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1. Introduction 

Prof. Carl Adam Petri wrote: “In order to apply net theory with success, a user of net theory 

can just rely on the fact that every net which he can specify explicitly (draw on paper) can be 

connected by a short (≤ 4) chain of net morphisms to the physical real word; your net is, in a 

very precise sense, physically implementable.” (Status Report On Net Theory, 1989, a 

forward for my book Petri Nets 	in Chinese[1]). 

Why a net is physically implementable? The reason is, every concept in net theory is 

carefully chosen based on nature laws, and well defined in terms of precise mathematics 

and logic. For example, the concept of global time does not belong to net theory. Time 

measured with real numbers exists only in theories like theoretical physics. Logical time 

does not exist in the real world. For net theory, time is just “clock reading”, a measurement 

of physical changes. Global time is not realistic for systems in which a shared clock is not 

available.  

On the other hand however, it is easy to find in the literature, that many an author 

introduces new concepts into his or her Petri net with implementation totally forgotten. 

“Timed Petri Net” is just one of such examples. 

As one of the chapters in this book on Petri nets, implementable concepts and only 

implementable concepts will be introduced. 

We start with the definition of a directed net, which is the most fundamental concept in net 

theory. The next two sections serve to keep this chapter self-reliant.  

This chapter is organized as below: 

Sections 2 and 3 recall basic definitions of Petri Nets: The concept of directed net deserves a 

separate section since it is the foundation of the whole net theory. Section 3 is mainly about 

Place/Transition-systems, based on which workflow models are to be constructed. 
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Section 4 is an introduction of synchrony, a branch in net theory on transition 

synchronization that provides theoretical support to workflow modelling. 

Section 5 talks about business processes, the subject of workflow research. A full 

understanding of the concept of business processes makes a good start.  

Section 6 proposes the concepts of synchronizers and workflow logic. A synchronizer 

connects transitions in two consecutive steps in a business process, and workflow logic is 

obtained when all transitions in a business process are so connected. Properties and analysis 

methods of workflow logic are defined and proposed. A transition in workflow logic 

represents a business task while a synchronizer represents a task in workflow management. 

Workflow logic specifies all possible routes a business case may take when it is processed. 

An individual business case corresponds to a unique route among all routes given by 

workflow logic. This route is considered as the semantics of that case. Section 7 defines the 

concept of case semantics. 

Section 8 is about business process management, or automatic management. The dual net of 

workflow logic is exactly the logic of management, based on which workflow engine 

conducts the process of individual cases.  

Section 9 concludes this chapter with acknowledgement, and the last section is a list of 

references. 

This chapter is about Petri nets and workflow modelling.  

There are many ways in the literature to define nets and net systems. For example, the 

concept of flow relation, namely F, has been made implicit by many researchers. It is often 

combined with weight function W. Without the flow relation, the concept of directed nets 

would disappear; and without the concept of directed nets, the whole theoretical part of 

Petri nets would be without a foundation. Thus, this chapter starts from the definition of 

directed nets given by C. A. Petri himself.  

Petri net systems have been considered as one of the adequate and promising candidates for 

workflow modelling. The concept of WF-nets proposed by Prof. Aalst from Holland has 

become popular in the last 10 to 20 years. A team in the Software Development Company of 

Peking University tried to use WF-nets as a formal model to develop software for a 

government organization at a time around the year 2000. The WF-nets didn’t work, and they 

didn’t know why. The author joint them, and we found problems of WF-nets, leading to 

failure. The concept of WF-nets was proposed without theoretical foundation. These 

problems were discussed in our paper titled “A Three Layer Model for Business process” 

[7]. The concepts of synchronizers, workflow logic and case semantics etc were defined in 

this paper for the first time. After so many years since then, people interested in workflow 

modelling remain sticking to WF-nets. Many people do not even know our work, it seems. 

The reason is, the author guess, General Net Theory (theoretical part of Petri nets) is not 

popular yet. This chapter shows how important “Synchrony” is to a successful application 

of Petri nets in the area of workflow modelling.    
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2. Directed net 

Definition 1  

A triple N=(S,T;F) is a directed net if S∪ T ≠ ∅ ∧ S ∩T=∅	 ∧ F ⊑ (S × T ∪ T × S) ∧ dom(F) ∪cod(F) = S ∪ T	Where dom(F)={x∣∃y: (x, y) ∈ F}	and cod (F)={y∣∃x: (x, y) ∈ F}.◆ 

A directed net used to be called “Petri net”. We keep the term “Petri net” to mean “net 

theory”, a term Carl Adam Petri used in Status Report. “Net” is often used to mean “directed 

net” if it causes no ambiguity. 

S∪ T ≠ ∅ ∧ S ∩T=∅ demands that a net consists of at least one element, and its elements are 

clearly classified. F ⊑ S × T ∪ T × S	indicates that direct dependence does not exist between elements in the 

same class. dom(F) ∪ cod(F) = S ∪ T	excludes isolated elements from a net. 

A directed net has a graphical presentation as shown in Figure 1, in which elements in S and 

T appear as circles and boxes respectively while elements in F appear as arrows (arcs). The 

arrow from x to y represents (x,y) in F. 

 

Figure 1. A Directed Net 

Petri net (net theory) consists of Special Net Theory and General Net Theory. Special Net 

Theory focuses on system modelling and General Net Theory focuses on theories 

supporting system modelling. The concept of directed nets is their common foundation. 

Definition 2 

Let N=(S,T;F) be a directed net and X=S∪T, For x in X, ﹒x={y|(y,x)∈ F} is the pre-set of x,  

x﹒={y|(x,y)∈ F} is the post-set of x. For t∈ T, ﹒t∪t﹒ is the extension of t.◆ 

Special Net Theory (SNT for short) and General Net Theory (GNT for short) are derived 

from Directed Net based on pre-sets and post-sets of elements as described below. 

The concept of extensions of transitions leads to the principle of local determinism. 

The S-complementation operation on a net leads to the removal of contact. The T-

complementation operation on a net leads to the removal of differences between forward 

and backward flow of tokens (SNT). 
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The S-completion operation on a net leads to Synchrony while the T-completion operation 

on a net leads to Enlogy(GNT). 

A directed net implies a unique undirected net that leads to Net Topology (GNT). 

A special class of directed nets is the occurrence nets that lead to Concurrency (GNT).  

Synchrony will be briefly introduced in Section 3, since it provides guidance to workflow 

modelling. It is impossible in this chapter to go any further on SNT and GNT. The point is, 

successful applications of Petri nets rely on both SNT and GNT, not only SNT.   

3. Net system  

Definition 3 

A 6-tuple Σ= (S,T;F,K,W,M0) is a net system if (S,T;F) is a directed net and: 

K: S→{1,2,⋯}∪{∞} ∧ W: F→{1,2,⋯} ∧ M0: → {0,1,2,⋯} such that	∀s∈ S:M0 (s) ≤ K(s), where 

K,W,M0 are respectively the capacity function, the weight function and the initial marking. ◆ 

A mapping M : → {0,1,2,⋯} is a marking if it satisfies 			∀s∈ S:M(s) ≤ K(s). 

Conventionally, elements in S are called places and elements in T are transitions.  A place is 

capable to hold certain kind of resources, with an allowance given by K. Infinite capacity 

does not mean infinite space for resources. It is just an indication that the capacity of that 

place is not a factor for a transition to become enabled (see definition below). A transition 

resembles a change of resource quantities (consumed or produced) and a change in kind. 

The precise change is given by transition rules. In the rest of this chapter, Σ is always 

assumed finite, i.e. Σ has a finite number of places and transitions. 

Definition 4 

1. Transition t is enabled by marking M if ∀s ∈﹒t: W(s,t)≤M(s)∧∀s ∈ t﹒:	M(s)+W(t,s)≤K(s). 

This fact is denoted by M[t>. 

2. Transition t may fire, if M[t>, to yield a successor marking M’ given by 

M’(s)= M(s) – W(s,t) for s in ﹒t - t﹒, M'(s) = M(s)+W(t,s) for s in t﹒-﹒t, and M'(s) = M(s) 

+W(t,s)-W(s,t) for s in ﹒t∩t﹒, and M’(s) = M(s) otherwise. This fact is denoted by M[t>M’.◆ 

It is easy to prove that the successor M’ is indeed a marking. 

