
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 9

© 2012 Martiník, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Sequential Object Petri Nets and the Modeling

of Multithreading Object-Oriented

Programming Systems

Ivo Martiník

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48470

1. Introduction

Sequential object Petri nets are the newly introduced class of Petri nets, whose definition is

the main topics of this article; they feature certain original concepts and can be successfully

used at a design, modeling and verification of multithreading object-oriented programming

systems executing in highly-parallel or distributed environment. In this article basic

characteristics of sequential object Petri nets are very briefly presented including

possibilities in their definition of newly introduced tokens as non-empty finite recursive

sequences over the set of non-negative integer numbers, functionalities of multiarcs and the

mechanism of the firing of transitions. These properties significantly increase modeling

capabilities of this class of Petri nets at the modeling of multithreading object-oriented

programming systems. Sequential object Petri nets can be used also in the area of recursive

algorithms modeling and they are also the initial step to explicitly represent paradigms of

functional programming. The fusion of object-oriented and functional programming enables

to express new kinds of programming patterns and component abstractions.

The theory of sequential object Petri nets proceeds from the theories of various types of Petri

nets, starting with Place/Transition nets (Diaz, 2009) and their sub-classes, followed by

High-Level nets (Jensen & Rozenberg, 1991), (Reisig, 2009) such as Predicate-Transition nets

and Coloured nets (Jensen & Kristensen, 2009), enabling to model apart from the

management structure of the system even data processing, and in connection with modeling

of object-oriented programming systems it is Object nets (Agha et. al., 2001), (Köhler &

Rölke, 2007), which are being studied lately. But practical usability of Petri nets (in their

original form) in the role of the parallel programming language is mainly impeded by the

static nature of their structure. They are missing standard mechanisms for description of

methods alone, programming modules, classes, data types, hierarchical structures, etc.

Petri Nets – Manufacturing and Computer Science 196

Positive characteristics of Petri nets demonstrate only in not too much large-scale modules

at high abstraction level. That is why Petri nets are often understood as the theoretical

abstract module only, whose applicability for design, analysis and verification of extensive

programming systems is limited. Therefore, this article briefly describes a special class of

sequential object Petri nets and its possibilities of multithreading object-oriented

programming systems modeling, which eliminates the stated shortcomings required for

design, analysis and verification of these systems in several directions.

This chapter is arranged into the following sections: in the section 2 is described the term of

the sequence over the finite set and its properties which denominates the class of the

sequential object Petri nets; section 3 explains the base term of this chapter, ie. sequential

object Petri net and its properties; section 4 explains in details implementation of the

mechanism of firing of transitions in a sequential object Petri net; section 5 then discusses

the area of object-oriented programming systems and their representation by the sequential

object Petri nets; section 6 explains the example of simple class hierarchy represented by the

sequential object Petri net and it is inspired by the several base classes of the Java

programming language class hierarchy. Finally, the section 7 gives the conclusions of the

research to conclude the chapter.

2. Sequences and their properties

Prior to the formal introduction of the term of sequential object Petri net, we present the

definition of sequence over the finite set from which the denomination of this class of Petri

nets has been derived. N denotes the set of all natural numbers, N0 the set of all non-

negative integer numbers, P(A) denotes the family of all the subsets of given set A.

Let A be a non-empty set. By the (non-empty finite) sequence σ over the set A we

understand a mapping σ: {1, 2, …, n}  A, where n  N. Mapping ε:   A is called the

empty sequence over the set A. We usually represent the sequence σ: {1, 2, …, n}  A by the

notation σ = <a1, a2, …, an> of the elements of the set A, where ai = σ(i) for 1 ≤ i ≤ n. We also

consider any element of the set A as the sequence over the set A, ie. mapping σ:{1}  A.
Empty sequence ε:   A over the set A we usually represent by the notation ε = <>. We

denote the set of all finite non-empty sequences over the set A by the notation ASQ, the set of

all finite (and possible empty) sequences over the set A by the notation AESQ.

Note also, that the set A can be any non-empty set, which means that it can be also the non-

empty set of sequences over some non-empty set B, ie. A = BESQ. Thus member of the

sequence over the set BESQ can be then another sequence over the set B. This fact thus also

similarly allows sequences over the sets (BESQ)ESQ, ((BESQ)ESQ)ESQ, etc. The term of sequence

over some non-empty set has thus recursive character and every such sequence can consists

from subsequences consisting from subsequences etc. We denote the set of all finite non-

empty sequences without the empty subsequences over the union of sets A, ASQ, (ASQ)SQ,

((ASQ)SQ)SQ, … by the notation ARQ, the set of all finite (and possible empty or with empty

subsequences) sequences over the union of sets A, AESQ, (AESQ)ESQ, ((AESQ)ESQ)ESQ, … by the

notation AERQ.

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 197

The length of the sequence σ = <a1, a2, …, an>, where σ  AERQ, n  N, is equal to the natural

number n, the length of the empty sequence ε is equal to the number 0. The length of the

sequence σ we represent by the notation length(σ), or @σ, the set of all the elements of the

sequence σ we represent by the notation elem(σ), ie. elem(σ) = {ai | ai = σ(i) for 1 ≤ i ≤ n}, elem(ε)

= . The subsequences of the sequence σ is the mapping subsq: AERQ  P(AERQ), such that

for i, 1 ≤ i ≤ n: ((σ  subsq(σ))  (((ai == ε)  (ai  A))  ai  subsq(σ))  (((ai != ε)  (ai  A)) 

((ai  subsq(σ))  (subsq(ai)  subsq(σ))). The members of the sequence σ is the mapping

memb: AERQ  P(A), so that memb(σ) = {a | (a  subsq(σ))  (a  A)}, memb(ε) = .

If σ = <a1, a2, …, an> and τ = <b1, b2, …, bm> are the finite sequences, where σ  AERQ, τ  AERQ,

n  N, m  N, then by the concatenation of the sequences σ and τ, denoted by στ, we

understand the finite sequence στ = <a1, a2, …, an, b1, b2, …, bm> and its length is equal to n +
m. We say, that the sequences σ and τ are equal, denoted by σ == τ, if the following is

simultaneously true: (n = m)  (i, 1 ≤ i ≤ n: (((ai = ε)  (bi = ε))  ((ai  A)  (bi  A)  (ai = bi)) 

((ai ≠ ε)  (bi ≠ ε)  (ai  A)  (bi  A)  (ai == bi)))).

If, for instance, τ  AERQ, τ = <<a, <a, b>>, <a, <c>, b>, <>>, then length(τ) = 3, elem(τ) = {<a, <a,

b>>, <a, <c>, b>, <>}, subsq(τ) = {<<a, <a, b>>, <a, <c>, b>, <>>, <a, <a, b>>, <a, <c>, b>, <a, b>,

<a>, , <c>, <>} and memb(τ) = {a, b, c}.

When operating with sequences, notation in the form of n*(σ) can be utilized, where σ 
AERQ, n  N. Informally, that notation expresses sequence consisting of n concatenations of

the sequence σ. If, for example A = N0, σ = <1, 2>, then notation 3*(σ) represents the sequence

3*(<1, 2>) == <1, 2><1, 2><1, 2> == <1, 2, 1, 2, 1, 2>.

Multiset M over a non-empty set S is a function m: S  N0. By the non-negative number

m(a)  N0, a  S, we denote the number of occurrences of the element a in the multiset m. We

usually represent the multiset m by the formal sum ()`
a S

m a a

 . By SMS we denote the set of all

non-empty multisets over the set S, by SEMS we denote the set of all multisets over the set S.

IDENT denotes the set of all identifiers and it is understood to be a set of non-empty finite

sequences over the set of all letters of the selected national alphabet and the set of all decadic

digits that starts with a letter. Identifiers are recorded in a way usual for standard

programming languages. Examples of correctly formed identifiers for example involve the

thread, var22, , etc. On the contrary, for example sequences 2main, first goal, _input, are

not identifiers. Moreover is it true, that if ID1, ID2, …, IDn  IDENT, where n  N, n > 1, then

we call the sequence in the form ID1.ID2. … .IDn compound identifier (i.e. for example the

sequence Main.Thread.Variable1 is a compound identifier). #IDENT set is understood to be

the set of all non-empty finite sequences in the form #A, where A  IDENT. Then, elements

of #IDENT set for example include sequences #thread, #var22, #, etc.

