
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 4

© 2012 Yasuda, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Implementation of Distributed

Control Architecture for Multiple

Robot Systems Using Petri Nets

Gen’ichi Yasuda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50577

1. Introduction

Because of the generality of the robot’s physical structure, control and reprogrammability, it

is expected that more and more robots will be introduced into industry to automate various

operations. This flexibility can be exploited if the robot control system can be programmed

easily. Anyway, it is quite obvious that a single robot cannot perform effective tasks in an

industrial environment, unless it is provided with some additional equipment. For example,

in building a component, two robots are required to cooperate, one holding some part while

the other attaches some other part to it. In other tasks, robots may pursue different goals,

making sure that they both don’t attempt to use the same resource at the same time. Such

synchronization and coordination can only be achieved by getting the robots to talk to each

other or to some supervising agent. However, for large-scaled and complicated

manufacturing systems, from the viewpoint of cost-performance and reliability appropriate

representation and analysis methods of the control system have not sufficiently been

established [1]. The lack of adequate programming tools for multiple robots make some

tasks impossible to be performed. In other cases, since the control requirements are

diversified and often changed, the cost of programming may be a significant fraction of the

total cost of an application. Due to these reasons, the development of an effective

programming method to integrate a system which includes various robots and other devices

that cooperate in the same task is urgently required [2].

In programming by the well-known teaching-playback or teaching by showing, the

programmer specifies a single execution for the robot: there are no loops, no conditionals, no

data retrieval, nor computations. This method can be implemented without a general-

purpose computer, and it is especially adequate for some applications, such as spot welding,

painting, and simple materials handling. In other applications such as mechanical assembly

Petri Nets – Manufacturing and Computer Science 76

and inspection, robot-level languages provide computer programming languages with

commands to access sensors and to specify robot motions, enabling the data from external

sensors, such as vision and force, to be used in modifying the robot’s motion. Many recent

methods in robot programming provide the power of robot-level languages without

requiring deep programming knowledge, extending the basic philosophy of teaching to

include decision-making based on sensing. Another method, known as task-level

programming [3], [4], requires specifying goals for the positions of objects, rather than the

motions of the robot needed to achieve those goals. A task-level specification is meant to be

completely robot-independent; no positions or paths specified by the user depend on the

robot geometry or kinematics. This method requires complete geometric models of the

environment and of the robot, referred to as world-modeling systems. An object oriented

approach has been held for modeling, simulation and control of multiple robot systems and

intelligent manufacturing systems [5]-[9]. The main drawback of these methods relative to

teaching is that they require the robot programmer to be an expert in computer

programming and in the design of sensor-based motion strategies. Hence, this method is not

accessible to the typical worker on the factory floor [10], [11].

Robot program development is often ignored in the design of robot control systems and,

consequently, complex robot programs can be very difficult to debug. The development of

robot programs has several characteristics which need special treatment. Because robot

programs have complex side-effects and their execution time is usually long, it is not always

feasible to re-initialize the program upon failure. So, robot programming systems should

allow programs to be modified on-line and immediately restarted. Sensory information and

real-time interactions are crucial and not usually repeatable. The ability to record the sensor

outputs, together with program traces should be provided as a real-time debugging tool.

Further, because complex geometry and motions are difficult to visualize, 3D graphic

simulators can play an important role. Another difficulty comes from the fact that each robot

has its own programming system, and it is often undesirable to alter or substitute it with

something else. Besides cost considerations, this is because each robot programming

language is tailored to the machine it has to control, and it would be simply impossible, for

example to obtain a good performance from an articulated robot using a language designed

for a Cartesian one. To attend the above requirements, a universal robot programming

method with real-time automatic translation from a robot language to another one is

required in integrated manufacturing systems.