A marking represents a resource distribution on S. A transition firing causes the flow of 

resources along arcs in F, and thus F is called the flow relation of ∑. 

It is easy to see that M[t> is determined by ﹒t ∪ t﹒, the extension of t, and the change from M 

to M’ is confined to ﹒t ∪ t﹒. This is the principle of local determinism. A marking is a global 

state, but the transition rules refer to only the extension of a single transition, not the 
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complete marking. Many system models take global states as a means of system control. But 

this is not always implementable, since a global state is not always instantly known. It takes 

time to know the current global state, and this delay may be significant to an effective real 

time control. 

Figure 2 illustrates how to represent a net system graphically. The black dot inside place s is 

a token, denoting M0(s) = 1. Empty places have no token (resource). Conventionally, M(s)=0, 

W(x,y) =1 and K(s) = ∞	are shown by default.  

 

Figure 2. A Net System 

Definition 5 

Let Σ=(S,T;F,K,W,M0) be a net system, M is a marking and t1, t2 are transitions. 

1. If M[t1>M’∧M’[t2>∧￢M[t2>, then t1 and t2 are in sequential relation at M, denoted by 

M[t1,t2>. 

2. If M[t1>∧M[t2>, and ∀s ∈﹒t1	∩﹒t2 : M(s) ≥W(s,t1) + W(s,t2) and ∀s	∈ t1
﹒∩	t2

﹒: M(s) + W(t1,s) 

+ W(t2,s)≤ K(s),then t1 and t2 are in concurrent relation at M, denoted by M[{t1,t2}>. 

3. If M[t1>∧M[t2>∧￢M[{t1, t2}>, then t1,t2 are in conflict at M, denoted by cf(t1,t2,M). 

4. If there is a transition t and a place b such that ∀s ∈﹒t1 : M(s)≥W(s,t)∧M(b) + 

W(t,b)>K(b), then t leads to a contact in b at M, denoted by ct(t,b,M). ◆ 

Two concurrently enabled transitions can fire either concurrently or one after another.  

Theorem 1 

The marking reached by concurrently fired transitions can also be reached by the transitions 

fired one after another.◆ 

This theorem guarantees that the next definition includes markings reached by concurrent 

transition firings.  

Definition 6 

The set of markings reachable from M0 by consecutive transition firings is usually denoted 

by [M0>.◆ 
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The set [M0> may be infinite for a finite system. The algorithm for computing [M0> produces 

a finite tree, denoted by T(Σ), and this tree can be re-structured to become a graph, denoted 

by G(Σ). G(Σ) will be used for the computing of synchronous distances later on. All these 

concepts and algorithms are in the category of techniques, we will go no further here. 

So far we have not said a word about how to relate a net to the real world. This reflects an 

important aspect of Petri net, that is, a net is unexplained. This nature of nets has its good 

point and bad point. The good point is: the same net or net system may be explained in 

different application areas to solve different problems; the bad point is: unexplained 

transition firings lead to general analysis methods that are bound to be of low efficiency, 

since they cannot make use of application specific properties.  

A net is “physically implementable” when every element in S∪T has an explaination for a 

fixed application problem, and every transition firing describes real changes in that 

application area. A net describes how real changes relate with each other. This chapter aims 

to show how to build, with the guidance of GNT, net systems for workflow modelling and 

how to find efficient analysis methods. 

Some transitions are defined as “instant transitions” in Timed Petri Nets, for they fire 

instantly when they become enabled. What would happen when two instant transitions are 

in conflict? Conflict resolution takes time since it needs to be detected and it requires a 

decision from the system environment. Generally speaking, an enabled transition may be 

disabled (by others) without firing.  

4. Synchrony 

Careful observation reveals that sequential relation, concurrent relation and conflict relation 

are not relations between two transitions, but rather, they are relations between transition 

firings, i.e. two transitions may fall into one relation at a marking and fall into a different 

relation at another marking. Thus, a more precise way to denote these relations is: sq(M[t1>, 

M[t2>), cn(M[t1>, M[t2>), and cf(M[t1>, M[t2>) respectively. Note that sq(M[t1>, M[t2>) is 

asymmetry. 

Synchrony is about how transitions themselves are synchronized. It describes laws exhibited 

in the course of transition firings. For example, the sunrise and the sunset are alternating 

“transitions” while a hand-clapping “transition” consists of simultaneous actions of the two 

hands. One may observe one more sunrise or one more sunset, depending on the times the 

observation starts and ends, but one always counts the same number of actions of the two 

hands for hand clapping. The laws exhibited by alternating transitions and simultaneous 

transitions are given by “the synchronous distance is 1” and “the synchronous distance is 0” 

respectively. 

The concept of synchronous distance was originally defined in terms of events in a C/E-

system, which is a model describing changes in the nature, like the changes of 4 seasons. A 

C/E-system has no initial marking. Instead, it has a current marking. This chapter is about 
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artificial systems. We have to redefine this concept of synchronous distance to serve our 

need.  

4.1. Synchronous distance in a P/T-system 

A net system as defined by Definition 3 and 4 is conventionally called a Place/Transition-

system, P/T-system for short.  

Definition 7 

LetΣ= (S,T;F,K,W,M0) be a P/T-system. A sequence of transitions δ= t1t2⋯tn is called a 

transition sequence if they can fire one after another in the given order, starting from the 

initial marking. The length of δ is n. 

An infinite sequence of transitions is a transition sequence if any of its finite prefix is a 

transition sequence. ◆ 

In what follows ρ denotes the set of all transition sequences of Σ. 

Definition 8 

Let Σ=(S,T;F,K,W,M0) be a P/T-system and T1, T2 be subsets of T, T1≠ ∅, T2≠ ∅. Let	઼ be a 

finite transition sequence, i.e. δ	∈ ρ. Let ＃(δ, T1),  ＃(δ, T2) denote the numbers of firings of 

transitions in T1,T2 respectively, and ＃(δ, T1,T2) = ＃(δ, T1) -＃(δ, T2). The synchronous 

distance between T1 and T2, denoted by σ(T1,T2), is defined by σ(T1,T2) = max{＃(δ, T1,T2)∣δ∈ ρ} - min{＃(δ, T1,T2)∣δ∈ ρ }if exists, other wise	σ	(T1,T2) = ∞.

◆ 

Figure 3 (a) is P/T-system Σ1 and its set of transition sequences is {a, ab, b, ba}. We have, for 

T1 = {a} and T2 ={b}, max{＃(δ, T1,T2)∣δ∈ ρ} = 1 and min{＃(δ, T1,T2)∣δ∈ ρ } = -1, so	σ(T1,T2) = 

2. 

 

(a) Σ1, (b) Σ2 

Figure 3. σ(a,b) =2 

Note that we write	σ(a,b) =2 instead of	σ(T1,T2) =2 in figure 3 by convention when both T1,T2 

are singletons. 

The set of transition sequences of Σ2 is infinite and it contains infinite sequences. It is easy to 

check that any repeatable portion in a finite or infinite transition sequence contains the same 
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number of firings of transition b and transition a. This is why	σ(a,b) is finite. The consecutive 

firings of transition a count at most to 2, so do the consecutive firings of transition b. This is 

the physical meaning of 	σ(a,b) =2 for Σ2.  

The distance (i.e. synchronous distance from now on) between left hand action and right 

hand action is 0, since it is impossible to see only an action of either hand in the course of 

hand clapping.  

Figure 4 (a) shows another situation of	σ(a,b) =2, where transitions a and b are in conflict at 

the initial marking. Figure 4 (b) is still another case of	σ(a,b) =2. 

 

(a) Σ3  (b) Σ4 

Figure 4. σ(a,b) =2: a and b in conflict 

Theorem 2 

The synchronous distance defined by Definition 8 satisfies distance axioms:  σ(T1,T2) = 0 if and only if T1 = T2 ;		σ(T1,T2)≥ 0; σ(T1,T2) = 	σ(T2,T1); 	σ(T1,T2) +	σ(T2,T3)≥ σ(T1,T3).
◆ 

This theorem explains why the concept is called distance. It is assumed that T1∩T2= ∅ 

when	σ(T1,T2)> 0, since	σ(T1,T2) =	σ(T1-T2, T2 - T1) by definition. 