The set (N0)RQ we will denote by the symbol Tokens. The set ArcSeq (arc sequences) is defined

by the following:

i. if x  (IDENT  #IDENT), then <x>  ArcSeq,

ii. if x  Tokens, then x  ArcSeq,

Petri Nets – Manufacturing and Computer Science 198

iii. if x  ArcSeq, then <x>  ArcSeq and also <length(x)>  ArcSeq,

iv. if x  ArcSeq and y  ArcSeq, then xy  ArcSeq,

v. if n  (IDENT  N) and x  ArcSeq, then n*(x)  ArcSeq.

The elements of Tokens set for example involve sequences <1>, <22, <0, 0>>, <<3, 2>, <4, <7,

8>>>, etc.). The set of arc sequences ArcSeq is, informally said, the set of non-empty final

recursive sequences over the set (IDENT  #IDENT  Tokens) which do not contain empty

subsequences and which can contain as their members even selected operations over those

recursive sequences, between which is the determination of the recursive sequence length

and concatenation of recursive sequences. So examples of elements of the set ArcSeq can be

sequences <a, b, 1>, <#s, @(s), <1, <2, 3>>>, <a, thread, a*(<thread>), <1, 0>>, etc.

Let AS  ArcSeq, AS = <a1, a2, …, an>, where n  N. Then the mapping variables: ArcSeq 

P(IDENT  #IDENT  N0) is defined so that for AS  ArcSeq i, 1 ≤ i ≤ n:

i. if ai  (IDENT  #IDENT), then ai  variables(AS),

ii. if ai  Tokens, then memb(ai)  variables(AS),

iii. if ai = <x>, where x  ArcSeq, then variables(x)  variables(AS),

iv. if ai = length(x), where x  ArcSeq, then variables(x)  variables(AS),

v. if ai = xy, where x  ArcSeq and y  ArcSeq, then (variables(x)  variables(AS)) 

(variables(y)  variables(AS)),

vi. if ai = n*(x), where n  (IDENT  N) and x  ArcSeq, then (n  variables(AS)) 

(variables(x)  variables(AS)).

Thus mapping variables assigns to each arc sequence AS  ArcSeq, AS = <a1, a2, …, an>, where

n  N, the set of members from the sets IDENT, #IDENT a N0 contained in it. The set of

variables(AS) associated with a particular arc AS will be identified in the text by the term

variables of the arc sequence AS. So if for example AS = <a, thread, a*(<thread>), <1, 0>>,

then variables(AS) = {a, thread, 1, 0}.

3. Sequential object Petri nets and their properties

Sequential Object Petri Net is an ordered pair SOPN = (, PN), where

i.  is a finite non-empty set of pages,

ii. PN is a page number function, PN:   N, that is injective.

By elements of the finite non-empty set  of pages we routinely mark identifiers from the set

IDENT. Injective function PN of numbering of pages of the net assigns to each page of

sequential object Petri net SOPN the unique natural number within the net.

Let SOPN = (, PN) is a sequential object Petri net. Page of the sequential object Petri net

SOPN is an ordered touple PG = (P, IP, OP, T, A, MA, IOPN, AF, MAF, TP, IPF, OPF, SP, IF),

PG  , where:

i. P is a finite set of places,
ii. IP is a finite set of input places, P  IP = ,

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 199

iii. OP is a finite set of output places, P  OP = ,
iv. T is a finite set of transitions, (P  IP  OP)  T = ,
v. A is a finite set of arcs, A  ((P  IP)  T)  (T  (P  OP)),
vi. MA is a finite set of multiarcs, MA  ((P  IP)  T)  (T  (P  OP)), A  MA = ,
vii. IOPN is a function of input and output place numbers, IOPN: (IP  OP)  N, that is

injective,

viii. AF is an arc function, AF: (A  MA)  ArcSeq,

ix. MAF is a multiarc function, MAF: MA  ArcSeq,
x. TP is a function of transition priorities, TP: T  N,

xi. IPF is an input place function of multiarcs, IPF: (T  (P  OP))  AIP, where (T  (P 
OP))  MA, AIP = {p |  γ   : p  IP  γ},

xii. OPF is an output place function of multiarcs, OPF: ((P  IP)  T)  AOP, where ((P 
IP)  T)  MA, AOP = {p |  γ   : p  OP  γ},

xiii. SP is a finite set of subpages, SP  ,
xiv. IF is an initialization function, IF: (P  IP  OP)  TokensEMS.

The finite set of places P is used for expressing of conditions of a modeled programming

system and in the net layout we notate them with circles. IP is a finite set of input places

of the net page representing its input interface. Additionally, no input place of the net

page can be identical with any of its places. Input places are represented in the page

layout with circles of highlighted upper semicircle. Then, OP is a finite set of output

places of the net page representing its output interface. Additionally, no output place of

the net page can be identical with any of its places. The definition admits even such

possibility that the selected input place is identical with any of output places of the given

net page. Output places are represented in the net page layout with circles of highlighted

lower semicircle.

Likewise the finite set of transitions T is used for describing events in the programming

system and we notate them with rectangles. That set is disjoint with the set of places P of

the given net page. A is the finite set of arcs being principally oriented while connecting

the place with transition or transition with place and in the layout of net we represent

them by oriented arrows drawn in full line. It is worth considering that none of output

arcs of any transition can be associated with any input place of the net page, and none of

input arcs of any transition can be associated with any output place of the net page. MA is

finite set of multiarcs, newly introduced type of arc in sequential object Petri nets.

Functionalities of multiarc are used for the modeling of synchronous and asynchronous

calling of methods in the given programming system and they follow the principles of the

multiarcs in the bi-relational P/T Petri nets (Martiník, 2011). Multiarcs are represented in

layouts of the net with oriented arrows drawn with dash line. The set of arcs of the given

page is disjoint with the set of its multiarcs, hence it is not allowed the existence of the

ordered pair (place, transition) or (transition, place) connected by both types of oriented

arcs.

IOPN function of the identification of input and output places of the net page assigns to

each input and output place of the particular net page unique natural number which is

Petri Nets – Manufacturing and Computer Science 200

used at the implementation of mechanism of execution of transitions associated with

multiarcs of the net page. With each arc or multiarc of the net page is associated the value

of its arc function AF, which assigns to each arc or multiarc (one) arc sequence, i.e. the

element of ArcSeq set. With each multiarc of the net page is additionally associated the

value of its multiarc function MAF, which assigns to each such multiarc (one) arc

sequence, i.e. the element of ArcSeq set. The layout of the net page shows values of AF

and MAF functions associated with particular multiarc in the form AF | MAF. With all

transitions of the net page are associated values of their functions of transition priorities

TP assigning each transition with (the only) value of such transition priority, which is the

value of a certain natural number. If the value of function of transition priorities is not

explicitly indicated in the net layout with the particular transition, we assign it to the

value of natural number 1.

The input place function of multiarcs IPF assigns each multiarc of the net page connecting

ordered pair (transition, place) a certain input place of the selected net page. The definition

admits even the possibility of assigning the selected multiarc of the particular net page with

some of the input places of the same net page (ie. it is allowed to model recursive methods).

The particular input place p of the selected net page γ (γ  ) is in the layout of network

identified by ordered pair of natural numbers (PN(γ), IOPN(γ.p)), where the first member of

the pair indicates the value of page number function PN and the second member of the pair

identifies the selected input place p on the net page γ with the particular value of function

IOPN. We present this ordered pair in layouts of net pages usually in the form

PN(γ).IOPN(γ.p). The output place function of multiarcs OPF assigns each multiarc of the net

page connecting the ordered pair (place, transition) with a certain output place of the selected

net page. The definition again admits the possibility of assigning to the selected multiarc of the

given net page some of the output places of the same net page. The particular output place p of

the selected net page γ is marked in a similar way as in case of the function IPF.

A part of each net page can be the finite set SP of its subpages, which are by themselves the

net pages (i.e. elements of the set ). Initialization function IF assigns each place including

input and output places of the net page with a multiset of tokens. That function is also

identified in literature as M0. We routinely mark identifiers from the set IDENT by elements

of the set of places, input places, output places and transitions.