The decision was then taken to develop a robot programming method for multiple robot

systems that would provide the following characteristics. All the activities of the global

system should be supervised by the control system, which is the method suitable to the

integrated management that is necessary in manufacturing systems. So the integral

controller with the strong computational power to do the complex task of the coordination

system is needed. According to the parallelism among the subtasks in the multi-robot

coordination system, advantage of the parallel architecture of the control system is taken to

reach the good control capabilities [12]. To give a prior attention to the requirements about

the part flow control, the control algorithm is designed based on the Petri net [13]. The Petri

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 77

net can describe parallel flows, design and implement real-time robot control tasks [14]-[16],

so that the process schedule is easily and effectively laid down, inspected and corrected.

Each robot may be programmed in its own language in order to maintain best performance

of each machine. Each step of the programming procedure can be verified by graphic

simulation in order to improve the interaction between the operator and the robots and to

make possible the off-line programming.

In this chapter, the method described in the previous work [17] is applied to program

cooperative tasks by multiple robots and to concurrently control real robots. The aim of this

chapter is to describe and implement a programming and execution system based on Petri

nets that allows easy programming of a control system which includes multiple different

robots and a variety of auxiliary devices. The problem how the control and coordination

algorithms based on Petri nets are realized in an example of two robots carrying parts

cooperatively is resolved.

2. Net models of robotic processes

Because discrete event robotic systems are characterized by the occurrence of events and

changing conditions, the type of Petri net considered here is the condition-event net, in

which conditions can be modeled by places whilst events can be modeled by transitions. A

token is placed in a place to indicate that the condition corresponding to the place is

holding. Because a condition-event net should be safe, which means that the number of

tokens in each place does not exceed one, all of its arc weights are 1’s and it has no self-

loops. Condition-event nets can be easily extended and can efficiently model complex

robotic processes. By the Petri nets extension, some capabilities which connect the net model

to its external environment are employed. A gate arc connects a transition with a signal

source, and an output arc connects a place with an external robot to send a command. The

marking of a net changes, when a transition, which is enabled, eventually is fired. The place

and gate variables involved in transition firing are shown in Figure 1.

P

kg

kI kO
‧
‧
‧

‧
‧
‧

I

kg

kt

Figure 1. Place and gate variables involved in transition firing test

The firing condition of transition kt can be written as

Petri Nets – Manufacturing and Computer Science 78

 ()

k k

P I
k i j k k

i I j O

t p p g g
 

     (1)

where  denotes the logical product operation, and

kI : set of input places of transition kt

kO : set of output places of transition kt

P
kg : logical variable of permissive gate condition of transition kt

I
kg : logical variable of inhibitive gate condition of transition kt

The marking change of input and output places of transition kt can be written as follows:

,

,
i k i k i

j k j k j

For p I p t p

For p O p t p

  

  
 (2)

If a place has two or more input transitions or output transitions, these transitions may be in

conflict for firing. When two or more transitions are enabled only one transition should be

fired using some arbitration rule. Well-known properties of the condition-event net are as

follows. From (1), if the directions of the input and output arcs of a place and the existence

of token in the place are reversed, the firing conditions of all the transitions in the net are

unchanged. If there is no conflict place in a net, then the net can be transformed into a net

with no loop. If there is a loop with no conflict place in a net, the number of tokens in the

loop is unchanged. In case that initially there is no token in a net marking, if there are

parallel paths between two transitions, the maximum number of tokens in each path is equal

to the minimum number of places in each path. So, by addition of a dummy path with a

specified number of places, the number of tokens in each path can be controlled.

The dynamic behavior of the system represented by a net model is simulated using the

enabling and firing rules. One cycle of the simulation comprises the following steps, which

are executed when some gate condition is changed.

1. Calculate the logical variable of the transition associated with the new gate condition

using (1).

2. If the transition is fired, calculate the logical variables of its input and output places

using (2).

3. Then the marking is changed and a new command is sent to the corresponding robot.

In any initial marking, there must not be more than one token in a place. According to these

rules, the number of tokens in a place never exceeds one; the net is essentially a safe graph.