Theorem 3 σ(T1,T2)<∞ if and on ly if for any repeatable portion δ of any sequence in	ρ, ＃(δ, T1,T2) = 0. ◆ 

It is easy to prove the above two theorems, so omitted here. 

4.2. Transition synchronization and place synchronization 

People would think, based on experiences in daily life, that synchronization is something 

participated by different parties like hand clapping, or some events occurring at the same 

time like a live casting on TV with an on-going game. Such synchronization is characterized 

by distance 0, since one cannot see one hand clapping or see the TV show without the game. 
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We have said that hand clapping is a single transition consisting of actions of two hands; A 

live show and the on-going game would appear in a net as one transition as well since if 

they were separated as different transitions in parallel, ordered firings would produce the 

same effect , but this cannot be true. Synchronization characterized by distance 0 is 

“transition synchronization”. Synchronization with	σ(T1,T2) > 0 is “place synchronization” 

since such synchronization is achieved via places and it can be observed by taking an added 

place as an observation window. 

System Σ5 in Figure 5 (a) is the same system as shown in Figure 3 (b) with an added place p 

denoted by a dotted circle and connected to transitions by dotted arrows. This added place 

does not belong to Σ5, it is to be used for observations. 

 

(a) Σ5 (b) Σ6 

Figure 5. Added Place as Observation Window 

An observer records what he finds through the window by putting a token into p when 

transition a fires and removing a token from p when transition b fires. It is assumed that 

place p has enough tokens, say n tokens, to start with, so the recording would not be 

interrupted. The maximum number of tokens in p is n+1 while the minimum is n-1. So the 

difference is 2 between transition b and transition a. The same observation applies to Σ6  to 

get the same distance. 

The observation window p for disjoint transition sets	T1 and T2 is an added place whose 

input arcs are from T1 and output arcs are pointing to T2. Place p gets a token whenever a 

transition in T1 fires and loses a token whenever a transition in T2 fires.  Place p has enough 

tokens to start with to ensure a smooth observation. In case the number of tokens in p is not 

bounded, the distance between T1 and T2 is 	∞. Otherwise, the difference between the 

maximum and the minimum is the distance. 

It is easy to find that		σ(a,b) = ∞ for the P/T-system in Figure 6 (a), since the repeatable 

sequence t1abat2 contains two firings of a and only one firing of b. The added place p as 

shown in Figure 6 (b) has weight 2 on the arc from p to transition b, it would have n+1 

tokens after the first firing of a and n-1 tokens after the firing of b. The difference is 2.This is 

a weighted distance between b and a: σ(a,2b) = 2, the weight for a is 1 while the weight for b 

is 2. The concept of weighted synchronous distances makes a distinction when infinite 
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distance is encountered. For simplicity, the formal definition of weighted synchronous 

distances is omitted here. 

 

(a) Σ7 (b)Σ8 

Figure 6. Weighted Synchronous Distance 

Generally speaking, T1 and T2 may have more than one transition. It is possible that all 

transitions in the same set share the same weight, it is also possible that different transitions 

need different weights. It is assumed that the weights, if exist, would take the smallest 

possible values. For simplicity, we write σ’(T1,T2) for weighted distance between T1 and T2 

when the weights for individual transitions are known. The restriction on weights to be 

smallest leads to uniqueness of the distance. 

Theorem 4 

For an arbitrary place s in S in P/T-systemΣ, as long as s has disjoint pre-set and post-set, 

σ’(T1,T2) = max{ M(s)∣M∈[M0>} – min{ M(s)∣M∈[M0>} if exists, otherwise	σ′(T1,T2) = ∞, 

where T1 and T2 are respectively the pre-set and post-set of s and	σ’(T1,T2) denotes a 

weighted distance with W(s,t) as the weight of transition t in T2 and W(t,s) as the weight of 

transition t in T1.◆ 

This theorem is true since what the added place records is exactly what happens in s. 

In case there are no weights that yield a finite distance between T1 and T2, T1 and T2 are 

asynchronous.  

4.3. Computing synchronous distance 

All transition sequences can be found on the graph G(Σ). Synchronous distances, weighted 

or not, are defined in terms of transition sequences. Thus, it is possible to design algorithms 

for the computing of distances. Firstly, if a ring exists on G(Σ) that contains different 

numbers of firings of T1 transitions and T2 transitions, the distance is ∞. All algorithms are 

designed for computing finite distances only. The book in Chinese entitled Petri Net 

Applications by the author will soon appear, in which an algorithm for the computing of 

synchronous distances in P/T-systems can be found. It is easy to design an algorithm for 

computing weighted distances based on this algorithm.  
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We go no further on synchronous distances in this chapter since what concerns us is 

workflow modelling and what has been said about synchronous distances is already 

sufficient. 

5. Business process 

A successful application of Petri nets requires a full understanding of the application 

problem. 

The term “workflow” was used as a synonym for “business process” in the book Workflow 

Management by W. Aalst and K. Hee. The terminology was developed by the Workflow 

Management Coalition (WFMC), an organization dedicated to develop standard 

terminology and standard interfaces for workflow management systems components. 

As the first step towards workflow modelling, we make a clear distinction between 

“workflow” and “business process”. 

5.1. Business process vs. workflow 

A business process is a pre-designed process in an enterprise or an organization for 

conducting the manipulation of individual cases of a business. It existed even before the 

birth of computers. The manipulation of individual business cases consists of business tasks 

and management tasks. The concept of “workflow” aims at “computerized facilitation or 

automation of a business process, in whole or part” (WFMC). To this end, the separation of 

business tasks and management tasks is of first importance. In a way, this is similar to the 

separation of data processing from a program, leading to the concepts of databases and 

database management systems. 

A single business task may be carried out by a computer program. But “computerized 

automation of a business process” focuses on management automation rather than task 

automation. Management automation relies on clearly specified management rules. Most of 

the rules apply to all cases while some of the rules apply to individual cases. The former is 

“workflow logic” and the latter is “case semantics”. The purpose of workflow modelling is 

nothing but to establish a formal specification of management rules to serve as a guide in 

the design, implementation and execution of a computer system called “workflow engine”. 

It is the execution of the engine that conducts the processing of business cases. Figure 7 

illustrates how workflow is related to business process. 

The workflow logic specifies how business tasks are ordered (for causally dependent tasks) 

and/or synchronized. But, ordering is also a way of synchronization. Thus, workflow logic 

specifies how business tasks are synchronized for all conceivable cases in a business. In 

other words, workflow logic specifies all possible routes that a business case may take when 

being processed. What workflow logic cares about a single business task is not what data it 

requires or what data it will produce, let along what exact values are inputted or outputted. 

In this sense, workflow logic is concerned with abstract business tasks only.  
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Figure 7. Business Process vs. Workflow 

A selection is required at a crossing point of different routes. Concrete data of a given case 

determine the selection. The so selected route is the “semantics” of the given case. Thus, case 

semantics is concerned with those data that are used to decide whether a business task is on 

the route to be selected. These data are called explicit data since they should appear 

explicitly in the model of case semantics.  

5.2. Management task vs. business task 

A business must have a pre-designed form (paper form or electronic form) to record how an 

individual case is initiated and processed. Such a form is called a business form, B-form for 

short. 

A business task can be characterized by 

1. It requires professional knowledge, skill and/or experience related to the business. 

2. It fills in at least one blank assigned to it on the B-form to tell what has been done. 

A management task, on the other hand, requires knowledge on management rules. If it fills 

in blanks on the B-form at all, the written content is for management need only, e.g. a serial 

number for sorting and searching B-forms later on. 

