
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 6

© 2012 Yuan, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Workflow Modelling Based on Synchrony

Chongyi Yuan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48375

1. Introduction

Prof. Carl Adam Petri wrote: “In order to apply net theory with success, a user of net theory

can just rely on the fact that every net which he can specify explicitly (draw on paper) can be

connected by a short (≤ 4) chain of net morphisms to the physical real word; your net is, in a

very precise sense, physically implementable.” (Status Report On Net Theory, 1989, a

forward for my book Petri Nets 	in Chinese[1]).

Why a net is physically implementable? The reason is, every concept in net theory is

carefully chosen based on nature laws, and well defined in terms of precise mathematics

and logic. For example, the concept of global time does not belong to net theory. Time

measured with real numbers exists only in theories like theoretical physics. Logical time

does not exist in the real world. For net theory, time is just “clock reading”, a measurement

of physical changes. Global time is not realistic for systems in which a shared clock is not

available.

On the other hand however, it is easy to find in the literature, that many an author

introduces new concepts into his or her Petri net with implementation totally forgotten.

“Timed Petri Net” is just one of such examples.

As one of the chapters in this book on Petri nets, implementable concepts and only

implementable concepts will be introduced.

We start with the definition of a directed net, which is the most fundamental concept in net

theory. The next two sections serve to keep this chapter self-reliant.

This chapter is organized as below:

Sections 2 and 3 recall basic definitions of Petri Nets: The concept of directed net deserves a

separate section since it is the foundation of the whole net theory. Section 3 is mainly about

Place/Transition-systems, based on which workflow models are to be constructed.

Petri Nets – Manufacturing and Computer Science 108

Section 4 is an introduction of synchrony, a branch in net theory on transition

synchronization that provides theoretical support to workflow modelling.

Section 5 talks about business processes, the subject of workflow research. A full

understanding of the concept of business processes makes a good start.

Section 6 proposes the concepts of synchronizers and workflow logic. A synchronizer

connects transitions in two consecutive steps in a business process, and workflow logic is

obtained when all transitions in a business process are so connected. Properties and analysis

methods of workflow logic are defined and proposed. A transition in workflow logic

represents a business task while a synchronizer represents a task in workflow management.

Workflow logic specifies all possible routes a business case may take when it is processed.

An individual business case corresponds to a unique route among all routes given by

workflow logic. This route is considered as the semantics of that case. Section 7 defines the

concept of case semantics.

Section 8 is about business process management, or automatic management. The dual net of

workflow logic is exactly the logic of management, based on which workflow engine

conducts the process of individual cases.

Section 9 concludes this chapter with acknowledgement, and the last section is a list of

references.

This chapter is about Petri nets and workflow modelling.

There are many ways in the literature to define nets and net systems. For example, the

concept of flow relation, namely F, has been made implicit by many researchers. It is often

combined with weight function W. Without the flow relation, the concept of directed nets

would disappear; and without the concept of directed nets, the whole theoretical part of

Petri nets would be without a foundation. Thus, this chapter starts from the definition of

directed nets given by C. A. Petri himself.

Petri net systems have been considered as one of the adequate and promising candidates for

workflow modelling. The concept of WF-nets proposed by Prof. Aalst from Holland has

become popular in the last 10 to 20 years. A team in the Software Development Company of

Peking University tried to use WF-nets as a formal model to develop software for a

government organization at a time around the year 2000. The WF-nets didn’t work, and they

didn’t know why. The author joint them, and we found problems of WF-nets, leading to

failure. The concept of WF-nets was proposed without theoretical foundation. These

problems were discussed in our paper titled “A Three Layer Model for Business process”

[7]. The concepts of synchronizers, workflow logic and case semantics etc were defined in

this paper for the first time. After so many years since then, people interested in workflow

modelling remain sticking to WF-nets. Many people do not even know our work, it seems.

The reason is, the author guess, General Net Theory (theoretical part of Petri nets) is not

popular yet. This chapter shows how important “Synchrony” is to a successful application

of Petri nets in the area of workflow modelling.

Workflow Modelling Based on Synchrony 109

2. Directed net

Definition 1

A triple N=(S,T;F) is a directed net if S∪ T ≠ ∅ ∧ S ∩T=∅	 ∧ F ⊑ (S × T ∪ T × S) ∧ dom(F) ∪cod(F) = S ∪ T	Where dom(F)={x∣∃y: (x, y) ∈ F}	and cod (F)={y∣∃x: (x, y) ∈ F}.◆

A directed net used to be called “Petri net”. We keep the term “Petri net” to mean “net

theory”, a term Carl Adam Petri used in Status Report. “Net” is often used to mean “directed

net” if it causes no ambiguity.

S∪ T ≠ ∅ ∧ S ∩T=∅ demands that a net consists of at least one element, and its elements are

clearly classified. F ⊑ S × T ∪ T × S	indicates that direct dependence does not exist between elements in the

same class. dom(F) ∪ cod(F) = S ∪ T	excludes isolated elements from a net.

