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1. Introduction 

Because of the generality of the robot’s physical structure, control and reprogrammability, it 

is expected that more and more robots will be introduced into industry to automate various 

operations. This flexibility can be exploited if the robot control system can be programmed 

easily. Anyway, it is quite obvious that a single robot cannot perform effective tasks in an 

industrial environment, unless it is provided with some additional equipment. For example, 

in building a component, two robots are required to cooperate, one holding some part while 

the other attaches some other part to it. In other tasks, robots may pursue different goals, 

making sure that they both don’t attempt to use the same resource at the same time. Such 

synchronization and coordination can only be achieved by getting the robots to talk to each 

other or to some supervising agent. However, for large-scaled and complicated 

manufacturing systems, from the viewpoint of cost-performance and reliability appropriate 

representation and analysis methods of the control system have not sufficiently been 

established [1]. The lack of adequate programming tools for multiple robots make some 

tasks impossible to be performed. In other cases, since the control requirements are 

diversified and often changed, the cost of programming may be a significant fraction of the 

total cost of an application. Due to these reasons, the development of an effective 

programming method to integrate a system which includes various robots and other devices 

that cooperate in the same task is urgently required [2]. 

In programming by the well-known teaching-playback or teaching by showing, the 

programmer specifies a single execution for the robot: there are no loops, no conditionals, no 

data retrieval, nor computations. This method can be implemented without a general-

purpose computer, and it is especially adequate for some applications, such as spot welding, 

painting, and simple materials handling. In other applications such as mechanical assembly 
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and inspection, robot-level languages provide computer programming languages with 

commands to access sensors and to specify robot motions, enabling the data from external 

sensors, such as vision and force, to be used in modifying the robot’s motion. Many recent 

methods in robot programming provide the power of robot-level languages without 

requiring deep programming knowledge, extending the basic philosophy of teaching to 

include decision-making based on sensing. Another method, known as task-level 

programming [3], [4], requires specifying goals for the positions of objects, rather than the 

motions of the robot needed to achieve those goals. A task-level specification is meant to be 

completely robot-independent; no positions or paths specified by the user depend on the 

robot geometry or kinematics. This method requires complete geometric models of the 

environment and of the robot, referred to as world-modeling systems. An object oriented 

approach has been held for modeling, simulation and control of multiple robot systems and 

intelligent manufacturing systems [5]-[9]. The main drawback of these methods relative to 

teaching is that they require the robot programmer to be an expert in computer 

programming and in the design of sensor-based motion strategies. Hence, this method is not 

accessible to the typical worker on the factory floor [10], [11]. 

Robot program development is often ignored in the design of robot control systems and, 

consequently, complex robot programs can be very difficult to debug. The development of 

robot programs has several characteristics which need special treatment. Because robot 

programs have complex side-effects and their execution time is usually long, it is not always 

feasible to re-initialize the program upon failure. So, robot programming systems should 

allow programs to be modified on-line and immediately restarted. Sensory information and 

real-time interactions are crucial and not usually repeatable. The ability to record the sensor 

outputs, together with program traces should be provided as a real-time debugging tool. 

Further, because complex geometry and motions are difficult to visualize, 3D graphic 

simulators can play an important role. Another difficulty comes from the fact that each robot 

has its own programming system, and it is often undesirable to alter or substitute it with 

something else. Besides cost considerations, this is because each robot programming 

language is tailored to the machine it has to control, and it would be simply impossible, for 

example to obtain a good performance from an articulated robot using a language designed 

for a Cartesian one. To attend the above requirements, a universal robot programming 

method with real-time automatic translation from a robot language to another one is 

required in integrated manufacturing systems. 

The decision was then taken to develop a robot programming method for multiple robot 

systems that would provide the following characteristics. All the activities of the global 

system should be supervised by the control system, which is the method suitable to the 

integrated management that is necessary in manufacturing systems. So the integral 

controller with the strong computational power to do the complex task of the coordination 

system is needed. According to the parallelism among the subtasks in the multi-robot 

coordination system, advantage of the parallel architecture of the control system is taken to 

reach the good control capabilities [12]. To give a prior attention to the requirements about 

the part flow control, the control algorithm is designed based on the Petri net [13]. The Petri 



 
Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 77 

net can describe parallel flows, design and implement real-time robot control tasks [14]-[16], 

so that the process schedule is easily and effectively laid down, inspected and corrected. 