In the book Workflow Management, 16 tasks have been listed for “insurance claim” business 

in a (fictional) insurance company, among them, the first two tasks are: 

1. Recording the receipt of the claim; 

2. Establishing the type of claim (for example, fire, motor vehicle, travel, professional).  

The first task may assign a serial number to the claim. Otherwise, it would leave no trace on 

a B-form. In fact, it is even not concerned with what B-form to be used. The second task 

must fill in the blank “type of claim” at least. Thus, the first task is a management task (may 

be shared by all businesses in a company) while the second task is a business task. In other 

words, the first task should be excluded from the workflow logic for “insurance claim”, but 

the second task must be included.  
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5.3. Iteration vs. no iteration 

The author of Workflow Management wrote: “This example of a process (i.e. insurance claim) 

also includes iteration or repetition — namely, the repeated assessment of an objection or 

the revision of the amount to be paid. In theory, this could go on forever.”  

As a management rule, an objection to a claim may need to be assessed more than once, but 

it must be a fixed number of times and by different persons; furthermore, the conclusion of 

each assessment must be recorded on the B-form. In other words, reassessment is a different 

task rather than a repetition of assessment.  

Mathematically or logically, repetition could go on forever, but not for a theory of 

management. Endless repetition is not even thinkable in a management theory.  

Iteration or repetition implies “redo” of the same task, i.e. what has been written on the B-

form should be erased. “Redo” caused by wrong doings could, in theory, occur for every 

single task since human beings are erroneous by nature. No one would suggest a repetition 

for every task in a workflow model. “Redo” is nothing but a management measure to heal 

wrong doings, not a normal portion in a business process. Besides, workflow logic is about 

abstract tasks, but iteration is case dependent. 

Endless redo could not occur since it is under control of the engine. 

The execution of a single business task may include iteration. For example, when the 

amount of goods exceeds the truck load, the truck(s) would have to return after unloading. 

Such iteration is the detail of task execution, not a measure of management. Besides, it is 

case dependent. Iteration has nothing to do with workflow logic. What case semantics is 

concerned with is whether a task is on the route, not how a task is executed.  

5.4. Set of tasks vs. set of blanks on B-form 

Let T = {t1,t2,…,tn} and B = {b1,b2,…,bm} be the set of business tasks and respectively the set of 

blanks on the B-form for a give business process. The investigation here aims at properties 

of T and B for a well-defined business process. 

There must be a correspondence between T and B, telling which blank(s) each task is 

responsible for. This correspondence should guarantee that no more than one task is 

responsible for the same blank in the course of processing a single case, and no blank is left 

empty upon termination of the case processing ( those blanks that are not in relation with a 

given case are assumed to have been crossed out by the engine). Such correspondence has 

become common sense today. We will say no more about it. 

Causal dependence among tasks in T leads to a combinatorial acyclic partial order on T:﹤⊑T×T , and a sub-relation < of < : x<y ≡ x<y ∧∀z∈T:￢(x<z∧z<y). < is the “immediate 

successor” relation: y is the immediate successor of x. Since the ordering relation < is 

derivable from < by transitivity of <, we will talk about (T, <) instead of (T, <). No iteration 

among tasks in T leads to acyclic partial order. 
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Let u be a task in T, u is a start task if it is before every other task, i.e. ∀t∈T:￢(t<u); u is an 

end task if u has no immediate successor. It is assumed that there is a unique start task, i.e. 

all cases share a unique beginning to recognize and to accept a case.  

Let T1, T2 be nonempty subsets of T. T2 is called an immediate successor set of T1 , denoted 

by T1<T2, if ∀u∈T1∀v∈T2:u<v. It is easy to prove that T1 and T2  are disjoint, and tasks in T1 

(T2) are not ordered. Synchronization for management need can only be introduced between 

T1 and T2. Here, the synchronization between T1 and T2 must be place synchronization since 

they are different transitions. In case T1 and T2 are both singletons, the synchronization can 

only be the immediate successor relation. As an example, let be T1 = {a, b} and T2 = {c, d}, σ(T1,T2)=2 and	σ(T1,2T2 )=2 are two different ways of synchronization. Taking into account 

the fact that every task, if it is included on a route, can only be (effectively, redo is not 

counted) executed once, σ(T1,T2)=2 requires that tasks a ,b being executed in parallel 

followed by tasks c, d being executed in parallel; σ(T1,2T2)=2 requires that tasks a, b being 

executed in parallel followed by either task c or task d being executed alone. Data from a 

given case will be used for the selection between task c and task d. It is clear that 

synchronous distances would be of no use if redo is taken into account.  

Now the processing of a given case goes like this: it begins from the unique start task, each 

task on the route carries out its duty and fills in blank(s) it is responsible for on the B-form, 

and passes it to its immediate successor(s) via the engine. The engine takes care of quality 

checking, successor selection and appointing executer(s) for selected task(s); and finally, the 

engine passes the B-form to appointed executer(s). 

6. Synchronizer and workflow logic 

P/T-systems will be used for the modelling of workflow logic. A synchronizer is a special 

place to connect transitions (tasks) with immediate successor relation (<).  

To capture the fact that every task (transition) is executed (effectively) at most once for a 

single business case and workflow logic contains no iteration, a concept of restricted P/T-

systems, RP/T-systems for short, is proposed. 

Definition 9  

A P/T-system Σ=(S,T;F,K,W,M0) is a RP/T-system if it is acyclic (F+∩(F-1)+) =∅) and any 

transition is restricted to fire at most once. ◆ 

The P/T-system in Figure 2 is a good example: as a normal P/T-system, transition t2 can fire 

twice when p1 has 2 tokens; but as a RP/T-system, t2 can fire only once at the same marking. 

In fact, transitions t2 and t3 would fire when p1 has 2 tokens for a RP/T-system, though t2 

remains enabled after its first firing.  

Note that RP/T-systems are not a new class of net systems. If we introduce a control place c 

for every transition t such that c has an empty pre-set and {t} is its post-set, and initially it 

has one token. Apparently, with an added control place for every transition, every transition 

can fire at most once by conventional transition rules.  
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6.1. Synchronizer 

Definition 10 

A place p in a RP/T-system is a synchronizer if T1 and T2 are the pre-set and post-set of p 

and they are not empty; and ∀t ∈ T1: W(t, p) = b and ∀t ∈ T2: W(p, t) = a where b and a are 

integers such that 0≤ a ≤ n and  0≤ b ≤ m ; n, m are respectively the numbers of transitions in 

T1 and T2; and K(p) = ab.◆ 

The RP/T-system in Figure 2 has two synchronizers p1 and p2 since K(p1) = 2 and K(p2) = 2.  

The synchronizer defined by Definition 10 is usually denoted by p = ( T1, T2, (a, b)) or p =  

(．p, p．, (a, b)). Figure 8 (a) is the graphical presentation of a synchronizer p and (b) is the 

detail of p, explaining how synchronization is achieved. Theorem 4 concludes that σ(bT1, 

aT2) = ab, i.e. the weighted synchronous distance between T1 and T2 are ab where b is the 

weight for all transitions in T1 and a is the weight for all transitions in T2.   

 

Figure 8. A Synchronizer and its Detail 

Definition 11 

Let p = ( T1, T2, (a, b)) be a synchronizer and n, m be the numbers of transitions in T1 and T2. 

P can be classified as below: 

n=m=1, p is sequential synchronizer, 

m>1, p is a split, 

n>1, p is a join,  

a>1 and a=n, p is an ALL-join, 

1<a<n, p is an OR-join, 

a=1 and a<n, p is a XOR-join, 

b>1 and b=n, p is an ALL-split, 

1<b<m, p is an OR-split, 

b=1 and b<m, p is a XOR-split. 

Here we have deliberately chosen terms used by Prof. Aalst for WF-net. The difference is, 

our synchronizers are places while synchronization is achieved via transitions in WF-net. 

Synchrony in Section 3 has made it clear that synchronization with a distance greater than 

zero is place synchronization. We will see what advantages the concept of synchronizers 

brings with it when we approach to management logic. 
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Figure 9 shows how to achieve mixed synchronization where p1 is an XOR-split and p2 is an 

ALL-split.  What follows task t would be one of t1 and t2 plus both t3 and t4. 