Figure 1 shows the sequential object Petri net SOPN = (, PN), where  = {Main, Sub}, PN =
{(Main, 1), (Sub, 2)}. Net page of this sequential object Petri net Main = (P, IP, OP, T, A, MA,
IOPN, AF, MAF, AP, IPF, OPF, SP, IF), where P = {P1, P2}, IP = {in}, OP = {In}, T = {T1, T2}, A
= {(in, T1), (P1, T1), (T2, In)}, MA = {(T1, P2), (P2, T2)}, IOPN = {(in, 1), (In, 2)}, AF = {((in,

T1), <a>), ((P1, T1), <b, 1>), ((T1, P2), <a>), ((P2, T2), <a>), ((T2, In),)}, MAF = {((P2, T2),

), ((T1, P2), <b,1>)}, TP = {(T1, 1), (T2, 1)}, IPF = {((T1, P2), (2.1))}, OPF = {((P2, T2), (2.2))},
SP = , IF = {(in, 1`<1>), (P1, ), (P2, ), (In, )}. Net page Sub = (P, IP, OP, T, A, MA, IOPN,
AF, MAF, AP, IPF, OPF, SP, IF), where P = , IP = {start}, OP = {Start}, T = {T1}, A = {(start,

T1), (T1, Start)}, MA = , IOPN = {(start, 1), (Start, 2)}, AF = {((start, T1), <c, 1>), ((T1, Start),

<c>)}, MAF = , TP = {(T1, 1)}, IPF = , OPF = , SP = , IF = {(start, ), (Start, 1`<3>)}.

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 201

Figure 1. Sequential object Petri net

If page_identifier is the identifier of the selected net page and element_identifier is the

identifier of a place, input place, output place or transition of the net page, we call the

compound identifier in the form page_identifier.element_identifier so called distinguished

identifier of the element of net page, which uniquely identifies it within the given sequential

object Petri net. Designs of distinguished identifiers of subpages of the net and of its elements

can be also executed for cases of sub subpages of the net pages, etc.

For the sake of better transparency we will not indicate in layouts of nets explicit values of

page number function PN, and explicit values of function of input and output place

numbers IOPN of identification of input and output places of individual net pages any

more. Moreover, we will not indicate values of functions IPF and OPF of particular

multiarcs in the form of a.b pair of natural numbers, but in the form of the pair of identifiers

page.ioplace, where page   is the net page and ioplace  IP  page, perhaps ioplace 

OP  page is particular input, or output place of the net page while it holds that a =

PN(page) and b = IOPN(page.ioplace).

Layouts of sequential object Petri nets are usually further adjusted in the sense of

notations of declarations of headings of methods and their calling within the text of the

program, similarly as shown in Figure 2. Here, identifiers of input and output places of

the net pages are complemented by (informative) notation of the shape of tokens, which

are accepted by those input and output places (see the notation of the input places

Main.in<a>, Sub.start<c, 1> and of the output places Main.In, Sub.Start<c>). We will

not record values of functions AF and MAF in the form of the ordered pair separated by |

line any more. The value of the arc function AF is indicated separately and the value of

the multiarc function MAF is indicated behind the value of the input place function IPF on

the net page, perhaps with a value of the output place function OPF of particular multiarc

(see notation Sub.start<b, 1> and Sub.Start of the net page Main) in the sense of

declaration of calling of methods with the entry of values of input parameters or output

values of these methods.

Petri Nets – Manufacturing and Computer Science 202

Figure 2. Sequential object Petri net

Let SOPN = (, PN) is a sequential object Petri net, PG   is its net page. By the marking M
of the net page PG we understand the mapping M: (P  IP  OP)  TokensEMS, where P 

PG, IP  PG, OP  PG. By the marking of the net SOPN we understand the marking of all its

net pages.

Let SOPN = (, PN) is a sequential object Petri net, PG   is its page. Then:

i. by InputArcs(x) we denote the set of all input arcs of selected place, output place or

transition x, ie.  x  (P  OP  T)  PG: InputArcs(x) = {a  A |  y (P  IP  T): a =
(y, x)}.

ii. by InputMultiArcs(x) we denote the set of all input multiarcs of selected place, output

place or transition x, ie.  x  (P  OP  T)  PG: InputMultiArcs(x) = {a  MA |  y (P
 IP  T): a = (y, x)}.

iii. by InputNodes(x) we denote the set of all input nodes of selected place, output place or

transition x, ie.  x  (P  OP  T)  PG: InputNodes(x) = {y  (P  IP  T) |  a  (A 
MA): a = (y, x)}. We denote the set InputNodes(x) by x.

iv. by OutputNodes(x) we denote the set of all output nodes of selected place, input place or

transition x, ie.  x  (P  IP  T)  PG: OutputNodes(x) = {y  (P  OP  T) |  a  (A
 MA): a = (x, y)}. We denote the set OutputNodes(x) by x.

v. by TransitionInputVariables(x) we denote the set of all variables included in the values of

arc functions AF (resp. multiarc functions MAF) of all the input arcs and multiarcs of

the transition x, ie. x  T  PG: TransitionInputVariables(x) = {v | ((v  variables(AF(y)) 

(v  variables(MAF(y)))  ((y  InputArcs(x))  (y  InputMultiArcs(x)))}.

4. Firing of transitions in sequential object Petri nets

An important term used at the implementation of the mechanism of firing of transitions in a

sequential object Petri net is the term of binding of the arc sequence contained in the value

of AF, or MAF, function of the particular arc, or multiarc, to the token found at a certain

marking of the net page in the place associated with this arc (for short, we will refer to that

in the text also as binding of token).

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 203

Let T  Tokens, T = <t1, t2, …, tn>, where n  N, AS  ArcSeq. We denote, that there exists

input binding of the arc sequence AS to the token T, if there exists mapping InputBind: AS

 T that satifies the following:

i. If AS = <a1, a2, …, an>, where a1, a2, …, an  (IDENT  #IDENT  N0), then:

a. if ai  (IDENT  #IDENT) for 1 ≤ i ≤ n, then InputBind(ai) = ti,

b. if ai  N0 for 1 ≤ i ≤ n, then (InputBind(ai) = ti)  (ai = ti),

c.  u  variables(AS)  v  variables(AS): ((u = v)  (InputBind(u) == InputBind(v))).

ii. If AS = <a1, a2, …, ak-1, ak, ak+1, …, am>, where m < n, 1 ≤ k ≤ m, ak  #IDENT, a1, …, ak-1,
ak+1, …, am  (IDENT  N0), m  N, then:

a. InputBind(ak) = <tk, tk+1, …, tk+n-m>,

b. if ai  IDENT for 1 ≤ i ≤ k-1, then InputBind(ai) = ti,

c. if ai  IDENT for k+1 ≤ i ≤ m, then InputBind(ai) = tn-m+i,

d. if ai  N0 for 1 ≤ i ≤ k-1, then (InputBind(ai) = ti)  (ai = ti),

e. if ai  N0 for k+1 ≤ i ≤ m, then (InputBind(ai) = tn-m+i)  (ai = tn-m+i),

f.  u  variables(AS)  v  variables(AS): ((u = v)  (InputBind(u) == InputBind(v))).

iii. In other case the mapping InputBind is not defined.

Then, input binding of the arc sequence AS to the token T via mapping InputBind: AS  T

can be successfully realized in the following two cases:

i. Arc sequence is in the form AS = <a1, a2, …, an>, where n  N, i.e. it holds that length(AS)

= length(T) = n, while generally more than one of elements a1, a2, …, an of that sequence

can be the element of the set #IDENT. Then, at the input binding of the arc sequence AS

to the token T we execute, informally said, binding of mutually corresponding elements

of sequences according to their order. If an element ai of the arc sequence AS is a

nonnegative integer, then such element must be bound to single-element ti of token T,

where 1 ≤ i ≤ n, which is also nonnegative integer and the value of both those numbers

must be identical. If u and v are two identical variables of the arc sequence AS, then the

values of elements of the token T bound to them must be identical. Figure 3 shows a

very simple example of input binding of the arc sequence AS = <1, a, a, #c, 3> to the

token T = <1, 10, 10, 2, 3>:

Figure 3. Binding of arc sequence to token

ii. Arc sequence is in the form AS = <a1, a2, …, ak-1, ak, ak+1, …, am>, where m  N, holds that

length(AS) < length(T), i.e. m < n, and at the same time just a single element ak 

#IDENT, where 1 ≤ k ≤ m. Then, that only element ak is bound to the sequence <tk,
tk+1, …, tk+n-m> of elements of the token T. In binding of other elements of the sequence AS

the same rules hold as it was in the case of (i). An example of that type of binding of the

arc sequence AS = <x, #y, 5, z> (and thus element a2  #IDENT) to the token T = <4, 8, 10,

2, 5, 19> is shown in Figure 4.