Each robot may be programmed in its own language in order to maintain best performance 

of each machine. Each step of the programming procedure can be verified by graphic 

simulation in order to improve the interaction between the operator and the robots and to 

make possible the off-line programming. 

In this chapter, the method described in the previous work [17] is applied to program 

cooperative tasks by multiple robots and to concurrently control real robots. The aim of this 

chapter is to describe and implement a programming and execution system based on Petri 

nets that allows easy programming of a control system which includes multiple different 

robots and a variety of auxiliary devices. The problem how the control and coordination 

algorithms based on Petri nets are realized in an example of two robots carrying parts 

cooperatively is resolved. 

2. Net models of robotic processes 

Because discrete event robotic systems are characterized by the occurrence of events and 

changing conditions, the type of Petri net considered here is the condition-event net, in 

which conditions can be modeled by places whilst events can be modeled by transitions. A 

token is placed in a place to indicate that the condition corresponding to the place is 

holding. Because a condition-event net should be safe, which means that the number of 

tokens in each place does not exceed one, all of its arc weights are 1’s and it has no self-

loops. Condition-event nets can be easily extended and can efficiently model complex 

robotic processes. By the Petri nets extension, some capabilities which connect the net model 

to its external environment are employed. A gate arc connects a transition with a signal 

source, and an output arc connects a place with an external robot to send a command. The 

marking of a net changes, when a transition, which is enabled, eventually is fired. The place 

and gate variables involved in transition firing are shown in Figure 1. 
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Figure 1. Place and gate variables involved in transition firing test  

The firing condition of transition kt  can be written as 



 
Petri Nets – Manufacturing and Computer Science 78 

 ( )

k k

P I
k i j k k

i I j O

t p p g g
 

      (1) 

where   denotes the logical product operation, and 

kI  : set of input places of transition kt   

kO  : set of output places of transition kt  

P
kg   : logical variable of permissive gate condition of transition kt  

I
kg  : logical variable of inhibitive gate condition of transition kt  

The marking change of input and output places of transition kt  can be written as follows: 
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If a place has two or more input transitions or output transitions, these transitions may be in 

conflict for firing. When two or more transitions are enabled only one transition should be 

fired using some arbitration rule. Well-known properties of the condition-event net are as 

follows. From (1), if the directions of the input and output arcs of a place and the existence 

of token in the place are reversed, the firing conditions of all the transitions in the net are 

unchanged. If there is no conflict place in a net, then the net can be transformed into a net 

with no loop. If there is a loop with no conflict place in a net, the number of tokens in the 

loop is unchanged. In case that initially there is no token in a net marking, if there are 

parallel paths between two transitions, the maximum number of tokens in each path is equal 

to the minimum number of places in each path. So, by addition of a dummy path with a 

specified number of places, the number of tokens in each path can be controlled. 

The dynamic behavior of the system represented by a net model is simulated using the 

enabling and firing rules. One cycle of the simulation comprises the following steps, which 

are executed when some gate condition is changed. 

1. Calculate the logical variable of the transition associated with the new gate condition 

using (1). 

2. If the transition is fired, calculate the logical variables of its input and output places 

using (2). 

3. Then the marking is changed and a new command is sent to the corresponding robot. 

In any initial marking, there must not be more than one token in a place. According to these 

rules, the number of tokens in a place never exceeds one; the net is essentially a safe graph. 

A robotic action is modeled by two transitions and one condition as shown in Figure 2. At 

the “Start” transition the command associated with the transition is sent to the 

corresponding robot or machine. At the “End” transition the status report is received. When 

a token is present in the “Action” place, the action is in progressive. The “Completed” place 

can be omitted, and then the “End” transition is fused with the “Start” transition of the next 

action. Activities can be assigned an amount of time units to monitor them in time for real 



 
Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 79 

performance evaluation. In case of “Waiting” place for a specified timing, after the interval 

the end signal is sent by the timer. In case of “Waiting” place for a specified signal, the 

logical function is tested and the resultant signal is sent as a gate condition in place of end 

signal by the sensing module. 

 

Figure 2. Net representation of robotic action: (a) macro representation, (b) detailed representation 

Figure 3 shows the net representation of real-time control of a chucking operation with an 

external device. Each action place represents a subtask. The “Loading” place represents the 

macro model of the operation and indicates that, when a token is in the place, only one 

token exists in the path of places from “Grasp” to “Return”.  