 

Figure 9. ALL-split and XOR-split mixture 

Definition 12 

Let x, y be variables of integer type. The place p1 = (T1, T2, (a, y)), p2 = (T1, T2, (x, b)) and p3 = 

(T1, T2, (x, y)) are variations of synchronizer p = (T1, T2, (a, b)) as long as 0 < x ≤n and 0 < y≤ 
m. p1, p2 and p3 are flexible synchronizers, since x and y can take different values.◆ 

Figure 10 explains how flexible synchronizers work: x may take 1 or 2 as its value to achieve 

different synchronization.  

 

Figure 10. Flexible Synchronizers p1 and p2 

We have not found a way to express flexible synchronization in terms of WF-net since an 

OR-split or OR-join transition in WF-net does not tell the exact number “OR” represents. 

6.2. Workflow logic 

RP/T-systems are candidates for modelling workflow logic, but not every RP/T-system is 

suitable. 



 
Workflow Modelling Based on Synchrony 123 

Definition 13 

For RP/T-systemΣ= (S,T;F,K,W,M0), relation next T×T is given by next = {(t, t’) |t∩t’≠ ∅}. 

We write next(t, t’) for (t, t’)	∈	next. Σ is well ordered if, for any t, t’ in T, next(t, t’) implies ∀u ∈ T:￢(next(t,u)∧next(u, t’). 

The system in Figure 11 is not well-ordered, since we have next(t1, t3) and next(t1, t2)∧ next(t2, 

t3).  

 

Figure 11. A System not Well-ordered 

Remember that we are seeking for net systems that are suitable for modelling workflow 

logic. If t1, t2 and t3 are tasks, then the B-form would be passed from t1 to t3 twice: one 

directly and one via t2. This redundancy leads to structure complexity and analytical 

difficulty. Besides, there might be semantic inconsistency for this or that reason. 

Definition 14 

A well-ordered RP/T-systemΣ= (S,T;F,K,W,M0) is a workflow logic if : 

Every transition has nonempty pre- and post- sets; there is a unique place s0 such that it has 

an empty pre-set and its post-set is a singleton {t0} and K(s0) = 1, W(s0, t0) = 1; every 

intermediate place p is a synchronizer; every end-place, i.e. a place with an empty post-set, 

has a capacity 1 and its input arc(s) has 1 as its weight; The initial marking has a unique 

token in s0.◆ 

A task is initiated upon receiving a B-form, and passes it over to its successor upon 

termination. Thus, its pre-set and post-set are nonempty. The unique place s0 is the place to 

receive initiated B-forms one by one and one at a time. Transition t0 is the unique start task. 

An end-place is to receive completed B-forms, one by one and one at a time. All tasks must 

be well synchronized, so intermediate places are synchronizers. The weight on an input arc 

(t, p) of synchronizer p represents that W(t, p) immediate successors need the B-form 

completed by t, and the weight on an output arc of p represents that B-forms completed by 

W(p, t) different immediate predecessors of t are needed by t. The unique token in s0 

represents an abstract single case. It is an abstract case since no data is needed. An abstract 

case resembles all conceivable cases.  
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The system in Figure 2 is workflow logic. The conventional transition rules would apply to a 

workflow logic if a control place is added to each of the transitions (so, no transition can fire 

for the second time for one case) and the detail of every synchronizer as given in Figure 8 is 

also made explicit. But, this would make workflow logic too complicated for practical use. 

The following is the transition rules for workflow logic. 

Definition 15 

LetΣ= (S,T;F,K,W, M0) be a workflow logic, t in T is a transition and M is a marking (i.e. the 

initial marking M0 or reachable from M0 by rules given here). 

1. t is enabled by M (or at M), denoted by M[t≫, if ∀s ∈t:M(s)=K(s), 

2. Once M[t≫ is true, it remains true until either t occurs or t is not enabled according to 

conventional transition rule. 

3. The successor marking, when t fires, is computed according to the conventional rule.◆ 

It is recommendable to compute the set of reachable markings for the workflow logic given 

in Figure 2. We denote with [M0	≫ the set of reachable markings. 

Redundancy is always closely connected to complexity. The property of being well-ordered 

has removed certain redundancy. The next definition reveals different redundancy. 

Definition 16 

A workflow logic is well-structured if for every synchronizer p and a reachable marking M, 

M(p) = K(p) implies the fact that either all transitions in the post-set of p are enabled, or 

none of them is enabled.◆ 

Figure 12 illustrates this definition:  the workflow logic in (a) is not well- structured, since t3 

is enabled but t4 is not when p2 has a token (the capacity of a synchronizer is known without 

saying). On the other hand, transitions t3, t4 and t5 are all enabled when p2 has 2 tokens in the 

system in (b). 

Careful readers may have noticed that p2 in (b) is not a synchronizer. No, it is not. It is a 

variation of a synchronizer. The two transitions t3 and t5 in (b) are viewed as twins: either 

both of them to be on a route, or none of them to be selected since t4 requires 2 tokens. Thus, 

as far as route selection is concerned (workflow logic aims at the description of all possible 

routes), twin transitions could and should be combined as shown in Figure 13. Variations of 

synchronizers may be allowed in practice for convenience. But for the analysis of workflow 

logic, combined twins are preferred.  

If the system in Figure 12 (b) is taken as workflow logic with a synchronizer variation, it 

reveals another problem: there would be two tokens upon the completion of one case 

when t3 and t5 are on its route. This is inconsistent with common knowledge: A single case 

cannot have two separated conclusions. This observation raises a question: what 

properties a well-defined workflow logic should have, in addition to being well-ordered 

and well-structured? 
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Figure 12. Not well- structured workflow logic 

 

Figure 13. Combined Twins 

Soundness! This is the answer from WF-net. Soundness requires: 

“A process contains no unnecessary tasks and every case submitted to the process must be 

completed in full and with no references to it (that is case tokens) remaining in the process.” 

(a)

(b)
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What we propose is throughness: the token in s0 (an abstract case) will be passed over by 

transition firings (tasks) via the engine, to a unique end-place. All properties required by 

soundness are covered by being through.  

In what follows, workflow logic is always assumed well-structured. 

6.3. Throughness and reduction rules 

Let Σ = (S,T; F, K, W, M0) be a well-structured workflow logic, and M is a reachable 

marking.  

Definition 17 

1. M is a termination marking if it enables no transition; M is an end-marking if there is a 

unique end-place e such that M(e) = 1 and M(s) = 0 for all places s other than e. 

2. Σ is through if every termination marking is an end-marking and every end-marking is 

also a termination marking. ◆ 

The workflow logic in Figure 2 is through. 

Theorem 5 

If workflow logicΣis through, then for every transition t, there is a reachable marking M 

that enables t and there is a route to which t belongs.◆ 

From the fact that Σ is acyclic and s0 is unique, we know that there is a directed path from s0 

to t. By mathematical reduction on the length of this path, this theorem is easy to prove.  

Soundness of a WF-net is proved via computing T-invariant by adding an extra transition 

between its unique place o and its unique initial place i. This method applies to workflow 

logic as well. But we do it differently. 

Keep in mind the principle of local determinism. Our attention focuses on local structures of 

workflow logic rather than global properties like T-invariants.   

Characteristics of local structures bring up the following reduction rules for proving 

throughness of workflow logic. 

Reduction Rule 1 

Synchronizer p1 = (T1,T0,(a1, a2)) and p2 = (T0,T2,(b1,b2)) can be reduced to synchronizer p = 

(T1,T2,(a1,b2)) if a2 = b1. ◆ 

Figure 14 illustrates this rule. 

Let Σ be the workflow logic to which rule 1 is applied and Σ’ is resulted by replacing p1, T0, 

p2 with p in Σ. We have 

Theorem 6 

Σ is through if and only if Σ’ is through.◆ 



 
Workflow Modelling Based on Synchrony 127 

Synchronizer p1 requires that a2 transitions from T0 to fire after the firings of a1 transitions 

from T1 while synchronizer p2 requires that b1 transitions from T0 to be fired before any 

transition firing from T2. Given a2 = b1, p1 and p2 are consistent with each other on T0: a1 

transitions from T1 followed by b2 transitions from T2. Thus, the theorem is true. (p1,T0, p2) is 

in fact the detail of p. This reduction of omitting consistent detail is a net morphism in net 

topology. No wonder the property of being through is reserved. All reduction rules are in 

fact to conceal   local details, and as such, they reserve throughness. But there will be no 

more theorems and proofs to be given below for simplicity. 