Petri Nets – Manufacturing and Computer Science 204

Figure 4. Binding of arc sequence to token

Next examples of the arc sequences binding to tokens in a sequential object Petri net involve:

 arc sequence <a, a, 1> can be successfully bound to token <2, 2, 1>, where InputBind(a) =

2, InputBind(1) = 1,

 arc sequence <a, a, 1> cannot be successfully bound to token <1, 2, 3> (it would hold that

InputBind(a) = 1 and InputBind(a) = 2),

 arc sequence <#x> can be successfully bound to token <1, 2, 3>, where InputBind(#x) = <1,

2, 3>,

 arc sequence <x, #y> can be successfully bound to token <1, 2, 3>, where InputBind(x) =

1, InputBind(#y) = <2, 3>,

 arc sequence <x, y> can be successfully bound to token <<1, 2>, <3, 3>>, where

InputBind(x) = <1, 2>, InputBind(y) = <3, 3>,

 arc sequence <x, #y> can be successfully bound to token <<1, 2>, <3, 3>, 4>, where

InputBind(x) = <1, 2>, InputBind(#y) = <<3, 3>, 4>.

Let SOPN = (, PN) is a sequential object Petri net, PG   is a net page, t  T is a transition

of the net page PG, p  t  (P  IP) is a place or input place of the net page PG, q  t  (P
 OP) is a place or output place of the net page PG, M is a marking of the net SOPN.

Transition t is enabled in the marking M of the net SOPN, if:

i.  (p, t)  (InputArcs(t)  InputMultiArcs(t))  InputBind: AF(p, t)  e, where e  M(p),

ii.  (p, t)  InputMultiArcs(t)  InputBind: MAF(p, t)  e, where e  M(OPF(p, t)),
iii.  u  TransitionInputVariables(t)  v  TransitionInputVariables(t):

((u = v)  (InputBind(u) == InputBind(v))).

If transition t is enabled in the marking M of the net SOPN, we record that fact symbolically

in the form of t en M.

Let AS = <a1, a2, …, an>  ArcSeq, n  N. If transition t is enabled in the marking M of the net

SOPN, then we say, that there exists partial mapping OutputBind: ArcSeq  Tokens, if

OutputBind(AS) = OB(a1) OB(a2) … OB(an)

where OB: ArcSeq  Tokens and i, 1 ≤ i ≤ n:

a. OB(ai) = <InputBind(ai)>, if ai  IDENT,

b. OB(ai) = InputBind(ai), if ai  #IDENT,

c. OB(ai) = ai, if ai  Tokens,

d. OB(ai) = <OB(x)>, if ai = <x>, where x  ArcSeq,

e. OB(ai) = <@(OB(x))>, if ai = @(x), where x  ArcSeq,

f. OB(ai) = OB(b1) OB(b2) … OB(bk), if ai = b1 b2 … bk, where b1, b2, …, bk  ArcSeq, k  N,

g. OB(ai) = OB(b)*(OB(x)), if ai = b*(x), where b  (IDENT  N0), x  ArcSeq.

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 205

Thus transition t on the net page PG of the net SOPN is enabled, if the following is satisfied:

i. for all the input arcs (p, t), resp. input multiarcs (p, t), of the transition t there exists

input binding of the value of the arc function AF(p, t) to some token e in the place p of

the marking M,

ii. for all the input multiarcs (p, t) of the transition t there exists input binding of the value

of the multiarc function MAF(p, t) to some token e in the output place of the net page

that is given by the value of the output place function OPF of the multiarc (p, t) in the

net marking M,

iii. if u and v are two equal variables of the set TransitionInputVariables(t), then the values of

elements (resp. subsequences) bound by them in the frame of mapping InputBind must

be equal.

Figure 5 shows the fragment of sequential object Petri net in its marking M and the

construction of the mapping InputBind: AF(P1, T1)  <2, 0>, where <2, 0>  M(P1) and

InputBind: AF(P2, T1)  <1, 1, 1>, where <1, 1, 1>  M(P2). It is easily to find that transition

T1 is enabled.

Figure 5. Mapping InputBind in sequential object Petri net

Partial mapping OutputBind: ArcSeq  Tokens is for the given transition t of the net page

realized only in case that the transition t is enabled in the marking M of the net. Hence,

partial mapping OutputBind assigns the selected arc sequence AS the token, being the

element of the set of all Tokens (i.e. that token is not generally located in any of places of the

net SOPN in its current marking M). The definition assumes that arc sequence AS is

generally in the form AS = <a1, a2, …, an>, n  N. The value OutputBind(<a1, a2, …, an>), which

is generally the element of the set Tokens, is given by concatenation of sequences in the form

OB(a1) OB(a2) … OB(an), while individual values OB(ai) are for 1 ≤ i ≤ n determined according

to specified rules.

Regarding recursive nature of the partial mapping OutputBind we will include several

examples of binding of the arc sequences to elements of the set Tokens. Let us assume in all

cases that a certain sequential object Petri net SOPN is given containing the transition T,

whose set of input variables TransitionInputVariables(T) = {a, b, c, x, #x} and in certain

Petri Nets – Manufacturing and Computer Science 206

marking M of the net SOPN there exists binding of those input variables given as follows:

InputBind(a) = 10, InputBind(b) = 2, InputBind(c) = <<1, 1>, 3>, InputBind(x) = <1, 2, 3>,

InputBind(#x) = <1, 2, 3>. In the following examples we will investigate values of partial

mapping OutputBind applied to various values of the arc sequence AS.

 if AS = <a>, then OutputBind(<a>) = OB(a) = <InputBind(a)> = <10>.

 if AS = <c, 1>, then OutputBind(<c, 1>) = OB(c) OB(1) = <InputBind(c)><1> = <<<1, 1>,

3>><1> = <<<1, 1>, 3>, 1>.

 if AS = <x, a, 5>, then OutputBind(<x, a, 5>) = OB(x) OB(a) OB(5) =

<InputBind(x)><InputBind(a)><5> = <<1, 2, 3>><10><5> = <<1, 2, 3>, 10, 5>.

 if AS = <#x, a, 5>, then OutputBind(<#x, a, 5>) = OB(#x) OB(a) OB(5) =

InputBind(#x)<InputBind(a)><5> = <1, 2, 3><10><5> = <1, 2, 3, 10, 5>.

 if AS = <b*(#x)>, then OutputBind(<b*(#x)>) = OB(b*(#x)) = OB(b)*(OB(#x)) =

InputBind(b)*(InputBind(#x)) = 2*(<1, 2, 3>) = <1, 2, 3><1, 2, 3> =

<1, 2, 3, 1, 2, 3>.

 if AS = <@(<x, a, 5>)>, then OutputBind(<@(<x, a, 5>)>) = <OB(@(<x, a, 5>))> =

<@(OB(x) OB(a) OB(5))> = <@(<InputBind(x)><InputBind(a)>OB(5))> =

<@(<<1, 2, 3>><10><5>)> = <@(<<1, 2, 3>, 10, 5>)> = <3>.

Figure 6. Marking of sequential object Petri net

Figure 6 shows the net pages Prim and Sub of a certain sequential object Petri net in their

marking M and we are interested, if there exists input binding of transition variables

associated with the transitions Prim.T1 and Prim.T2. With the transition Prim.T1 is

associated one input arc (Prim.in, Prim.T1) whose value of the arc function AF(Prim.in,

Prim.T1) = <a>, and thus the set TransitionInputVariables(Prim.T1) = {a}. We can easily

determine that for the input arc (Prim.in, Prim.T1) there exists mapping InputBind: <a> 

<2>, and thus holds that InputBind(a) = 2. With the transition Prim.T2 is associated one input

multiarc (Prim.P2, Prim.T2) whose value of arc function AF(Prim.P2, Prim.T2) = <a>, the

value of multiarc function MAF(Prim.P2, Prim.T2) = <y> and thus the set

TransitionInputVariables(Prim.T2) = {a, y}. And again, we can easily determine that for the

input multiarc (Prim.P2, Prim.T2) there exists mapping InputBind: <a>  <1>, and thus

holds that InputBind(a) = 1. With that input multiarc it is also necessary to determine the

mapping InputBind: MAF(Prim.P2, Prim.T2)  e, where e  M(OPF(Prim.P2, Prim.T2)). The

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 207

value of the output place function OPF(Prim.P2, Prim.T2) = Sub.First, whose marking

M(Sub.First) = 1`<3>. So we investigate, if there exists mapping InputBind: <y>  <3>. We

can easily determine that the mapping exists and it holds that InputBind(y) = 3. Generally,

for the transition Prim.T2 holds that InputBind(a) = 1 and InputBind(y) = 3.