A robotic action is modeled by two transitions and one condition as shown in Figure 2. At

the “Start” transition the command associated with the transition is sent to the

corresponding robot or machine. At the “End” transition the status report is received. When

a token is present in the “Action” place, the action is in progressive. The “Completed” place

can be omitted, and then the “End” transition is fused with the “Start” transition of the next

action. Activities can be assigned an amount of time units to monitor them in time for real

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 79

performance evaluation. In case of “Waiting” place for a specified timing, after the interval

the end signal is sent by the timer. In case of “Waiting” place for a specified signal, the

logical function is tested and the resultant signal is sent as a gate condition in place of end

signal by the sensing module.

Figure 2. Net representation of robotic action: (a) macro representation, (b) detailed representation

Figure 3 shows the net representation of real-time control of a chucking operation with an

external device. Each action place represents a subtask. The “Loading” place represents the

macro model of the operation and indicates that, when a token is in the place, only one

token exists in the path of places from “Grasp” to “Return”.

Chuck

External
device

Grasp Stretch out

External robot controller

S1 S2 S3 S4 C1 C2 C3 C4

C1-C6: command start request
S1-S6: acknowledgment or end status

Waiting Pull back Return

C5 S5

C6 S6

Loading

Figure 3. Net representation of chucking operation with a robot and an external device

(a)

(b)

Petri Nets – Manufacturing and Computer Science 80

Figure 4 shows the procedure of macro representation of a pick-and-place operation by a

single robot. Figure 4 (a) shows the detailed net model, where if the first transition fires it

never fires until the last transition fires. So, a dummy place “Robot” can be added as shown

in Figure 4 (b) and a token in the place indicates that the state of the robot is “operating”,

because a real robot may load or unload only one part at a time. Thus, the place represents

the macro state of the task without the detailed net as shown in Figure 4 (c).

Figure 4. Macro representation of Pick_and_place operation by a robot: (a) detailed representation, (b)

parallel representation with dummy place in direct path, (c) macro representation

A dummy place is used to control the maximum number of tokens in the paths parallel

to the direct path. In case that the hardware of a robotic system is composed of one or

more motion units or axes, the number of tokens in the dummy place indicates the

maximum number of processing or parts processed by each motion unit. The overall

action is decomposed into detailed actions of constituent motion units by the

coordinator.

 Robot

Motion unit 1

Motion unit 2

Figure 5. Net representation of robotic system composed of two motion units

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 81

A single task executed by a robot or machine is represented as a sequential net model. The

places are connected via transitions, each having a Boolean condition or gate condition. This

condition is tested while the transition is enabled, i.e., when the preceding place is active. If

the condition is true, the succeeding place becomes active, and the preceding place becomes

inactive. Places for motion and computational actions have a unique output transition.

Decision actions introduce conflict into the net. The choice can either be made non-

deterministically or may be controlled by some external signal or command from the upper

level controller. Figure 6 shows a basic net structure with task selection. Figure 7 shows a

net model with task selection and its corresponding VAL program [18], which is written

using direct commands for the hardware robot controller and implies the lowest level

detailed representation of the subtasks.

Ready
(Home) Selection

Moving Moving Picking Placing

Moving Moving Picking Inserting

Figure 6. Basic structure of macro net model with task selection

 (VAL program)

APPRO P1, 50
MOVE P1
CLOSEI
DEPART 70

<var1> = <var2> ?

APPRO P2, 100 APPRO P3, 100
MOVES P2 MOVES P3

OPENI
DEPARTS 150

Figure 7. Example net model with task selection and robot language program

Cooperation which requires the sharing of information and resources between the

processes, is usefully introduced into the composite net which is simply the union of such

sequential nets. Figure 8 shows two equivalent net representations of concurrent tasks with

Petri Nets – Manufacturing and Computer Science 82

synchronization. In Figure 9, a loop with no token implies that the net falls into a deadlock

because of inconsistency with respect to transition firing.