 

Figure 14. Reduction Rule 1 

Reduction Rule 2 

For synchronizer p = ({t1}, {t2}, (1,1)), if t1.∩.t2 = {p}, then (t1, p, t2) can be replaced by a single 

transition t with .t = .t1∪.t2– {p} and t. = t1.∪t2.– {p}. All weights on remaining arcs remain.◆ 

Figure 15 illustrates this rule. 

 

Figure 15. Reduction Rule 2 

It is easy to see that the combined effect of t1 and t2 on all places other than p is the same as 

the effect of t. The dotted circles and arcs may exist, but not necessarily.  

Reduction Rule 3 

For transition t and places p1, p2, if p1.∩.p2 ={t} and W(p1, t) = W(t, p2) = 1, then (p1,t,p2) can be 

replaced by p, .p = .p1∪.p2– {t} and p. = p1.∪p2.–{t}. All weights on remaining arcs remain. ◆ 

Note that places p1 and p2 are not necessarily synchronizers, i.e. it is possible .p1 = ∅ and/or 

p2. = ∅.	 
Figure 16 (a) illustrates this rule. 
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Figure 16. Reduction Rule 3 

The workflow logic in Figure 16 (b) is not through since the termination marking would 

have two tokens at two different end-places. Rule 3 can be applied to reduce it in size, but 

the resulted place p turns out to be inconsistent between its pre-set and its post-set. 

Reduction Rule 4 

For T1 = {t1, t2,…, ta} and T2 = {t1’, t2’,…, tb’}, if pi = ({ti}, T2, (1, b)) is a synchronizer, i = 1, 2,…, a, 

then p1, p2,… pa can be reduced to a single synchronizer p = (T1,T2, (a, b)); If pi’ = (T1, {ti’}, 

(a,1)) is a synchronizer i = 1,2,…, b, then p1’, p2’,…pb’ can be reduced to the same single 

synchronizer p = (T1,T2, (a, b)).◆ 

Figure 17 illustrates this rule where a = 3 and b = 2. 

 

Figure 17. Redaction Rule 4 
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We will see the significance of this rule and the rule next when management logic is 

discussed, since separated managements before the rule is applied become centralized 

management after it. 

Reduction Rule 5 

If pi = ({t}, {ti}, (1, 1)) is a synchronizer for every i, i = 1, 2, …, a, then these synchronizers can 

be reduced to a single synchronizer p = ({t}, {t1, t2,…, ta}, (1, a)).   

If pj = ({tj}, {t}, (1, 1)) is a synchronizer for every j, j = 1, 2, …, b, then these synchronizers can 

be reduced to a single synchronizer p = ({t1, t2,…, tb}, {t}, (b, 1)).◆ 

Figure 18 illustrates this rule, where a = b = 3. . 

 

Figure 18. Reduction Rule 5 

The next reduction rule reserves throughness, but a place element rather than a 

synchronizer is used for reduction. 

Reduction Rule 6 

In this rule, i = 1, 2, …, a  and j = 1, 2, …, b. For transition sets T = {t1, t2,…, ta} and Ti = {ti1, ti2,

…, tib}, if pi = ({ti}, Ti, (1, b)) is a synchronizer for every i, then these synchronizers can be 

reduced to the place p:.p = T, p. = ⋃ T௜ୟ୧ୀଵ , K(p) = ab, W(ti, p) = b and W(p, tij) = 1, If pi.’ = (Ti, 

{ti}, (b, 1)) is a synchronizer for every i, then these synchronizers can be reduced to the place 

q: .q = ⋃ T௜ୟ୧ୀଵ , q. = T, K(q) = ab, W(tij, q) = 1, W(q, ti) = b.◆ 

Figure 19 illustrates this rule, where a = 3 and b = 2. 

A noticeable fact is: places p and q are different from a synchronizer at two aspects. Firstly, 

their capacities are both ab instead of the product of the input weight and the output 

weight. Secondly, transitions in Ti and Tj , i ≠ j, maybe enabled at different times before 

reduction, but they will be enabled at the same time by p; similarly, transitions in T will be 

enabled at the same time by q, but maybe not before reduction. The important point is, the 

number of transitions to be selected for a route remain unchanged (real selection is to be 
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determined by concrete data from a practical case later by case semantics.) due to the fact 

that all synchronizers in question are either ALL-split or ALL-join. This means that the 

property of being through is reserved. 

 

Figure 19. Reduction Rule 6 

Definition 18 

A place p with .p = T1 and p. = T2, T1≠ ∅, T2≠ ∅, is called a virtual synchronizer if there exist 

integers a and b such that ∀t ∈ T1:W(t,p)=b,∀t ∈ T2:W(p, t)=a, K(p)	≠ ab, but K(p)/b = n, 

K(p)/a = m, where n, m are respectively the numbers of transitions in T1 and T2. For virtual 

synchronizer p, we also write p = (.p, p., (a,b)).◆ 

The two places p and q in Figure 19 are virtual synchronizers. It is easy to check that the two 

places used for reduction by Rule 6 are virtual synchronizers in general.  

For further reduction when a virtual synchronizer is involved, we have the revised version 

of Reduction Tule 1: 

Reduction Rule 1’: 

Let each of p1 = (T1, T0, (a1, a2)) and p2 = (T0, T2, (b1, b2)) be a synchronizer or a virtual 

synchronizer. As long as K(p1)/a1 = K(p2)/b2, (p1, T0, p2) can be reduced to p = (T1, T2, (a, b)), 

where a = K(p1)/b1 and b = K(p2)/a2, and K(p) = ab, ∀t ∈ T2: W(t, p) = b and ∀t ∈ T2: W(t, p) = a.
◆ 

This rule is applicable when the involved virtual synchronizer is of ALL-join and ALL-split 

nature. Otherwise, local consistence should be checked since a virtual synchronizer is more 

flexible than a synchronizer. Figure 20 explains: the workflow logic on top is not through 

since just one of p2 and p3 may have 2 tokens while p4 requires the two of them to have two 
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tokens each. As shown in the figure, a virtual synchronizer p5 is obtained when rule 6 is 

applied. The resulted system after rule 6 remains being not through. If rule 1’ is further 

applied to p5 and p4, we get a system that is through. Inconsistence between p1 and p4 is 

concealed. The virtual synchronizer p5 does not tell whether it is ALL-split or OR-split. It 

inherits property of being ALL-split or OR-split from p1. 

 

Figure 20. Reduction Rule 1’ leads to Error 

Figure 21 illustrates Reduction Rule 1’, in which the workflow logic on top is apparently 

through. After twice applications of rule 6, the resulted p6 and p7 are virtual synchronizers 

both. By reduction rule 1’, these two virtual synchronizers are replaced by p, which is a 

synchronizer. This time the property of being through is reserved.  

Reduction Rule 6 is suggested not to be used as long as there is a different reduction rule 

applicable. 

Theorem 7 

A well-structured workflow logic has the property of being through if it can be reduced to a 

single isolated place, i.e. a place whose pre-set and post-set are both empty.◆ 
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Figure 21. Reduction Rule 1’ 

This theorem is true since all reduction rules (including carefully used rule 1’) reserve 

throughness . The isolated place is the start-place and the end place at the same time, thus 

the concealed detail has the property of being through. 

This isolated place represents “harmony” as far as workflow logic is concerned. An 

interesting fact is, the isolated transition represents “contradiction” when it is resulted by 

applying the Resolution Rule and the Expansion Rule in Enlogy (a branch in GNT, net logic) 

for logical reasoning. A pair of dual elements, i.e. a place and a transition, lead to opposite 

concepts in philosophy, could this happen by chance? In fact as we will see soon, the dual of 

workflow logic is exactly the logic for workflow management. 