So it can be stated that for both transitions Prim.T1 a Prim.T2 exist particular input bindings

of all the transition input variables associated with their input arcs and thus, both transitions

are enabled. We are further interested, if there exists the mapping OutputBind of the values

of functions AF and MAF associated with output arcs (or multiarcs) of both transitions. With

transition Prim.T1 is associated the only output multiarc (Prim.T1, Prim.P2) whose value of

the arc function AF(Prim.T1, Prim.P2) = <a> and the value of the multiarc function

MAF(Prim.T1, Prim.P2) = <a>. So we can easily find out that OutputBind(<a>) = <2>. With the

transition Prim.T2 is associated the only output arc (Prim.T2, Prim.In) whose value of the

arc function AF(Prim.T2, Prim.In) = <a, y>. So again, we can easily find out that

OutputBind(<a, y>) = <1, 3>.

Let SOPN = (, PN) is a sequential object Petri net, PG   is a net page, t  T is a transition

of the net page PG, M is a marking of the net SOPN.

i. If the transition t is enabled in the marking M, then we obtain by its firing marking M’
of the net SOPN, defined as follows:

M’(p) = M(p) \ InputBind(AF(p, t)), if (p  t)  ((p, t)  (A  MA)) 

 ( InputBind: AF(p, t)  e, e  M(p)),

M’(p) = M(p)  OutputBind(AF(t, p)), if (p  t)  ((t, p)  (A  MA)),

M’(q) = M(q) \ InputBind(MAF(p, t)), if (p  t)  ((p, t)  MA)  (q = OPF(p, t)) 

 ( InputBind: MAF(p, t)  e, e  M(OPF(p, t))),
M’(q) = M(q)  OutputBind(MAF(t, p)), if (p  t)  ((t, p)  MA)  (q = IPF(t, p)).

M’(p) = M(p), otherwise.

ii. Firing of transition t  T, which will change the marking M of the sequential object Petri

net SOPN into the marking M’, is symbolically denoted as M [t  M’.
iii. Step is understood as firing of non-empty subset from the set of enabled transitions in

the given marking M of the sequential object Petri net SOPN. Step Y which will the

marking M into the marking M’ is symbolically denoted as M [Y  M’.
iv. Let step Y be enabled at the marking M of the net SOPN. If t1, t2  Y and t1  t2,we say

then that transitions t1 a t2 are concurrently enabled and that fact is symbolically

denoted in the form of {t1, t2} en M.

Firing of transition will result in the new marking of given sequential object Petri net, which

we will obtain as follows:

 from each input place p of the fired transition t we will remove the (unique) token in the

marking M, which is bound to the value of the arc function AF(p, t),
 to each output place p of the fired transition t we will add up the (unique) token which

is the value of partial function OutputBind(AF(t, p)),

Petri Nets – Manufacturing and Computer Science 208

 from each output place of page q, being the value of function OPF of the input multiarc

(p, t) of the fired transition t, we will remove the (unique) token in the marking M,

bound to the value of the multiarc function MAF(p, t),
 to each input place of page q, being the value of function IPF of the output multiarc (t, p)

of fired transition t, we will add up the (unique) token being the value of partial

function OutputBind(MAF(t, p)),

 in all the remaining places of the net we will leave their original marking.

Figure 6 shows the net pages Prim and Sub of a certain sequential object Petri net in its

marking M. From previous text we know that transitions Prim.T1 and Prim.T2 are

concurrently enabled. Hence, firing of transition Prim.T1 consists in:

 removing token <2> from the input place Prim.in,

 adding token <2> to the place Prim.P2,

 adding token <2> to the input place Sub.first.

Hence, firing of transition Prim.T2 consists in:

 removing token <1> from the place Prim.P2,

 removing token <3> from the output place Sub.First,

 adding token <1, 3> to the output place Prim.In.

Marking M’ of the net after concurrent firing of transitions Prim.T1 and Prim.T2 is shown in

Figure 7.

Figure 7. Firing of transitions in sequential object Petri net

Relatively complicated mechanism of firing of transitions in sequential object Petri nets can

be better explained by notional substituting of all the multiarcs of the net by standard arcs,

which can be realized as follows:

 if p is place and t transition of the given net page and (p, t) its multiarc whose value of

arc function equals to AF(p, t), the value of output place function equals to OPF(p, t) and

the value of multiarc function equals to MAF(p, t), we substitute this multiarc by

notional pair of the following standard arcs:

 by the arc (p, t) with the value of the arc function equal to AF(p, t),
 by the arc (OPF(p, t), t) with the value of the arc function equal to MAF(p, t).

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 209

 if p is place and t transition of the given net page and (t, p) its multiarc whose value of

arc function equals to AF(t, p), the value of input place function equals to IPF(t, p) and

the value of multiarc function equals to MAF(t, p), we substitute that multiarc with

notional pair of the following standard arcs:

 by the arc (t, p) with the value of the arc function equal to AF(t, p),

 by the arc (t, IPF(t, p)) with the value of the arc function equal to MAF(t, p).

That notional substitution of multiarcs in the previous net is shown in Figure 8 where:

 multiarc (Prim.T1, Prim.P2) was substituted by the following pair of arcs:

 the arc (Prim.T1, Prim.P2) with the value of the arc function AF equal to <a>,

 the arc (Prim.T1, Sub.first) with the value of the arc function AF equal to <a>,

 multiarc (Prim.P2, Prim.T2) was substituted by the following pair of arcs:

 the arc (Prim.P2, Prim.T2) with the value of the arc function AF equal to <a>,

 the arc (Sub.First, Prim.T2) with the value of the arc function AF equal to <y>.

Figure 8. Substitution of multiarcs in sequential object Petri net

When enabling individual steps of the sequential object Petri net, so called conflicts can

originate in certain markings of the net (or conflict transitions). At the enabling of transitions

t1 and t2 of the given net and its marking M the conflict occurs, if both transitions t1 and t2

have at least one input place, each of t1 and t2 transitions is individually enabled in the

marking M of the net, but t1 and t2 transitions are not in that marking M concurrently

enabled, i.e. enabling of one of them will prevent enabling the other. The term of conflict

transitions can be obviously easily generalized for the case of finite set t1, t2, …, tn (n  N) of

transitions of the given net.

A typical example of the conflict at enabling transitions in the particular marking of the net is

shown in Figure 9, where transitions T1 and T2 of the net have a common input place P1, both

are enabled (particular binding of tokens can be easily found), but not concurrently enabled,

i.e. enabling of the transition T1 will disable enabling of the transition T2 and vice versa. When

solving conflicts at enabling of transitions in sequential Petri nets we will therefore follow the

rule which determines, informally said, that from the set of conflict transitions at the given

binding of tokens the one will be enabled, whose value of transition priority function TP is the

highest. If such transition from the set of conflict transitions does not exist, the given conflict

would have to be solved by other means. In our studied example will be then on the basis of

that rule the transition T2 enabled (because TP(T1) = 1 and TP(T2) = 2).

Petri Nets – Manufacturing and Computer Science 210

Figure 9. Conflict transitions in sequential object Petri net

5. Object-oriented programming systems and their representation by the

sequential object Petri nets

This section deals with main principles applied at modeling of multithreading object-oriented

programming systems with the sequential object Petri nets. All program listings are developed

in the Java programming language (Goetz et. al, 2006), (Lea, 1999), (Subramaniam, 2011).

Each declared class of the object–oriented programming system is in the sequential object

Petri net represented by a net page containing declared data items and methods. Their

declarations are made by using elements of the net page. Individual input places of the net

page then represent input points of static and non-static methods as a part of the class

declaration, and output places of the net page then represent their output points. Input and

output places of the net page are associated with identifiers of the particular method whose

input and output point they represent while each method has one input and output place. In

so doing, we abide to the convention whereby input place identifier of the particular

method starts with a small letter and identifier of the output place of the same method with

a capital letter. In order to differentiate graphically in layouts of the net declaration of static

methods from non-static methods on a given net page, we demarcate identifiers of input

and output places of the net page representing input and output points of static methods

with the square brackets. Moreover, it is possible on the net page via a position of input and

output places in its layout represent visibility of public, protected and private type of

individual declared methods thus implementing the characteristic of encapsulation of the

object-oriented programming.