 

Chuck 

External 
device 

Grasp Stretch out 

External robot controller 

S1 S2 S3 S4 C1 C2 C3 C4 

C1-C6: command start request 
S1-S6: acknowledgment or end status 

Waiting Pull back Return 

C5 S5 

C6 S6 
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Figure 3. Net representation of chucking operation with a robot and an external device 

(a) 

(b) 
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Figure 4 shows the procedure of macro representation of a pick-and-place operation by a 

single robot. Figure 4 (a) shows the detailed net model, where if the first transition fires it 

never fires until the last transition fires. So, a dummy place “Robot” can be added as shown 

in Figure 4 (b) and a token in the place indicates that the state of the robot is “operating”, 

because a real robot may load or unload only one part at a time. Thus, the place represents 

the macro state of the task without the detailed net as shown in Figure 4 (c). 

 

Figure 4. Macro representation of Pick_and_place operation by a robot: (a) detailed representation, (b) 

parallel representation with dummy place in direct path, (c) macro representation 

A dummy place is used to control the maximum number of tokens in the paths parallel 

to the direct path. In case that the hardware of a robotic system is composed of one or 

more motion units or axes, the number of tokens in the dummy place indicates the 

maximum number of processing or parts processed by each motion unit. The overall 

action is decomposed into detailed actions of constituent motion units by the 

coordinator. 

 Robot 

Motion unit 1 

Motion unit 2 

 

Figure 5. Net representation of robotic system composed of two motion units  
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A single task executed by a robot or machine is represented as a sequential net model. The 

places are connected via transitions, each having a Boolean condition or gate condition. This 

condition is tested while the transition is enabled, i.e., when the preceding place is active. If 

the condition is true, the succeeding place becomes active, and the preceding place becomes 

inactive. Places for motion and computational actions have a unique output transition. 

Decision actions introduce conflict into the net. The choice can either be made non-

deterministically or may be controlled by some external signal or command from the upper 

level controller. Figure 6 shows a basic net structure with task selection. Figure 7 shows a 

net model with task selection and its corresponding VAL program [18], which is written 

using direct commands for the hardware robot controller and implies the lowest level 

detailed representation of the subtasks. 

 
Ready 
(Home) Selection 

Moving Moving Picking Placing 

Moving Moving Picking Inserting 

 

Figure 6. Basic structure of macro net model with task selection 
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MOVE     P1 
CLOSEI 
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<var1> = <var2> ? 
 
 
 
 
APPRO   P2, 100      APPRO   P3, 100 
MOVES   P2           MOVES   P3 
 
 
 
OPENI 
DEPARTS 150 
 

 

Figure 7. Example net model with task selection and robot language program 

Cooperation which requires the sharing of information and resources between the 

processes, is usefully introduced into the composite net which is simply the union of such 

sequential nets. Figure 8 shows two equivalent net representations of concurrent tasks with 
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synchronization. In Figure 9, a loop with no token implies that the net falls into a deadlock 

because of inconsistency with respect to transition firing. 

 

Figure 8. Net representations of basic structure of cooperation between two robots: (a) cyclic, (b) parallel 

 

Figure 9. (a) Example net which has a loop with no token, (b) parallel representation which indicates a 

deadlock situation 

3. Synchronization and coordination 

A net representation of cooperative operation using synchronization mechanism with 

permissive and inhibitive gate arcs is shown in Figure 10, where the shared transition 
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requires mutual synchronization between two tasks [19]. Synchronization of transitions is 

also employed for decomposition of a complex task into simple tasks cooperatively executed 

by two robots, as shown in Figure 11. 

 

 

Figure 10. Distributed implementation of synchronization between two machines 

 

Robot 1 

Robot 2 

 

Figure 11. Decomposition of a complex net into two simple nets using synchronization mechanism of 

transitions 

The decomposition procedure of a net is as follows. First, a new place is added in parallel to 

the input place of the decomposed transition. Then, transitions are added in the input and 

output of the two places. The input transition of the new place is a source transition. Each 

place exchanges internal gate signals to input and output transitions with the other place 
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when a token is in the place. The gate arcs are implemented using asynchronous 

communication between different robots.  

4. Net based multiple robot coordination 

A coordination task of carrying parts from a machining station to depository is considered 

as an example application using multiple robots. An arm robot picks up a part from the 

station and loads it into a mobile robot by which the part is sent to the storehouse. The arm 

robot is equipped with a visual sensor via which it can recognize the parts as well as their 

positions and also equipped with a force sensor which is necessary for grasping and loading 

the parts. On the mobile robot, a radio transceiver is used for its communication sending 

back feedback information from the sensors and receiving the control information from the 

main controller. The visual sensor is used for landmark recognition in the environment and 

infra-red sensors are used for obstacle avoidance. Figure 12 shows the arm robot and the 

mobile robot.  

