only information and preserving the
marking in its original place. It could be an enabling gate, that is, one that send information
if is marked or an inhibitor gate, if propagates information when is not marked. Of course
GHENeSys does not allow internal gates. Thus gates should have always an original place,
a special place called pseudo-box.

• Pseudo-boxes: denotes an observable condition that is not controlled by the modeled
system. During the course of the modeling pseudo-boxes could also stand for control
information external to the hierarchical components and could be collapsed when
components are put together. Thus, pseudo-boxes must be considered in the structure
of the net but should not affect its properties or the rank of the incidence matrix.

The graphic representation of the elements followed the schema shown in the Fig. 2 bellow,

Since our focus in this work is time extensions we illustrate hierarchy with a simple example
net shown in the Fig. 3 Notice that hierarchical elements are such that the border is composed
of only place or transition elements and has a unique entrance element and a unique output
element. Besides, we require that each hierarchical element be simply live, that is, there is
at least one live path from the entrance to the output. This is called a proper element in the
theory of structured systems.

Definition 14.[GHENeSys] GHENeSys is tuple G = (L, A, F, K, Π, C0, τ) where (L, A, F, K, Π)
represents a net structure, C0 is a set of multisets representing the initial marking, and τ is a
function that maps time intervals to each element of the net.
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Figure 2. Graphic representation GHENeSys graphic elements.

Figure 3. Example of hierarchical proper elements or macro-boxes and macro-transitions.

• L = B ∪ P, are sets of places denoted by Boxes and pseudo-boxes;

• A is a set of activities;

• F ⊆ (L × A → N) ∪ (A × L → N) is the flux relation;

• K : L → N+ is a capacity function;

• Π : (B ∪ A) → {0, 1} is a mapping that identifies the macro elements;

• C0 = {(l, σj)|l ∈ L, σj ∈ R+ |l| ≤ K(l)} is the marking of the initial state;

• τ : (B ∪ A) −→ {R
+, R

+ ∪ {∞}} is a mapping that associates time intervals to each
element of the net

3.1. A simple example of verification with GHENeSys

As mentioned before the main advantage of GHENeSys is to facilitate the verification of

requirements and restrictions in the modeling and design of distributed systems. Therefore

the environment should be able to related the elements and verify the interpretation of
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formulas that could involve deterministic time (explicitly or not). In the simple example that

follow we show how this verification is performed in the GHENeSys system.

Besides the illustration of the use of deterministic time and the GHENeSys net, the example

also shows a method adopted to the modeling with Petri Nets, which is based on eliciting

requirements in UML and then (if the target is a dynamic system) transforming the semantic

diagrams of UML in classic Petri Nets4. A Petri Net with some extensions is created in the

GHENeSys which also allows the insertion of formulas in CTL that can be verified. Figure 4

[5] shows the UML class diagram to this problem. In a cycle time three drives come to the

station which has only two independent pumps.

Figure 4. Class diagram to the problem of gas station.

In the gas station problem three different agents are identified: i) the gas station management

who is responsible for charging the users, ii) the pumps that are supposed to serve gasoline

to the costumers, and iii) the costumers, that is, drivers who are supposed to pay for a proper

amount of gasoline and them help themselves. In this simple event we follow the model

proposed in Baresi [5] where three drivers depends of only one cashier to pay for the gas and

can use two different pumps to fill their cars. First of all we can guarantee that the proper

process is followed and them we could insert a characteristic time in the basic operations. We

used GHENeSys to provide the model using a classic P/T net. The resulting model is shown

in the Fig. 5. This problem is to simple to use extensions but even in that case it would be

possible to simply verify if the payment was done (using a gate) to enable the pump with the

proper amount of gas instead or carrying the mark. For this problem it would be no significant

difference in the size of the graph or in the resulting model.

The important feature here is to follow a modeling approach, which is implied in the steps

described so far. Before modeling, requirements should be modeled in UML by semantic

4 It would also be possible to synthesize a high level net, but this is not in the scope of the present work
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Figure 5. Classic model to the gas problem.

diagrams. There is a good discussion in the academy about the choice of the diagrams to each

class of problem. Some authors prefer to go directly to SysML [4] while others just leave open

the question about which diagrams should be used and invest in the analysis of this diagrams

using Petri Nets [5, 10, 18, 39, 40].

Proceeding with our example let us suppose that we desire to verify some properties of the

model such as

getMoney −→ ∀ � Pumping (3)

∀�(getMoney −→ ∀ � Pumping) (4)

Using GHENeSys, formulas 3 and 4 can be evaluated by the Timed Petri Net modeling as we

can see in the following.

Figure 6. Sanpshot of the GHENeSys verifier for property 4.
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The introduction of deterministic time (transition) would add more detail about the process,

with the characteristic time for processing the payment or to fill a car. An organized queue

would fail (even if works quite fine in the model) since this time can be modified depending

of the user or to unpredictable events during the payment or during the supply process.

However if specific (and deterministic)intervals such as 3 min for the payment and 5 min

for the filling of gas are stablished, the system could handle 9 drivers in 25 min with a waiting

time of at most 2 min for some drivers.

More convincing examples can be found in business, manufacturing or computer networks.

More challenge problems emerged in the spatial applications or satellite control, but what

is important is that even deterministic time approach can be used to solve a diversified set

of problems. However, it could be stressed that the timed approach should be supported

for tools and environments that rely in a sound and complementary approach to Timed Nets

including Time Petri Nets. The approach shown here, inserted in the GHENeSys environment

is exactly one of this cases. Besides, GHENeSys is an implementation of a unified net, that

follows the specifications in ISO/IEC 15909 standard.