We do not claim the completeness of this set of reduction rules. Whenever a user finds 

workflow logic not reducible to “harmony” though it is indeed through, please try to figure out 

new reduction rules and to let us know. Reduction rules would be enriched this way, we hope. 

Figure 22 shows how to reduce to harmony the workflow logic for insurance claim where t0, 

t1, t2, t3 and t4 are respectively the tasks “accept”, “check policy”, “check claim”, “send letter” 

and “pay” (See Workflow Management). 



 
Workflow Modelling Based on Synchrony 133 

 

 

 
 

 

Figure 22. Reducing Workflow to Harmony 

Figure 23 is a more complicated net from Dr. Aalst during his visit to Tsinghua University 

(Beijing, China) in 2004, where (a) is the original net in which every place has the capacity 

1 and all weights on arcs are also 1, i.e. a WF-net. The author would suggest to take (b) as 

the workflow logic for whatever business in mind. Note that (c) contains virtual 

synchronizers. 
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Figure 23. Reduction Process 
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6.4. Develop a workflow logic for a given business 

Let T = {t1, t2,…tn} and B = {b1, b2, …bm} be respectively the set of business tasks with < as its 

immediate successor relation, and the set of blanks on the B-form for a well-designed 

business. There should be a fixed correspondence between T and B to make clear 

responsibilities for each of the tasks in T. This correspondence will not be mentioned any 

more. 

Let Σ= (S,T;F,K,W,M0) be the net system such that T is the task set and S = {p1, p2, …pk}∪{s0}

∪E where for each i, i = 1, 2, …, k, k is the number of non-end tasks t1, t2, …tk in T, .pi = {ti}, 

pi. is the set of immediate successors of ti. Let ai be the number of tasks in this immediate 

successor set, ai’  is the intended number of tasks to be executed after ti, then K(pi) = ai’, and 

W(ti, pi) = ai’ for every immediate successor t of ti, W(pi, t) = 1. It is easy to see that pi is a 

synchronizer: pi = ({ti}, pi. ’ ( 1, ai’)). 

The place named s0 is the unique start place: it has an empty pre-set and its post-set contains 

the unique start task with arc weight 1. 

For every end-task in T, there is a unique end place e in E with 1 as the arc weight between 

them. E contains nothing else. 

M0(s0) = 1 and all other elements in S have no token. 

As a workflow logic of a business process, transition rules for RP/T-systems are assumed for

Σ. 

Σ must be well-ordered since < is exactly its next relation among transitions. 

Σ may be not well-structured as shown by Figure 12 (a). In this case, measures must be 

taken as suggested from Figure 12 (a) to (b), then to Figure 13. 

Redundant synchronizers may be removed by Reduction Rule 3.  

As an example, Let T = {t1, t2, t3, t4, t5} and <= {(t1, t2), (t1, t3), (t2, t4), (t2, t5), (t3, t4), (t3, t5)}. There 

are 3 non-end tasks in T, namely t1, t2 and t3. So there 3 synchronizers: p1, p2 and p3. Figure 

24 shows the developed workflow logic. 

 

Figure 24. A developed Workflow Logic 

There is redundancy in the developed system at p2 and p3. By Reduction Rule 3, these two 

synchronizers are reduced to a single synchronizer p = ({t2, t3}, {t4, t5}, (2, 1)). This is the 

workflow logic for insurance claim, as shown in Figure 22, there it was reduced to harmony. 
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7. Case semantics 

Let Σ= (S,T;F,K,W,M0) be the workflow logic developed for a business process. Case 

semantics is to select a route for the processing of a given case. 

A healthy enterprise should have new cases arrive every day. It is impossible to have 

different routes for different cases. Cases must be classified so that one route for one case 

class. 

Let C= {c1, c2, …ck} be the set of conditions for case classification. For example, let Boolean 

variable x, y be used to record conclusions given by tasks “check policy” and “check claim” 

respectively for insurance claim i.e. x and y are blanks on the B-form. One way to specify 

case classes is: c1 = x∧y, c2 =¬x∨¬y. This classification is consistent with the workflow logic 

developed in Figure 24. Another way of case classification is to have 4 classes: c1 = x∧y, c2 

=¬x∧y, c3=x∧¬y, c4 =¬x∧¬y. This classification leads to a different task set: there have to be 4 

end tasks. Thus the workflow logic is also different. The B-form should as well be changed 

accordingly. 

Before going on from conditions to routes, a definition of routes is needed.    

Definition 19 

A route on a workflow logicΣ= (S,T;F,K,W,M0) is a RP/T-systemΣ’= (S’,T’;F’,K’,W’,M0’) 

such that S’,T’, and F’ are subsets of S,T and F respectively: 

S ‘contains the start place s, a unique end place e, and all synchronizers in S that have a 

directed path to e  

T’ consists of the start transition (task), the transition in the pre-set of e, and for every 

synchronizer p= (.p, p.,(a, b)) in S’, a transitions from .p and b transitions from p.. 

F’ = {(x,y) | x,y∈ S’∪ T’∧ (x,y)	∈ F}.  

For x ∈ S’, K’(x) = K(x); For (x, y) ∈F’, W’(x, y) = W(x, y); M0’(x) = M0(x) for all x in S’.◆ 

The difference betweenΣ= (S,T;F,K,W,M0) and Σ’= (S’,T’;F’,K’,W’,M0’) appears when a 

synchronizer p is an OR-join and/or OR-split. Conditions c1, c2, …ck will be used to select a 

transitions from .p and b transitions from p.. Thus, variables (blanks in B) used in these 

conditions are explicit variables, since they will appear explicitly in the system model for 

case semantics. 

7.1. C-net: Net with variables [5,8] 

C-net was originally defined for programming, i.e. for computation and communication. 

Variables are essentially different from conventional place elements of directed nets. A 

conflict between transitions in a net system is caused by either the lack of tokens in a shared 

place, or by the limited capacity of a shared place; a conflict between operations on a 

variable is read-write conflict: simultaneous read-write on the same variable is impossible 
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by nature regardless of the exact value of that variable. Besides, there is a rich variety of data 

types and operations for data types. Conditions for case classification cannot be formally 

expressed without variables and operations on variables. The example of insurance claim 

explains: c1 = x∧y, c2 = (¬x∧y)∨(x∧¬y), c3 =¬x∧¬y provide a third way of case classification. 

When variables are introduced into a net as another kind of state elements, a net becomes a 

C-net. A simplified version of C-net is introduced next, just to serve the need of modeling 

case semantics. 

Definition 20 

Σ= (S,V,T;F,K,W,R,Wr, MT, M0) is a C-net system if 

S,V,T are the sets of places, variables and transitions respectively; F,R,Wr are respectively 

the flow relation, the read relation and the write relation; K,W are the capacity function and 

the arc weight function; MT is a marking on T and M0 is a marking (initial marking) on S.◆ 

A transition may read and/or write a variable, but not must. The marking on a transition has 

a Boolean expression as its guard and assignments as its body when it writes. The guard and 

the body must be consistent in relation to read and write. For example, the guard can only 

refer to variables that are to be read by the transition.  

If a transition has nothing to do with variables, conventional transition rules apply. If a 

transition has nothing to do with places, it is enabled when its guard is true. If a transition is 

related with places as well as variables, it is enabled if it is enabled by places and its guard is 

true. 

Isolated transitions are excluded in a C-net. 

An enabled transition may fire to produce a successor marking on S, the marking on T 

remains like the weight function and the capacity function; variables in write relation with 

this transition are assigned values by the assignments.  

A c-net transition in general has a figure called “status” as part of MT. Transition firings may 

change “status”. But this does not concern us. 

To save space, detailed formal definitions are avoided. Figure 25 illustrates them, including 

graphical presentation of C-nets. 

 

Figure 25. A C-net System: Case Semantics for Insurance Claim 
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The case semantics of insurance claim given in Figure 25 divides conceivable cases into 2 

classes. Variables like x and y are drawn as double circles, write relation is represented by a 

zero-headed arc from transition to variable, reversed zero-headed arc represents read 

relation. For example, t2 writes x and t4 , t5 read x. 