Figure 8. Net representations of basic structure of cooperation between two robots: (a) cyclic, (b) parallel

Figure 9. (a) Example net which has a loop with no token, (b) parallel representation which indicates a

deadlock situation

3. Synchronization and coordination

A net representation of cooperative operation using synchronization mechanism with

permissive and inhibitive gate arcs is shown in Figure 10, where the shared transition

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 83

requires mutual synchronization between two tasks [19]. Synchronization of transitions is

also employed for decomposition of a complex task into simple tasks cooperatively executed

by two robots, as shown in Figure 11.

Figure 10. Distributed implementation of synchronization between two machines

Robot 1

Robot 2

Figure 11. Decomposition of a complex net into two simple nets using synchronization mechanism of

transitions

The decomposition procedure of a net is as follows. First, a new place is added in parallel to

the input place of the decomposed transition. Then, transitions are added in the input and

output of the two places. The input transition of the new place is a source transition. Each

place exchanges internal gate signals to input and output transitions with the other place

Petri Nets – Manufacturing and Computer Science 84

when a token is in the place. The gate arcs are implemented using asynchronous

communication between different robots.

4. Net based multiple robot coordination

A coordination task of carrying parts from a machining station to depository is considered

as an example application using multiple robots. An arm robot picks up a part from the

station and loads it into a mobile robot by which the part is sent to the storehouse. The arm

robot is equipped with a visual sensor via which it can recognize the parts as well as their

positions and also equipped with a force sensor which is necessary for grasping and loading

the parts. On the mobile robot, a radio transceiver is used for its communication sending

back feedback information from the sensors and receiving the control information from the

main controller. The visual sensor is used for landmark recognition in the environment and

infra-red sensors are used for obstacle avoidance. Figure 12 shows the arm robot and the

mobile robot.

Figure 12. View of experimental robot systems: (a) arm robot, (b) autonomous mobile robot with radio

transceiver and visual sensor

4.1. Task specification based on work flow

Based on robot task level programming of the specified part flow, the coordination task of

carrying parts from a machining station to depository is represented as a work flow graph

for a part sequentially processed by the arm robot and the mobile robot．In the work flow

graph, each node represents a place where any processing is performed on the part, while

an arc represent physical processing such as picking, loading, transfer or machining. The

work flow comprises the following three arcs as shown in Figure 13.

(a) (b)

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 85

1. picking from the station pallet by the arm robot

2. loading into the mobile robot by the arm robot

3. transfer from the station to the depository by the mobile robot

Station Arm robot Mobile robot Depository
Picking Loading Transfer

Figure 13. Task specification based on work flow processed on parts

The picking, loading, or transfer is specified using a local path in the neighborhood of the

start and end place and a global path from the two places. Mutual exclusive resources or

shared workspace such as buffers are also considered to avoid robot collision. The work

flow diagram is transformed into a conceptual net model considering machines in charge of

each processing. Figure 14 illustrates the net model of the coordination task between the two

robots. At this point, associated processing such as object identification, alarm processing,

exception handling is added. Then each processing is translated into detailed operations or

actions. At each step of detailed specification, places of the net are substituted by a subnet in

a manner which maintains the structural property such as liveness and safeness.

Hierarchical decomposition assures detailed net models free from deadlock.