 

 

Figure 12. View of experimental robot systems: (a) arm robot, (b) autonomous mobile robot with radio 

transceiver and visual sensor 

4.1. Task specification based on work flow 

Based on robot task level programming of the specified part flow, the coordination task of 

carrying parts from a machining station to depository is represented as a work flow graph 

for a part sequentially processed by the arm robot and the mobile robot．In the work flow 

graph, each node represents a place where any processing is performed on the part, while 

an arc represent physical processing such as picking, loading, transfer or machining. The 

work flow comprises the following three arcs as shown in Figure 13. 

(a) (b)
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1. picking from the station pallet by the arm robot 

2. loading into the mobile robot by the arm robot 

3. transfer from the station to the depository by the mobile robot 

Station Arm robot Mobile robot Depository  
Picking Loading Transfer 

 

Figure 13. Task specification based on work flow processed on parts  

The picking, loading, or transfer is specified using a local path in the neighborhood of the 

start and end place and a global path from the two places. Mutual exclusive resources or 

shared workspace such as buffers are also considered to avoid robot collision. The work 

flow diagram is transformed into a conceptual net model considering machines in charge of 

each processing. Figure 14 illustrates the net model of the coordination task between the two 

robots. At this point, associated processing such as object identification, alarm processing, 

exception handling is added. Then each processing is translated into detailed operations or 

actions. At each step of detailed specification, places of the net are substituted by a subnet in 

a manner which maintains the structural property such as liveness and safeness. 

Hierarchical decomposition assures detailed net models free from deadlock. 

 

Loading Picking 

Identification 

Waiting 
Movement
to station  

Movement to
depository  

Obstacle
avoidance 

Range 
sensors 

Home 

End of task 

Home 

(Arm robot) 

(Mobile robot) 

 

Figure 14. Net model of carrying task by two robots 

The conceptual coordination task is specified as follows. First, after the reception of a start 

command, in “Identification” place, the arm robot judges whether or not there are still parts 

in the station using the visual sensor. If not, the arm robot informs the mobile robot that the 
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task has been finished with “End of task” place and returns back to its home position. On 

the contrary, the arm robot starts to get the position of a part and grasp it. The mobile robot 

moves to the station, and the arm robot, after the completion of the “Grasp” subtask and the 

“Movement to station” subtask, starts “Loading” subtask while the mobile robot waits at the 

specified position. After the completion of loading, the mobile robot moves to the 

depository, and the arm robot executes the “Identification” subtask repeatedly. If the signal 

of “End of task” is on, the mobile robot returns back to its home position, and if not it moves 

to the station. From the “Movement to station” and “Movement to depository” places, the 

gate signal is sent to repeatedly execute the “Obstacle avoidance” subtask using infrared 

range sensors. In the coordination task, synchronization is represented as a shared transition 

which is implemented using a sequence of asynchronous communications as shown in 

Figure 10. 

4.2. Subtask control of arm robots 

For net based control of the arm robot, unit actions or motions should be defined in a task 

coordinate system. The trajectories can be free (point to point), straight or circular. The speed 

of forward movement of a trajectory is specified in the main coordinate of the task coordinate 

system. The movements in the other coordinates are compensated based on errors. At the end 

of a trajectory, it can be stopped or continued while turning the direction. When a trajectory is 

circular, the end-effector can have either of two orientations, that is, to the center of the circle 

or fixed. In the case of control of the end-effector, there are commands to represent the 

coordinate frames, open the hand, close the hand, and grasp. The grasp command assumes 

that the hand has a proximity sensor to autonomously grasp a workpiece in an appropriate 

direction. Synchronous actions by the arm and the wrist or sequences of unit actions by the 

arm, the wrist and the fingers are also specified using commands. The reference positions for 

arm movement are set by a separated teaching method, as well as desired positions of parts 

known at the programming time. The other positions relative to these positions are computed 

on-line. In this way, using these commands the final point and the trajectory of the motion 

can be specified in the task coordinate system. Figure 15 shows the block diagram of the 

trajectory tracking control in the task coordinate system.  