The start transition t1 is in no relation with x and y, it has no guard, no body. The guards of 

both t2 and t3 are “true”, denoted by default. The write operations of these two transitions 

are to be performed by their executers, denoted as x:= D where D is the abbreviation of 

“default”. Transitions t4 and t5 have conditions for case classification as their guards. They 

have empty body since they write no variables. 

Apparently, the case semantic contains two routes: one for each class. As long as the 

classification of cases is complete and consistent (every case falls into exactly one class), 

there would be a unique route for each case. 

7.2. Workflow logic and its case semantics 

Let (T,<), B ={b1, b2, …bm} and C = {c1, c2, …ck} be the main constituents of a business process. 

There is a precise correspondence between tasks in T and blanks (on B-form) in B; Condition 

set C is complete and consistent; the immediate successor relation < is implied by a 

combinatorial acyclic partial order on T. With all these requirements satisfied, ((T,<), B ,C) is 

a well-designed business process. We will not put all these into formal definitions since that 

would be cumbersome and uninteresting.  

Definition 21 

The C-net systemΣ’=(S,V,T;F,K,W,R,Wr,MT,M0) is a case semantics of the workflow logicΣ= 

(S,T;F,K,W,M0) developed for well-designed business process ((T,<), B , C), if the marking 

MT (which is constant) satisfies that for those t in T that have a guard, the guard is a 

condition in C, and every condition in C is the guard of some transition.◆ 

Definition 22 

Let C-net systemΣ’=(S,V,T;F,K,W,R,Wr,MT,M0) be a case semantics of the workflow logicΣ= 

(S,T;F,K,W,M0) developed for well-designed business process ((T,<), B , C). If Σ is through, 

and for every OR-split synchronizer p = (.p, p., (a, b)), b<|p.  |, for every condition ci in C, i = 

1,2, … k, |{t|t∈ p.∧ guard (t) = ci}|= b, then Σ’is consistent with Σ.◆ 

Theorem 8 

If Σ is a through workflow logic and Σ′ is a case semantics consistent with Σ, then there is 

a unique route for every conceivable case. ◆ 

For a case in class ci, the route it will take is obtained by deleting from Σ all transitions 

whose guard is not ci together with their successor elements.  

Figure 26 shows another case semantics of the insurance claim business process where cases 

are divided into 3 classes by conditions c1 = x∧y, c2 = (x∧¬y)∨( ¬ x∧y) and c3 = ¬x∧¬y . The 

task set has one more end-task for this classification. 
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Figure 26. Another Case Semantics for Insurance Claim 

The only OR-split synchronizer in Figure 26 is p2. It has 3 tasks in its post-set and each of 

which bears a different condition as its guard. This is consistent with p2: p2 is a XOR-split 

synchronizer. 

8. Business process management 

So far we have proposed a formal model as workflow logic and a formal model as case 

semantics for a well-designed business process. Case semantics in embedded in a Workflow 

logic when they are consistent with each other. There is a unique route for every conceivable 

case as the semantics of that case. Thus, a firm foundation has been laid for management 

automation. The computer system that conducts the processing of each given case based its 

semantics is the workflow engine. 

8.1. Management logic 

As suggested by Figure 8 (b), every synchronizer p = (.p, p., (a, b)) requires management 

(transition t in the detail of the synchronizer) to keep tasks in .p well synchronized with 

transitions in p.. The start-place requires management, so do all end-places. At the start-

place, the engine must recognize the proper business process when a case (B-form) arrives, 

and to have the corresponding workflow logic ready, and to appoint an executer for the 

start-task and passes the B-form to the executer. At an end-place, the engine must check 

whether the case is well processed and to put the completed B-form in place. 

All in all, places and synchronizers are exactly where the engine does its duty. In other 

words, the dual of workflow logic is the management logic, and the dual of case semantics 

with given condition ci in C produces the route for all cases classified by ci. 

Definition 22 

1. The directed net N’ = (T,S;F) is the dual net of directed net N = (S,T;F). 

2. ∑’= (T, S; F,K’,W’, M0) is the workflow management logic for workflow logic ∑= (S, T; 

F,K,W, M0), where K’(t) = ∑W(p, t) for every t in T, i.e. the capacity of t is the sum of all 

weights on its input arcs; W’(x, y) = W(x, y) for all (x, y) in F; M0 (t) = 0 for t in T. 

3. (∑,∑’) is the logic pair for the business process in question.◆ 
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Figure 27 is the logic pair for insurance claim with two case classes. 

 

 
 

Figure 27. Logic Pair 

Management tasks (transitions inΣ’) and business tasks (transitions inΣ) are executed in 

turn: whenever a place (including synchronizers) inΣhas a full capacity of tokens, the 

transition with the same name inΣ’ is enabled. The enabled transition fires to put tokens 

into its output places inΣ’, whenever a place inΣ’has a full capacity of tokens, the transition 

with the same name inΣ is enabled. This interactive transition firings continue till a 

transition named with an end-place is fired to move the case token out of the pair. This is the 

way how management tasks and business tasks interact with each other. 

8.2. Route for cases in the same class 

A logic pair specifies, for a given business process, how individual cases are processed 

under the conduction of the engine (the manager). Figure 28 shows a case semantics and 

its dual, that is a semantic pair, a pair of C-net systems. The guard on a transition (task) 

will be used by the engine (transitions named after a synchronizer) for the selection of 

routes. We will not give a formal definition of this pair, since it is clearly specified by the 

figure. The interaction between this pair is the same with the logic pair, except details 

given by guards. 

Figure 27 and Figure 28 serve as the main part of a formal specification for a workflow 

engine. The rest of the engine is enterprise specific (personal, organizational division etc.). 
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Figure 28. Semantic Pair 

8.3. Duty of the engine 

The main duty of the engine is to conduct the manipulation of individual cases based on the 

logic pair (before the class to which the case belongs is known) and the semantic pair 

(transitions named after an OR-split synchronizer), including appointing executers for 

selected tasks.  

In addition to this major duty, other duties include (not exclusive): 

 Set a time upper bound for each task to be executed next, and to remind before 

expiration, check whether it is done on time; 

 Check whether a task is properly done (e.g. whether the content filled in a blank 

matches its type); 

 Decide, based on given rules, what to do when an expiration or quality failure is 

detected (e.g. redo for quality failure, bad record on the due person for expiration); 

 Other thinkable duties, especially enterprise specific ones. 

An engine carries out its duty properly if and only if it has predefined management rules to 

follow. In addition to global rules specified by the logic pair and the semantic pair, local rules 

are also necessary, i.e. rules for every management task (every place in workflow logic). 

Remember that all places in workflow logic are where the engine can and must put a hand on. 

Some management rules are closely related to individual enterprises, some are even secrete 

to outsiders. Current and historical business data, business partners data, conventions or 

traditions etc. All rules related to these must be carefully established and checked together 

with a well-designed business process, a well-structured workflow logic of the process, a 
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case semantics consistent with the logic. The two pairs are derivable from the logic and 

semantics. We go no further here in this chapter. 

9. Conclusions and acknowledgement 

Prof. Carl Adam Petri wrote: “In order to apply net theory with success, a user of net theory 

can just rely on the fact that every net which he can specify explicitly (draw on paper) can be 

connected by a short (≤ 4)	chain of net morphisms to the physical real world; your net is, in 

a very precise sense, physically implementable”.  

We have seen this quotation at the very beginning of this chapter. This chapter tries to make 

clear how to specify a net that is “in a very precise sense physically implementable”. A 

successful application of net theory starts from a full understanding of the application 

problem. A well designed business process ((T,<), B ,C) leads to the discovery of workflow 

logic, case semantics and management pairs, a tree-layer model for workflow modeling. 

Without theory, full understanding of application problems becomes hard. Well-structured 

business process ((T,<), B , C) starts from a clear distinction between business process and 

workflow, a clear distinction between business tasks and management tasks, and a clear 

distinction between transition synchronizations and place synchronizations. Business 

process and workflow are not synonym of each other. 

A full understanding of application problems and a good grasp of theories in Petri nets that 

build a road to success. 

The author is grateful to the editors of this book. It is a great honor to me as well as a good 

chance for me to exchange ideas on Petri nets with friends outside my country. 
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