Figure 10 illustrates the net page representing the following declaration of the class Sys:

public class Sys {

 public static void compute() { … }

 protected void run() { … }

 private void init() { … }

}

Figure 10. Net page representing declaration of class Sys

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 211

Static and non-static data items are on the net pages represented in the form of tokens in the

given net marking, i.e. by elements of the set Tokens. When representing values of static and

non-static data items being the elements of particular tokens of the net, it is for example

possible to proceed as follows:

 If the data type of the particular data item is a non-negative integer (int), its actual value

equals to that non-negative integer.

 If the data type of the particular data item is boolean, we represent the truth value false

most frequently with constant 0 and the truth value true with constant 1, while in

layouts of the net we are also using symbolic values false and true.

 If the data type of the particular data item is char, whose value is the element of the set

contained in the code table given by the Unicode standard, we represent its value

corresponding to the value of the symbol code given in the Unicode Standard, i.e. the

letter 'A' can be represented by the value 65. In order to make again layouts of nets more

readable, the element of token can be entered as the particular symbol bounded by

apostrophes, i.e. instead of token <65> we will indicate in layouts of nets token <’A’>.

 If the data type of the particular data item is string, whose value is text string, the values

can be represented by sequences of codes of symbols according to the Unicode

standard. Again, for better transparency of notations, it is possible to use instead of

codes of symbols directly the sequence of symbols bounded by apostrophes, i.e. in

layouts of nets represent data items of the data type string with the tokens of <’H’, ’e’,

’l’, ’l’, ’o’> shape, or to bound sequence of symbols of the string with quotation marks,

i.e. to note the tokens in the form of <”Hello”>.

 Data items whose data type are numbers with floating decimal point (float, double), or

other numerical data type being the superset of the set of non-negative integer numbers, it

is not possible to declare it directly on the basis of the stated definition of the sequential

object Petri net. If a need emerges to operate with those numerical sets during simulation

of multithreading object-oriented programming system, it is always easy to extend in this

sense the definition of the token, arc sequence and other particular definitions, in order to

ensure the support of those numerical sets (e.g. it is possible to define the token of sequential

object Petri net as the finite non-empty sequence over the set of real numbers R, etc.).

 In the case of data items whose data type is the pointer to instance of class, we represent

their values with natural numbers. Each instance of the class has at its creation allocated

unique natural number expressing its address within the programming heap. Number 0

than represents the value of pointer null.

Static data items are usually represented in layouts of nets with the tokens containing only

their actual values. Non-static data items are usually represented by tokens containing both

the value of pointer to a given instance of the class in which the particular data item is

declared, and its actual value according to particular data type. So if within the declaration

of the class First for example the following data items are declared:

public class First {

 private static boolean indicator = true;

 private char status = ‘a’;

}

Petri Nets – Manufacturing and Computer Science 212

then, the static data item indicator can be represented by the token <true> and the non-static

data item status by the token <11, ‘a’>, where numerical value 11 represents the value of the

pointer to the particular instance of class.

The dynamic creation of the instance of the class is not in the sequential object Petri net

realized by the creation of a new instance of the particular net page representing declaration

of the given class, but by creation of all the tokens representing non-static data items of the

declared class. At the same time, each such token contains (usually as its first element) the

value of the pointer to the newly created class instance. The fact, that during dynamic

creation of instances of classes it is not necessary to create instances of net pages,

dramatically simplifies its analysis.

All methods represented by elements of the net pages are executed by the programming

threads. Each such programming thread is represented by the particular instance of class

(usually by the class Thread). Thus, the token accepted by the input place of the net page

must contain the pointer for particular programming thread realizing execution of the given

method, while that pointer is within arc sequences of the net represented by default by some

of the identifiers T, U, V, etc. By the element of the token accepted by the input place of the

page representing the input point of some of the non-static methods must be then the

pointer of the particular instance of class whose non-static method is (i.e. pointer this). That

pointer is then within the arc sequences of the net standardly represented by the identifier O

(while indeed, within representation of static methods that pointer cannot be used). When

entering identifiers of static and non-static data items, parameters and local variables of

methods, we use by default in layouts of the net so called Hungarian notations, where the

first letter (or the first part) of identifier expresses its data type. For identification of

standard data types we use the acronym i even for data type int, b for boolean, c for char, s

for string and p for pointer. Hence for example the identifier sName within the arc sequence

represents the variable of the data type string with the identifier name.

Figure 11 shows the net page representing the declaration of the following class Obj in its

marking M:

public class Obj {

 private char val = ‘a’;

 public synchronized char getVal() { return value; }

 public synchronized void setVal(char value) { this.val = value; }

}

Figure 11. Net page representing declaration of class Obj

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 213

The current notation of that net page suggests, that within the program execution modeled

by that net two instances of the class Obj have been already created, as in the place Obj.val

appear tokens <4, ‘a’> a <6, ‘c’>, where the first element of each of those tokens is the pointer

to the instance of the class Obj and second the actual value of the non-static data item val of

the data type char. The non-static method getVal will be executed above the instance of class

with the pointer 4 by the programming thread with the pointer equal to the value 1, the non-

static method setVal will be executed above the instance of the class with the pointer 6 by

the programming thread with the pointer equal to the value 2, while the value of method

parameter value equals to character ‘b’. The shape of the net demonstrates, that over the

selected instance of the class can be concurrently executed with any programming thread

maximum one of getVal or setVal methods.

Additionally, in layouts of nets can be simply represented the relation of a simple

inheritance between two declared classes. The identifier of the net page representing the

class declaration being superclass of the given class, we indicate in the layout of the given

net page of the class in its left bottom corner. If that identifier of the net page of the

superclass is not explicitly indicated in the layout of the net, we consider the given class to

be implicitly subclass of the top class in the hierarchy of classes created on the basis of

relation of simple inheritance of classes (e.g. within the hierarchy of classes of the Java

programming language it is the class java.lang.Object).

With the inheritance relation of classes is organically connected even the term of

polymorphism of the object-oriented programming and the possibility of declaration of so

called virtual methods. Figure 12 shows two net pages out of which the first represents

declaration of the class Object and the second declaration of the class System, being

subclass of the class Object. Within the class Object is also declared virtual method with the

head public int hashCode(), which is in the declaration of the class System overwritten

with the virtual method of identical method head. Input and output places of net pages

Object and System, which appertain to input and output points of both virtual methods are

indicated in the net layout by default while in the case of declaration of the virtual methods

it is necessary that all input places representing the input point of the given virtual

method had assigned on all the net pages containing the declaration of this method the

identical value of IOPN function and all output places representing the output point of

the given virtual method had assigned on all relevant net pages the identical value of

IOPN function (see Figure 12).

Figure 12. Virtual methods representation in sequential object Petri net

Next example demonstrates representation of classes containing declaration of virtual and

abstract methods. Virt and Add classes are declared as follows:

Petri Nets – Manufacturing and Computer Science 214

public abstract class Virt {

 public abstract int compute(int a, int b);

 public int make(int a, int b) { return compute(a, b); }

}

public class Add extends Virt {

 public int compute(int a, int b) { return (a + b); }

}

The Virt class is an abstract class with the declared abstract method compute. That method

is called as a part of the declared method make of the Virt class. The method compute is

then overwritten at the level of declaration of the class Add, being the subclass of the class

Virt. The net page representing the declaration of the class Virt is shown in Figure 13.