 Calculation of 

homogenous 

transformation

Calculation of 

main velocity 

vector 

Calculation of 

reference axis 

velocity vector

3-axis Cartesian 

control system 

Calculation of 

trajectory distance 

and errors 

Compensation 

gain 

Current position 

Reference position 

Main velocity 

 

Figure 15. Block diagram of 3-axis Cartesian coordinate arm control system 

The command system can be extended to execute actions specified based on information 

from the external sensors such as visual sensors, proximity sensors or slippage sensors. 
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Figure 14 shows the hardware structure of the microcontroller-based control system. The 

visual sensor detects the coordinates of the center of an object and the orientation of an edge 

of the object. The proximity sensors, which are composed of several LED arrays attached to 

the fingers can detect the distance and orientation of the object with respect to the planes of 

the fingers. For the grip command, the grip action raises the grip force till the signal from 

the slippage sensor becomes zero. When the hand is moving down vertically, if the signal 

from the slippage sensor rises inversely, then the hand is opened.  

 

CPU 1

CPU 2

Arm drive 

circuits 

Wrist drive 

circuits 

Hand sensors

circuits 

Hand drive 

circuits 

CPU 3

CCD camera

Capture board 

PC 

Teaching box

control circuit 

 

Figure 16. Block diagram of multi-axis arm control system 

When programming a specific task, the task is broken down into subtasks through task 

planning. These subtasks are composed of the position data and the programs that are 

edited using the robot motion simulator. Each subtask is represented as a place. A place can 

also represent the internal state of the robot, which is operating or idle, and the state of 

external devices. The relations of these places are explicitly represented by interconnections 

of transitions, arcs and gates that are edited with the robot task program editor and 

simulator. For places that represent subtasks, the following parameters are necessary: 1) the 

code of the controller such as the vehicle, arm, hand or sensor etc., that executes the subtask, 

2) the file name where the subtask such as MOVE, GRASP, RELEASE, or HOLD, etc., is 

explicitly written with some programming language, and 3) the file name of a set of position 

data that will be used to execute the subtask. The procedures of editing and simulating of 

the net model are done interactively until certain specifications are satisfied. At this point, it 

is expected that problems such as deadlock, conflict resolution, concurrency, 

synchronization, etc., have been well studied and analyzed. If some error is found, that is if 

the net model does not satisfy the specification, it can be easily amended by reediting the net 

model and simulating again. 



 
Petri Nets – Manufacturing and Computer Science 88 

4.3. Subtask control of mobile robots 

The decomposition of “Movement to station” place and the associated control structure are 

illustrated in Figure 17. In movement control of the mobile robot using state feedback based 

on pose sensors, the robot’s planning task is reduced to setting some intermediate positions 

(subgoals), with respective control modes, lying on the requested path. The global path 

planner in the trajectory controller determines a sequence of subgoals to reach the goal. 

Given a set of subgoal locations, the target tracking controller plans a detailed path to the 

closest subgoal position only and executes this plan. In the target tracking control, the 

distance between the robot and the specified target position and the angle between the 

forward direction and the target is computed based on the current location detected by the 

internal pose sensors (accelerators and gyros) and the current target. And then, the reference 

tangent and angular velocities of the mobile robot is determined to meet the target tracking 

using a state feedback algorithm, and the reference wheel velocities are computed based on 

inverse kinematics. The new velocity setpoints are sent to the respective wheel velocity 

controller, which executes proportional plus integral control of its wheel velocity using the 

rotary encoder. 

 

Moving3Moving1 Moving2

Movement
to pallet  

(Wheel velocity control)

(Trajectory control)

(Target tracking control 
with inverse kinematics)

Right wheel

Left wheel

DC motors

Rotary encoders 

Pose sensors 
(accelerators, 
gyros) 

Visual sensors 

subgoal

reference velocity

Global 
map 

Local 
map 

Global path planner   Local path planner

  

Figure 17. Hierarchical decomposition of net model of mobile robot control system 



 
Implementation of Distributed Control Architecture for Multiple Robot Systems Using Petri Nets 89 

In case of detection of a blockage on the intended path, the trajectory controller receives a 

failure notification from the visual sensor, then modifies the subgoals and the short term 

local knowledge of the robot’s surroundings and triggers the target tracking in view of this 

change to the local environment knowledge. The trajectory controller has the dynamic map 

with global and local representation that becomes more accurate as the robot moves. Upon 

reaching this subgoal location, its local map will change based on the perceptual 

information using the PSD data extracted during motion. Then the target tracking controller 

triggers the local path planner to generate a path from the new location to the next subgoal 

location. When the lowest-level wheel velocity control fails to make progress, the target 

tracking controller attempts to find a way past the obstacle by turning the robot in position 

and trying again. The trajectory controller decides when and if new information integrated 

into the local map can be copied into the global map. 