Loading Picking

Identification

Waiting
Movement
to station

Movement to
depository

Obstacle
avoidance

Range
sensors

Home

End of task

Home

(Arm robot)

(Mobile robot)

Figure 14. Net model of carrying task by two robots

The conceptual coordination task is specified as follows. First, after the reception of a start

command, in “Identification” place, the arm robot judges whether or not there are still parts

in the station using the visual sensor. If not, the arm robot informs the mobile robot that the

Petri Nets – Manufacturing and Computer Science 86

task has been finished with “End of task” place and returns back to its home position. On

the contrary, the arm robot starts to get the position of a part and grasp it. The mobile robot

moves to the station, and the arm robot, after the completion of the “Grasp” subtask and the

“Movement to station” subtask, starts “Loading” subtask while the mobile robot waits at the

specified position. After the completion of loading, the mobile robot moves to the

depository, and the arm robot executes the “Identification” subtask repeatedly. If the signal

of “End of task” is on, the mobile robot returns back to its home position, and if not it moves

to the station. From the “Movement to station” and “Movement to depository” places, the

gate signal is sent to repeatedly execute the “Obstacle avoidance” subtask using infrared

range sensors. In the coordination task, synchronization is represented as a shared transition

which is implemented using a sequence of asynchronous communications as shown in

Figure 10.

4.2. Subtask control of arm robots

For net based control of the arm robot, unit actions or motions should be defined in a task

coordinate system. The trajectories can be free (point to point), straight or circular. The speed

of forward movement of a trajectory is specified in the main coordinate of the task coordinate

system. The movements in the other coordinates are compensated based on errors. At the end

of a trajectory, it can be stopped or continued while turning the direction. When a trajectory is

circular, the end-effector can have either of two orientations, that is, to the center of the circle

or fixed. In the case of control of the end-effector, there are commands to represent the

coordinate frames, open the hand, close the hand, and grasp. The grasp command assumes

that the hand has a proximity sensor to autonomously grasp a workpiece in an appropriate

direction. Synchronous actions by the arm and the wrist or sequences of unit actions by the

arm, the wrist and the fingers are also specified using commands. The reference positions for

arm movement are set by a separated teaching method, as well as desired positions of parts

known at the programming time. The other positions relative to these positions are computed

on-line. In this way, using these commands the final point and the trajectory of the motion

can be specified in the task coordinate system. Figure 15 shows the block diagram of the

trajectory tracking control in the task coordinate system.

 Calculation of

homogenous

transformation

Calculation of

main velocity

vector

Calculation of

reference axis

velocity vector

3-axis Cartesian

control system

Calculation of

trajectory distance

and errors

Compensation

gain

Current position

Reference position

Main velocity

Figure 15. Block diagram of 3-axis Cartesian coordinate arm control system

The command system can be extended to execute actions specified based on information

from the external sensors such as visual sensors, proximity sensors or slippage sensors.

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 87

Figure 14 shows the hardware structure of the microcontroller-based control system. The

visual sensor detects the coordinates of the center of an object and the orientation of an edge

of the object. The proximity sensors, which are composed of several LED arrays attached to

the fingers can detect the distance and orientation of the object with respect to the planes of

the fingers. For the grip command, the grip action raises the grip force till the signal from

the slippage sensor becomes zero. When the hand is moving down vertically, if the signal

from the slippage sensor rises inversely, then the hand is opened.

CPU 1

CPU 2

Arm drive

circuits

Wrist drive

circuits

Hand sensors

circuits

Hand drive

circuits

CPU 3

CCD camera

Capture board

PC

Teaching box

control circuit

Figure 16. Block diagram of multi-axis arm control system

When programming a specific task, the task is broken down into subtasks through task

planning. These subtasks are composed of the position data and the programs that are

edited using the robot motion simulator. Each subtask is represented as a place. A place can

also represent the internal state of the robot, which is operating or idle, and the state of

external devices. The relations of these places are explicitly represented by interconnections

of transitions, arcs and gates that are edited with the robot task program editor and

simulator. For places that represent subtasks, the following parameters are necessary: 1) the

code of the controller such as the vehicle, arm, hand or sensor etc., that executes the subtask,

2) the file name where the subtask such as MOVE, GRASP, RELEASE, or HOLD, etc., is

explicitly written with some programming language, and 3) the file name of a set of position

data that will be used to execute the subtask. The procedures of editing and simulating of

the net model are done interactively until certain specifications are satisfied. At this point, it

is expected that problems such as deadlock, conflict resolution, concurrency,

synchronization, etc., have been well studied and analyzed. If some error is found, that is if

the net model does not satisfy the specification, it can be easily amended by reediting the net

model and simulating again.