Abstract method compute is represented only by a pair of the input place Virt.compute and

the output place Virt.Compute. Regarding the fact that it is also declaration of the virtual

method, the selection of function IOPN values is important (i.e. in our case

IOPN(Virt.compute) = 1 and IOPN(Virt.Compute) = 2). The key element of the net page is

the manner of calling of the virtual method compute represented by the multiarc (Virt.T1,

Virt.P1) and its value of input place function IPF, the multiarc (Virt.P1, Virt.T2) and its

value of output place function OPF. The value of input place function IPF of the multiarc

(Virt.T1, Virt.P1) is in the form of O.compute (more precisely in the O.1 form), where

identifier O represents the pointer of particular instance of non-abstract subclass of class

Virt, whose non-static method compute is executed. The value of identifier O is in our case

non-constant, ie. generalized at the realization of steps, and depends on binding of the

specific token to the arc sequence in the form <T, O, iA, iB>, which shares in the given

identification of the net execution of transition Virt.T1. According to the numerical value

bound to identifier O the particular net page net will be determined whose value of the

function PN of numbering net pages is identical with the numerical value bound to the

identifier O. Then on this net page the input place with the value of IOPN function equal to

number 1 will be selected (representing the input point of the virtual method compute), into

which the particular token in the form <T, O, iA, iB> will be placed.

Figure 13. Polymorphism representation in sequential object Petri net

Net page representing the declaration of the class Add, being the subclass of the class Virt,

is shown in Figure 14. In the class Add is declared the only non-static virtual method

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 215

compute, which overwrites the abstract method compute declared in the body of the class Virt.

Thus, on the grounds of that fact it is necessary to correctly assign values of IOPN function (in

our case IOPN(Add.compute) = 1 and IOPN(Add.Compute) = 2). An interesting detail of this

net page is the way of determination of the addition of integral values bound to variables iA

and iB of the arc sequence of the arc (Add.compute, Add.T1). The expression in the form

@(iA*<0>iB*<0>) represents length of the sequence formed by concatenation of two sequences:

first sequence containing in total iA of numbers 0 and the second sequence containing in total iB

numbers 0 (in this case, it is worth mentioning, that e.g. via the expression in the form

@(iA*(iB*<0>)) product of integral values of variables iA a iB can be determined).

Figure 14. Polymorphism representation in sequential object Petri net

Next generalization of the form of functions IPF and OPF associated with multiarcs is

possible within the sequential object Petri nets to implement the explicit support of the

mechanism of first order and higher order functions known from functional programming

(ie. given method can take another methods as parameters and return the method as the

return value). Figure 15 shows the net page of the class Func containing declaration of

method call. Arc sequence of the token accepted by the input place of that method contains

a variable mO, the value of which is the value of the function PN for the net page with the

input place make and output place Make, which are represented by particular integral

values of the function IOPN. Values of functions MAF of multiarcs of the net in the form

mO.make and mO.Make, whose all components are variables and whose values are not

determined until particular arc sequence is bound to token of the net, provide general

mechanism for the possibility of declaration of first order and higher order functions.

Figure 15. Higher order function representation in sequential object Petri net

Example of recursive method represented by the net page can be seen on Figure 16. This

static recursive method fact of the class Integer implements calculation of the value of

Petri Nets – Manufacturing and Computer Science 216

factorial function whose parameter is a certain natural number n. Recursive algorithm for

calculation of factorial of the integer value n in the Java programming language is

represented by the following listing:

public class Integer {

 public static int fact(int n) {

 if (n == 1) return 1;

 else return (n * fact(n – 1));

}

If the value of the parameter iN equals to number 1, the transition Integer.T4 is enabled and

in the output place Integer.Fact the token <T, 1> is stored, whose first element T represents

the programming thread and the second element the value of factorial of number 1. If the

value of number iN is greater than number 1, by enabling the transition Integer.T2 that

number iN is substituted by the sequence consisting of iN numbers 0, which is then used at

recursive call modeled by the multiarc (Integer.T3, Integer.P2), whose enabling will always

result in elimination of one element of that sequence. The programming stack which is used at

realization of recursive procedure of the algorithm is represented by the token in the place

Integer.P3 in the form of the sequence <T, …, iN-2, iN-1, iN>. At the moment where the

sequence composed from 0 numerals contains after the series of recursive calls of algorithm

one element (i.e. it is necessary to determine the value of factorial of number 1 within the stop

condition of algorithm), the transition Integer.T4 is enabled and the value of factorial of

number 1 is represented in token <T, 1> located in the output place Integer.Fact. Then, by

repeatedly enabling the transition Integer.T5 and finally the transition Integer.T6 the return

from recursion is implemented with the gradual calculation of the value of factorial function,

which is represented in the token of the form <T, @(iM*(iF*0))>. Following completion of the

process of reverse return of recursion in the output place Integer.Fact the token in the form <T,

iF> is stored, whose second element represents the value of factorial of the natural number iN.

Figure 16. Recursive function representation in sequential object Petri net

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 217

Moreover, in the sequential object Petri nets can be simply represented declarations of inner

classes of the selected class via subpages of the net page. So if for example the class Obj

which within its declaration contains declaration of its own inner class InnerObj, that

declaration can be represented by the subpage InnerObj of the page Obj (see Figure 17)

Figure 17. Inner class declaration representation in sequential object Petri net

The representation of declared interfaces, which can contain only declarations of headings of

publicly accessible abstract methods, is also easy. Figure 18 shows the representation of

interface Runnable (identifiers of interface we indicate in layouts of the net with spaced

letters) containing declaration of the method with the head public abstract void run().

Figure 18. Interface declaration in sequential object Petri net

6. Example of simple class hierarchy represented by sequential object

Petri net

In this section we will demonstrate how simple hierarchy of the classes via sequential object

Petri nets is built. The model of those examples involve selected classes contained in

standard library of classes of the Java programming language. (e.g. classes java.lang.Object,

java.lang.Thread, etc.). For better visibility of layouts we usually present individual

declared methods in separate figures representing individual parts of the particular net page

(while naturally places and transitions of the net which appear in individual parts of the net

page and have identical identifiers, always represent the same place or transition of the total

page of the net). Thus, top of our hierarchy of classes will be the class Object, whose

declaration made in the Java programming language is the following:

public class Object {

 private Object monitor;

 private Thread thread;

 private Vector<Thread> = new Vector<Thread>;

 private synchronized static int getPointer() { … }

 public Object() { … }

 protected void finalize() { … }

 public void lock() { … }

 public void unlock() { … }

Petri Nets – Manufacturing and Computer Science 218

 public void wait() { … }

 public void notify() { … }

}

The static method getPointer (see Figure 19) can be executed by the only one programming

thread only and it is determined for assigning unique integral values of pointers to

individual instances of the classes. At the first execution of the method the integral value 1 is

returned in variable P (because InputBind(#p) = 0 a @(#p) = @(<0>) = 1), in the place Object.P1

is then stored the token <0, 0>, and at next execution of the method is in the variable P

returned the value 2, etc.

Figure 19. Declaration of class Object in sequential object Petri net

Within the declaration of the constructor of the object of the class Object (see Figure 20) is

by the programming thread firstly obtained the value of the pointer for a newly created

object by calling the method getPointer, that value is then stored to the variable O and the

value of non-static data item monitor representing the monitor of particular instance of the

class is then stored in the form of the token <O> in the place Object.monitor. The destructor

of the object represented by the method finalize will then mainly ensure cancellation of the

monitor of the object represented by the token <O> in the place Object.monitor.

Figure 20. Declaration of class Object in sequential object Petri net

Entry into the critical section of the object (i.e. execution of the non-static method with the

modifier synchronized) is conditioned by getting the object monitor with the particular

programming thread. As a part of the execution of the method lock the programming

thread T can respectively allocate the object monitor with the value of the pointer O, (i.e. the

token <O> in the place Object.monitor) and then enter into the critical section of the object

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 219

while the programming thread is permitted to enter the critical section of the same object

several times in sequence. First entry of the programming thread T into the critical section of

the object O is realized by execution of the transition Object.T5. Pointer to the programming

thread, which successfully obtained the object monitor, is then stored in the variable thread

(i.e. the token <T, O, 1> is located in the place Object.thread). At repeated entry of the

programming thread into the critical sections of the object O the transition Object.T6 is

executed and particular token in the place Object.thread is added with the next element

which is the number 1 (i.e. at second entry of the thread T into the critical section of the

object O is in the place Object.thread stored the token <T, O, 1, 1>, at the third entry the

token <T, O, 1, 1, 1>, etc). Deal location of the object monitor and initialization of its critical

section is then realized by execution of the non-static method unlock, whose functionalities

are inverse to functionalities of the method lock (see Figure 21).