The current subgoal and current location are shared by the trajectory controller and the 

target tracking controller. In the coordinator program, a place is assigned to each shared 

variable to be protected from concurrent access. Mutual exclusive access to a shared variable 

is represented by a place, which is identical to the P and V operations on the semaphore, as 

shown in Figure 18. 

Target tracking controller

Trajectory controller

 

Figure 18. Net representation of mutual exclusive access  

If a time-out in real-time control, communication, or sensing data acquisition, is brought 

about, an alarm signal is sent to the upper controller. When an alarm is processed, a signal is 

sent to stop any active controller. These signals are implemented by places, as shown in 

Figure 19. If the final goal is reached, the target tracking controller sends an “End” signal to 

the trajectory controller, which then sends end signals to the rest of the system. 

 Trajectory controller

Target tracking 
controller 

 

Figure 19. Net representation of signaling between controllers 
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5. Implementation of net based control system 

Based on net models, a programming and execution system is implemented. A whole task is 

edited with a net based robot task program editor and simulator. In parallel, a robot motion 

simulator is used to edit the subtask programs. Using these systems, the net program file, 

the sequence program file, and the position data file are created and used by the multi-robot 

controller to execute the coordination task. A schematic of the functions of the robot 

programming system is illustrated in Figure 20. The connections of the robots and devices 

with PC are shown in Figure 21. 

 

Robot motion 
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Figure 20. Structure of the robot programming system 
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Figure 21. Connections of robots and devices with PC 

The geometric data of the robot and workspace are specified using the length of the links 

of the robot, the geometric parameters of workpiece as well as input and deletion 

positions, and the form of the end-effector. The simulator constructs the three 

dimensional model of the robot and the workspace. The numerical data of the joint angles, 

absolute position and orientation of the robot are displayed on the terminal. The operator 

inputs the sequence of unit motion commands and position data. Then, the motion data 

are computed with consideration to the geometric parameters of the robots and 

workpieces. The net model file, the subtask program files and position data files are 

simulated with the robot task program editor and simulator and robot motion simulator 

respectively to test the programs and data that will be used to control the robots. The 

robot behavior is displayed graphically on a terminal step by step. Then the completed net 
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model is transformed into the tabular form, and these files are loaded into the multi-robot 

controller that executes the programs. Example views of 3D graphic simulation of the arm 

robot and the mobile robot are shown in Figure 22. The flow chart of the net based 

programming method of multi-robot tasks using the separated teaching method is shown 

in Figure 23. 

 

 

Figure 22. View of 3D graphic simulation of (a) arm robot and (b) mobile robot 

 Start 

Edit net based task program 

Change position data ? 
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Compute transformation matrix 

Simulate the net model with graphic motion simulator 
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Teach position data 

No 

Modify position data 

End 
 

Figure 23. Flow chart of net based programming method using separated teaching method 

(a) (b)
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The multi-robot controller accomplishes the specified task by executing the net model 

constructed above. Unit actions in a net model used for lowest level controllers are defined 

in a specified task space, where the action is executed. In the control software the position 

and orientation in the task space is transformed to the robot coordinate system using the 

homogeneous transformation matrix. The controller coordinates and supervises the 

individual controllers based on information explicitly represented by places, place 

parameters, transitions, arcs, and gates. That is, when a token enters a place that represents a 

subtask, immediately the controller defined by the control code is informed to execute the 

subtask with a specified data. Because of the proper nature of the Petri net, the designer can 

easily create a multi-robot task program which is free of logical errors. The method acts as a 

programming method on the coordination level and on the organization level [20]. That is, 

the Petri net is applied as a tool to the operator who plans the multi-robot task, and by 

executing the net model the individual hardware controllers are regulated and supervised. 

If, before moving the real robot, the outputs of the robot controller are linked with the 

graphic robot motion simulator, the whole task programmed can be tested off-line. When 

the task specification is required to be changed, the net model can be modified on-line. 

6. Conclusions 

It was confirmed that the multi-robot controller developed based on tasks programmed in 

the net form controls the equipment according to the programmed net model. The method 

provides concurrent movement of all robots and machines in the system, and it provides 

synchronization commands to allow coordination of their movements to accomplish user 

defined tasks. The commands used by this system are not based on any specific existing 

robot language. So, the method can be used in any real robot by translating it to the 

appropriate robot language, and it acts as a programming tool on the coordination level and 

on the organization level in multiple robot systems. 
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