Petri Nets – Manufacturing and Computer Science 88

4.3. Subtask control of mobile robots

The decomposition of “Movement to station” place and the associated control structure are

illustrated in Figure 17. In movement control of the mobile robot using state feedback based

on pose sensors, the robot’s planning task is reduced to setting some intermediate positions

(subgoals), with respective control modes, lying on the requested path. The global path

planner in the trajectory controller determines a sequence of subgoals to reach the goal.

Given a set of subgoal locations, the target tracking controller plans a detailed path to the

closest subgoal position only and executes this plan. In the target tracking control, the

distance between the robot and the specified target position and the angle between the

forward direction and the target is computed based on the current location detected by the

internal pose sensors (accelerators and gyros) and the current target. And then, the reference

tangent and angular velocities of the mobile robot is determined to meet the target tracking

using a state feedback algorithm, and the reference wheel velocities are computed based on

inverse kinematics. The new velocity setpoints are sent to the respective wheel velocity

controller, which executes proportional plus integral control of its wheel velocity using the

rotary encoder.

Moving3Moving1 Moving2

Movement
to pallet

(Wheel velocity control)

(Trajectory control)

(Target tracking control
with inverse kinematics)

Right wheel

Left wheel

DC motors

Rotary encoders

Pose sensors
(accelerators,
gyros)

Visual sensors

subgoal

reference velocity

Global
map

Local
map

Global path planner Local path planner

Figure 17. Hierarchical decomposition of net model of mobile robot control system

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 89

In case of detection of a blockage on the intended path, the trajectory controller receives a

failure notification from the visual sensor, then modifies the subgoals and the short term

local knowledge of the robot’s surroundings and triggers the target tracking in view of this

change to the local environment knowledge. The trajectory controller has the dynamic map

with global and local representation that becomes more accurate as the robot moves. Upon

reaching this subgoal location, its local map will change based on the perceptual

information using the PSD data extracted during motion. Then the target tracking controller

triggers the local path planner to generate a path from the new location to the next subgoal

location. When the lowest-level wheel velocity control fails to make progress, the target

tracking controller attempts to find a way past the obstacle by turning the robot in position

and trying again. The trajectory controller decides when and if new information integrated

into the local map can be copied into the global map.

The current subgoal and current location are shared by the trajectory controller and the

target tracking controller. In the coordinator program, a place is assigned to each shared

variable to be protected from concurrent access. Mutual exclusive access to a shared variable

is represented by a place, which is identical to the P and V operations on the semaphore, as

shown in Figure 18.

Target tracking controller

Trajectory controller

Figure 18. Net representation of mutual exclusive access

If a time-out in real-time control, communication, or sensing data acquisition, is brought

about, an alarm signal is sent to the upper controller. When an alarm is processed, a signal is

sent to stop any active controller. These signals are implemented by places, as shown in

Figure 19. If the final goal is reached, the target tracking controller sends an “End” signal to

the trajectory controller, which then sends end signals to the rest of the system.

 Trajectory controller

Target tracking
controller

Figure 19. Net representation of signaling between controllers

Petri Nets – Manufacturing and Computer Science 90

5. Implementation of net based control system

Based on net models, a programming and execution system is implemented. A whole task is

edited with a net based robot task program editor and simulator. In parallel, a robot motion

simulator is used to edit the subtask programs. Using these systems, the net program file,

the sequence program file, and the position data file are created and used by the multi-robot

controller to execute the coordination task. A schematic of the functions of the robot

programming system is illustrated in Figure 20. The connections of the robots and devices

with PC are shown in Figure 21.