In the next section we go further in the discussion of using Petri Nets and specifically Timed

Petri Nets to fit requirements that come in the new version of UML, which includes time

diagrams and timelines.

4. PN as a general system representation framework

As pointed in the beginning of this work, Petri Nets has developed for the last fifty years to

become a general schema for systems modeling.

In the previous section, we showed that a modeling discipline should be followed to achieve

good results with Petri Nets formal representation, specially when time is an important

variable to consider, either by deterministic time or using continuous dense time intervals.

However, in the example above time does not appear explicitly at the beginning, since we

started with the class diagram where there was no reference to duration time of the processes

(supplying or payment). The problem them begins with a demand to a proper representation

of time duration in UML that could later be transformed in a timed net.

To fit this demand UML 2.0 specification inserted an interaction diagram derived from the

sequence diagram where time intervals or time duration are very important issues. Thus,

once identified the actors and sub-systems in the model, their interaction could be viewed

and modeled taking in account that it occurs during a running time where specific events can

cause a change in the status of that interaction. Thus, the full relation can be described in

what is called a state lifetime where several timelines show the evolution of the interacting

components.

OMG (www.omg.org) shows a very appealing example of time diagram to model

In Figure 7 we can see a hierarchical superposition of levels and the action derived from the

interaction between a user and a web system. Sub-systems invoked by this action and the

time they spent to provide a proper action are explicitly depicted. As in the previous problem
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Figure 7. Time diagram for the web user latency.

of the gas station, the total time interval spent to serve one or nine users is the summation of

the not superposed time intervals required for each dependent action.

Thus, the complete process would be to elicit the requirements using UML diagrams -

including time diagrams - synthesize a Timed Petri Net from this model, and them perform

the requirement analysis and final synthesis of a model for the problem. In fact, the final

results for the example of the gas station were obtained following this approach.

Formally, the timelines are drawn according the behavior of state variables, defined in the

following.

Definition 15.[State Variables] A state variable is a triple (V, T, D) where:

V = vi is a finite set of state values;

T : V → V specify each atomic transition or change in value.

D : V → N × N is the time duration for each state value.

A timeline is the tracking of all changes in state value in a interval [0, τ) where τ is the

observed time horizon. A timeline is said to be completely closed if the union of its not

superposed values is exactly τ. In that case the transitions occur in deterministic time.
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If the transitions occur in a time interval [tmin, tmax] the timeline is said to be flexible. In this

case we can represent the transition in a Timed Petri Net by an interval, as proposed in the first

section. If we want to deal with deterministic time transition it is enough to make tmin = tmax

and the same net framework could be used.

Timeline models can be very useful in some critical problem applications such as intelligent

planning and scheduling. Some of those applications could be used in spatial projects

[14]5. In other applications Petri Nets were used to perform requirements analysis including

deterministic time, as in the one proposed by Vaquero et al.[40][41]. In that case the

idea of solving real life planning problems starts with the elicitation and specification of

requirements using UML, goes through the analysis of this requirements using Timed Petri

Nets, synthesizes a model also in Petri Nets and finally uses a specific language, PDDL, to

transfer the model to software planners which will provide the final result. Also, a modeling

design environment were developed to perform this process[41][40].

Figure 8. Language structure in itSIMPLE 3.1

A specific state lifetime were developed to model and analyze the timelines for the agents and

objects that would compose the plan, as shown in Figure 8.

Based on this time diagram Petri Nets could be synthesized to make the proper validation

of the model. It is important to notice that there are a large number of approaches and tools

that claim to perform a good analysis of models directly associated to a planer software with

good results. However, most of this systems address only model problems which are well

behaved and/or have a limited size and complexity. When the challenge is to model a large

system, such as the space project mentioned before or a port to get and deliver petroleum, the

challenge could be too big to be faced by these proposals.

Therefore the combination UML/Timed Petri Nets could be successful in the modeling of

large and complex problems also in the planning area, with the possibility to be applied in

practice to real systems.

5 See also the Mexar 2 Project and the use of intelligent software application in the link mexar.istc.cnr.it/mexar2.
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Figure 9. Time diagram in the itSIMPLE system.

5. Conclusions

In conclusion it is important to remark that the evolution of Petri Nets towards a formal

representation, capable to treat complex systems should be based in two basis: the extension

to model timed systems; and the development of a unified net that includes all extensions

besides the timed approach - hierarchy, gates, not controled elements, always respecting

the recent published ISO/IEC standard and its next release to appear in 2013. This is

the fundamental concepts to have new environments that could support a complementary

treatment of timed systems, that is, that could deal with deterministic timed net as well as

with time PN in the same environment. That is the focus of the present work.

Besides, it would be advisable that the same environment could deal, also in a complementary

way, with classic P/T nets as well as with high level (HLPN) nets or even with simetric nets,

which is also part of the ISO/IEC standard. The novelty would be to use a unified net system

as a platform to reach the further challenge which would be the introduction of abstract nets.

In what concerns the unified net to treat time intervals and dense time, we achieve a good

point with the system GHENeSys where the present work focus most in the first part.

However, in [17] a more detailed description of the state class algorithm is given and the basic

concepts that lead to a modeling and simulation approach to dense time nets. Therefore the

unification with timed PN is a promising result in the near future. Also the system GHENeSys
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is being developed to implement a unified net as we described above, dealing with P/T and

HLPN in the same environment. That is a good combination, capable to model and simulate

timed and time nets (in that case using model checking) in the same environment, with the

advantage to have a sound and formal representation supporting all process.

Thus, it would be possible to have performance analysis that really fits the complexity of the

problem addressed, adapting very easily to discrete or dense time approach.
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