Figure 21. Declaration of class Object in sequential object Petri net

Method wait causes the current thread T to wait until another thread invokes the notify

method for the object O. The current thread T must own the monitor of the object O. The

thread releases ownership of this monitor and waits in the place Object.pool until another

thread notifies threads waiting on the object's monitor to wake up through a call to the

notify method. The thread T then waits in the place Object.P3 until it can re-obtain

ownership of the object monitor and resumes execution (see Figure 22).

Figure 22. Declaration of class Object in sequential object Petri net

Next declared class in our hierarchy will be the class Thread representing the programming

thread, which is the subclass of the class Object and it also implements the interface

Runnable (see Figure 23). Its declaration in the Java programming language is as follows:

Petri Nets – Manufacturing and Computer Science 220

public class Thread extends Object implements Runnable {

 private Runnable runnable;

 public Thread(Runnable run) { … }

 protected void finalize() { … }

 public void start() { … }

 public void run() { … }

}

The method Thread is the constructor of the object which during its execution firstly

invokes the construction of the instance of the class Object, that is the superclass of the class

Thread, which in the variable value U returns the pointer to the newly created

programming thread. In the place Thread.runnable (i.e. in the value of the variable

runnable) is then stored the token <U, pRun>, where the value of the variable pRun

contains the pointer to the class instance implementing the interface Runnable (see Figure

18) whose method run will be then executed by the newly created programming thread.

That will be implemented through execution of the method start with programming thread

T. The token <U, pRun, 0> is then located into the place Thread.runnable representing the

fact that the execution of the method pRun.run was initiated. Its invocation itself is realized

by asynchronous method call by the firing of the transition Thread.T3 and by the

mechanism of multiarc (Thread.T3, Thread.Start). The class Thread itself has the method

run implemented the easiest possible way.

Figure 23. Declaration of class Thread in sequential object Petri net

As a part of execution of the destructor of the instance of the class Thread, i.e. the method

finalize (see Figure 24), the particular token is removed from the place Thread.runnable

and the destructor of the superclass Object is then executed. If in the place Thread.runnable

is the token of the form <U, pRun>, the programming thread is not active to obeyed

destruction and the transition Thread.T7 can be fired. If, on the contrary, in the place

Thread.runnable is the token in the form <U, pRun, 0>, the programming thread is active

and the execution of the destructor must be delayed until the completion of the activities of

this thread (i.e. returning of the thread U after executing the method pRun.run ensured by

the mechanism of the multiarc (Thread.finalize, Thread.T8)).

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 221

Figure 24. Declaration of class Thread in sequential object Petri net

Next declared class in our hierarchy will be the class Semaphore representing a counting

semaphore. Conceptually, a semaphore maintains a set of permits. Method down blocks if

necessary until a permit is available, and then takes it. Method up adds a permit, potentially

releasing a blocking acquirer. However, no actual permit objects are used and the

Semaphore just keeps a count of the number available and acts accordingly. Declaration of

the class in the Java programming language is the following:

public class Semaphore extends Object {

 private int value = 1;

 public Semaphore() { … }

 protected void finalize() { … }

 public synchronized void down() { … }

 public synchronized void up() { … }

}

The constructor of the object, i.e. the method Semaphore, following execution of the

constructor of the instance of the superclass Object will store in the place Semaphore.value

the token <O, 1> representing the initial value of the data item value of the class instance O.

As a part of the execution of the destructor of the instance of the class Semaphore, i.e. of the

method finalize, that token is removed from the place Semaphore.value and then the

destructor of the superclass Object is executed (see Figure 25).

Figure 25. Declaration of class Semaphore in sequential object Petri net

Petri Nets – Manufacturing and Computer Science 222

Method down acquires a permit from this semaphore, blocking until one is available.

Following entry into the critical section of the object instance the programming thread

acquires a permit from this semaphore (ie. token in the place Semaphore.value can be

bound to the arc sequence <O, 1, #x> after at least one execution of the method up) and will

leave the critical section of the object. If no permit is available then the current thread

becomes disabled for thread scheduling purposes and waits (i.e. the transition

Semaphore.T7 is executed and the method Object.wait is invoked, the programming thread

will release the monitor of the object in order to enable execution of the method up by other

programming thread) until some other thread invokes the up method for this semaphore

and the current thread is next to be assigned a permit (see Figure 26).

Figure 26. Declaration of class Semaphore in sequential object Petri net

Method up releases a permit, increasing the number of available permits by one. If any

threads are trying to acquire a permit, then one is selected and given the permit that was just

released. That thread is (re)enabled for thread scheduling purposes (see Figure 27).

Figure 27. Declaration of class Semaphore in sequential object Petri net

Sequential Object Petri Nets and the Modeling of Multithreading Object-Oriented Programming Systems 223

7. Conclusion

Sequential object Petri nets represent an interesting class in the area of object Petri net

classes, which can be applied at design, modeling, analysis and verification of generally

distributed multithreading object-oriented programming systems. A newly introduced term

of token as finite non-empty recursive sequence over the set of non-negative integer

numbers, functionalities of multiarcs and the mechanism of the firing of transitions do not

increase demands on performance of analysis of characteristics, as seen in other classes of

high-level or colored Petri Nets.

Functional programming is one of the most important paradigms of programming that

looks back on a long history. The recent interest in functional programming started as a

response to the growing pervasiveness of concurrency as a way of scaling horizontally.

Multithreaded programming is difficult to do well in practice and functional programming

offers (in many ways) better strategies than object-oriented programming for writing robust,

concurrent software. Functional programming is generally regarded a paradigm of

programming that can be applied in many languages - even those that were not originally

intended to be used with that paradigm. Like the name implies, it focuses on the application

of functions. Functional programmers use functions as building blocks to create new

functions and the function is the main construct that architecture is built from. Several

programming languages (like Scala, C#, Java, Delphi, etc) are a blend of object-oriented and

functional programming concepts in a statically typed language in the present time. The

fusion of object-oriented and functional programming makes it possible to express new

kinds of programming patterns and component abstractions. It also leads to a legible and

concise programming style. Sequential object Petri nets then also fully support design,

modeling, analysis and verification of programming systems based on this fusion of object-

oriented and functional programming paradigms.

Author details

Ivo Martiník

VŠB-Technical University of Ostrava, Czech Republic

Acknowledgement

This paper has been elaborated in the framework of the IT4Innovations Centre of Excellence

project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Operational Programme 'Research and

Development for Innovations' funded by Structural Funds of the European Union and state

budget of the Czech Republic.

8. References

Agha, G. A.; Cinindio, F. & Rozenberg, G. (2001). Concurrent Object-Oriented Programming
and Petri Nets: Advances in Petri Nets. Springer, ISBN 978-3-540-41942-6, Berlin, Germany

Petri Nets – Manufacturing and Computer Science 224

Diaz, M. (2009). Petri Nets: Fundamental Models, Verification and Applications, John Willey &

Sons, ISTE Ltd., ISBN: 978-0-470-39430-4, London, United Kingdom

Goetz, B.; Peierls, T., Bloch, J.; Bowbeer, J.; Holmes, D. & Lea, D. (2006). Java Concurrency in
Practice, Addison-Wesley, ISBN 978-0321349606, Reading, United Kingdom

Jensen, K.; Kristensen, L. M. (2009). Coloured Petri Nets: Modelling and Validation of Concurrent
Systems, Springer, ISBN 978-3-642-00283-0, Berlin, Germany

Jensen, K.; Rozenberg, G. (1991). High-Level Petri Nets: Theory and Application, Springer, ISBN

3-540-54125-x, London, United Kingdom

Köhler, M.; Rölke, H. (2007). Web Services Orchestration with Super-Dual Object Nets,

ICATPN 2007, Lecture Notes in Computer Science 4546, Springer-Verlag, pp. 263–280,

ISBN 978-3-540-73093-4

Lea, D. (1999). Concurrent Programming in Java, Second Edition, Addison-Wesley, ISBN 0-201-

31009-0, Reading, United Kingdom

Martiník, I. Bi-relational P/T Petri Nets and the Modeling of Multithreading Object-oriented

Programming Systems, Communications in Computer and Information Science. 188 CCIS

(Part 1), (July 2011), pp. 222-236. ISSN 1865-0929

Reisig, W. (2009). Elements of Distributed Algorithms, Springer, ISBN 3-540-62752-9, Berlin,

Germany

Subramaniam, V. (2011). Programming Concurrency on the JVM: Mastering Synchronization,
STM and Actors, Pragmatic Bookshelf, ISBN 978-1934356760, Dallas, USA