Robot motion
simulator

Robot task program
editor and simulator

Net models
of the task

Subtasks program files

Position data files

Multi-robot
controller

Figure 20. Structure of the robot programming system

 PC

Micro-
controller

Teaching
box

RS232C

RS232C
PLC

Wireless
RS232C

Conveyor

3 axis arm robot

Mobile robot
Net based robot
task program
editor and
simulator

Graphic robot
motion simulator

Net based
multi-robot
controller

Figure 21. Connections of robots and devices with PC

The geometric data of the robot and workspace are specified using the length of the links

of the robot, the geometric parameters of workpiece as well as input and deletion

positions, and the form of the end-effector. The simulator constructs the three

dimensional model of the robot and the workspace. The numerical data of the joint angles,

absolute position and orientation of the robot are displayed on the terminal. The operator

inputs the sequence of unit motion commands and position data. Then, the motion data

are computed with consideration to the geometric parameters of the robots and

workpieces. The net model file, the subtask program files and position data files are

simulated with the robot task program editor and simulator and robot motion simulator

respectively to test the programs and data that will be used to control the robots. The

robot behavior is displayed graphically on a terminal step by step. Then the completed net

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 91

model is transformed into the tabular form, and these files are loaded into the multi-robot

controller that executes the programs. Example views of 3D graphic simulation of the arm

robot and the mobile robot are shown in Figure 22. The flow chart of the net based

programming method of multi-robot tasks using the separated teaching method is shown

in Figure 23.

Figure 22. View of 3D graphic simulation of (a) arm robot and (b) mobile robot

 Start

Edit net based task program

Change position data ?
Yes

Compute transformation matrix

Simulate the net model with graphic motion simulator

Send files to multi-robot controller

Teach position data

No

Modify position data

End

Figure 23. Flow chart of net based programming method using separated teaching method

(a) (b)

Petri Nets – Manufacturing and Computer Science 92

The multi-robot controller accomplishes the specified task by executing the net model

constructed above. Unit actions in a net model used for lowest level controllers are defined

in a specified task space, where the action is executed. In the control software the position

and orientation in the task space is transformed to the robot coordinate system using the

homogeneous transformation matrix. The controller coordinates and supervises the

individual controllers based on information explicitly represented by places, place

parameters, transitions, arcs, and gates. That is, when a token enters a place that represents a

subtask, immediately the controller defined by the control code is informed to execute the

subtask with a specified data. Because of the proper nature of the Petri net, the designer can

easily create a multi-robot task program which is free of logical errors. The method acts as a

programming method on the coordination level and on the organization level [20]. That is,

the Petri net is applied as a tool to the operator who plans the multi-robot task, and by

executing the net model the individual hardware controllers are regulated and supervised.

If, before moving the real robot, the outputs of the robot controller are linked with the

graphic robot motion simulator, the whole task programmed can be tested off-line. When

the task specification is required to be changed, the net model can be modified on-line.

6. Conclusions

It was confirmed that the multi-robot controller developed based on tasks programmed in

the net form controls the equipment according to the programmed net model. The method

provides concurrent movement of all robots and machines in the system, and it provides

synchronization commands to allow coordination of their movements to accomplish user

defined tasks. The commands used by this system are not based on any specific existing

robot language. So, the method can be used in any real robot by translating it to the

appropriate robot language, and it acts as a programming tool on the coordination level and

on the organization level in multiple robot systems.

Author details

Gen’ichi Yasuda

Nagasaki Institute of Applied Science, Japan

7. References

[1] Martinez, J., Muro, P. & Silva, M. (1987). Modeling, Validation and Software

Implementation of Production Systems Using High Level Petri Nets, Proceedings of IEEE

International Conference on Robotics and Automation，pp. 1180-1185

[2] Sakane, S. (1993). Distributed Sensing System with 3D model-based agents, Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1157-1163

[3] Bonner, J. & Shin, K. G. (1982). A Comparative Study of Robot Languages. Computer

Magazine, IEEE, Vol. 14, No. 12, pp. 82-96

Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 93

[4] Lozano-Perez, T. (1983). Robot Programming. Proceedings of the IEEE, Vol. 71, No. 7, pp.

821-841

[5] Yasuda, G. (1996). An Object-oriented Network Environment for Computer Vision Based

Multirobot System Architectures, Proceedings of 20th International Conference on

Computers & Industrial Engineering, pp. 1199-1202

[6] Yasuda, G. & Tachibana, K. (1996). An Integrated Object-oriented Expert System for

Welding Procedure Selection and Process Control, CRITICAL TECHNOLOGY:

Proceedings of the Third World Congress on Expert Systems, pp. 186-193

[7] Yasuda, G. (1997). Intelligent Manufacturing and Engineering, In: Jay Liebowitz Ed. The

Handbook of Applied Expert Systems, CRC Press, Chapter 22, pp. 22.1-22.14

[8] Bussmann, S. (1998). Agent-Oriented Programming of Manufacturing Control Tasks,

Proceedings of the 3rd International Conference on Multi-Agent Systems, pp. 57 - 63

[9] Yasuda, G. (1999). A Multiagent Architecture for Sensor-Based Control of Intelligent

Autonomous Mobile Robots, ACTA IMEKO 1999 (Proceedings of the 15th World

Congress of the International Measurement Confederation (IMEKO)), Vol.Ⅹ (TC-17), pp.

145-152

[10] Cassinis, R. (1983). Hierarchical Control of Integrated Manufacturing Systems,

Proceedings of the 13th International Symposium on Industrial Robots and Robots 7, pp. 12-9 -

12-20

[11] Wood, B. O. & Fugelso, M. A. (1983). MCL, The Manufacturing Control Language,

Proceedings of the 13th International Symposium on Industrial Robots and Robots 7, pp. 12-84

- 12-96

[12] Yasuda, G., Takai, H. & Tachibana, K. (1994). Performance Evaluation of a

Multimicrocomputer-Based Software Servo System for Real-Time Distributed Robot

Control, AUTOMATIC CONTROL 1994 (Proceedings of the 12th Triennial World Congress

of IFAC), Pergamon, Vol. 2, pp. 673-678

[13] Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, Vol. 77, No. 4, pp. 541-580

[14] Simon, D., Espiau, B., Kapellos, K. & Pissard-Gibolette, R. (1997). Orccad: Software

Engineering for Real-Time Robotics. A Technical Insight. Robotica, Vol. 15, pp. 111-115

[15] Caloini, A., Magnani, G. & Pesse, M. (1998). A Technique for Designing Robotic Control

Systems Based on Petri Nets. IEEE Transactions on Control Systems Technology, Vol. 6, No.

1, pp. 72-87

[16] Oliveira, P., Pascoal, A., Silva, V. & Silvestre, C. (1998). Mission Control of the

Autonomous Underwater Vehicle: System Design, Implementation and Sea Trials.

International Journal of Systems Science, Vol. 29, No. 4, pp. 1065-1080

[17] Yasuda, G. (2010). Design and Implementation of Hierarchical and Distributed Control

for Robotic Manufacturing Systems using Petri Nets. In: Pawel Pawlewski Ed. Petri

Nets: Applications, InTech Education and Publishing, Chapter 19, pp. 379-392

[18] Unimation Inc. (1979). User Guide to VAL – A Robot Programming and Control System

Version II

Petri Nets – Manufacturing and Computer Science 94

[19] Yasuda, G. & Tachibana, K. (1991). A Parallel Processing Control Approach to the

Design of Autonomous Robotic Manufacturing Systems, Proceedings of the XIth

International Conference on Production Research, pp. 445-449

[20] Graham, J. H. & Saridis, G. N. (1982). Linguistic Decision Structures for Hierarchical

Systems. IEEE Transaction on Systems, Man, and Cybernetics, Vo. 12, No. 3, pp. 325-329