A directed net has a graphical presentation as shown in Figure 1, in which elements in S and

T appear as circles and boxes respectively while elements in F appear as arrows (arcs). The

arrow from x to y represents (x,y) in F.

Figure 1. A Directed Net

Petri net (net theory) consists of Special Net Theory and General Net Theory. Special Net

Theory focuses on system modelling and General Net Theory focuses on theories

supporting system modelling. The concept of directed nets is their common foundation.

Definition 2

Let N=(S,T;F) be a directed net and X=S∪T, For x in X, ﹒x={y|(y,x)∈ F} is the pre-set of x,

x﹒={y|(x,y)∈ F} is the post-set of x. For t∈ T, ﹒t∪t﹒ is the extension of t.◆

Special Net Theory (SNT for short) and General Net Theory (GNT for short) are derived

from Directed Net based on pre-sets and post-sets of elements as described below.

The concept of extensions of transitions leads to the principle of local determinism.

The S-complementation operation on a net leads to the removal of contact. The T-

complementation operation on a net leads to the removal of differences between forward

and backward flow of tokens (SNT).

Petri Nets – Manufacturing and Computer Science 110

The S-completion operation on a net leads to Synchrony while the T-completion operation

on a net leads to Enlogy(GNT).

A directed net implies a unique undirected net that leads to Net Topology (GNT).

A special class of directed nets is the occurrence nets that lead to Concurrency (GNT).

Synchrony will be briefly introduced in Section 3, since it provides guidance to workflow

modelling. It is impossible in this chapter to go any further on SNT and GNT. The point is,

successful applications of Petri nets rely on both SNT and GNT, not only SNT.

3. Net system

Definition 3

A 6-tuple Σ= (S,T;F,K,W,M0) is a net system if (S,T;F) is a directed net and:

K: S→{1,2,⋯}∪{∞} ∧ W: F→{1,2,⋯} ∧ M0: → {0,1,2,⋯} such that	∀s∈ S:M0 (s) ≤ K(s), where

K,W,M0 are respectively the capacity function, the weight function and the initial marking. ◆

A mapping M : → {0,1,2,⋯} is a marking if it satisfies 			∀s∈ S:M(s) ≤ K(s).

Conventionally, elements in S are called places and elements in T are transitions. A place is

capable to hold certain kind of resources, with an allowance given by K. Infinite capacity

does not mean infinite space for resources. It is just an indication that the capacity of that

place is not a factor for a transition to become enabled (see definition below). A transition

resembles a change of resource quantities (consumed or produced) and a change in kind.

The precise change is given by transition rules. In the rest of this chapter, Σ is always

assumed finite, i.e. Σ has a finite number of places and transitions.

Definition 4

1. Transition t is enabled by marking M if ∀s ∈﹒t: W(s,t)≤M(s)∧∀s ∈ t﹒:	M(s)+W(t,s)≤K(s).

This fact is denoted by M[t>.

2. Transition t may fire, if M[t>, to yield a successor marking M’ given by

M’(s)= M(s) – W(s,t) for s in ﹒t - t﹒, M'(s) = M(s)+W(t,s) for s in t﹒-﹒t, and M'(s) = M(s)

+W(t,s)-W(s,t) for s in ﹒t∩t﹒, and M’(s) = M(s) otherwise. This fact is denoted by M[t>M’.◆

It is easy to prove that the successor M’ is indeed a marking.

A marking represents a resource distribution on S. A transition firing causes the flow of

resources along arcs in F, and thus F is called the flow relation of ∑.

It is easy to see that M[t> is determined by ﹒t ∪ t﹒, the extension of t, and the change from M

to M’ is confined to ﹒t ∪ t﹒. This is the principle of local determinism. A marking is a global

state, but the transition rules refer to only the extension of a single transition, not the

Workflow Modelling Based on Synchrony 111

complete marking. Many system models take global states as a means of system control. But

this is not always implementable, since a global state is not always instantly known. It takes

time to know the current global state, and this delay may be significant to an effective real

time control.

Figure 2 illustrates how to represent a net system graphically. The black dot inside place s is

a token, denoting M0(s) = 1. Empty places have no token (resource). Conventionally, M(s)=0,

W(x,y) =1 and K(s) = ∞	are shown by default.

Figure 2. A Net System

Definition 5

Let Σ=(S,T;F,K,W,M0) be a net system, M is a marking and t1, t2 are transitions.

1. If M[t1>M’∧M’[t2>∧￢M[t2>, then t1 and t2 are in sequential relation at M, denoted by

M[t1,t2>.

2. If M[t1>∧M[t2>, and ∀s ∈﹒t1	∩﹒t2 : M(s) ≥W(s,t1) + W(s,t2) and ∀s	∈ t1
﹒∩	t2

﹒: M(s) + W(t1,s)

+ W(t2,s)≤ K(s),then t1 and t2 are in concurrent relation at M, denoted by M[{t1,t2}>.

3. If M[t1>∧M[t2>∧￢M[{t1, t2}>, then t1,t2 are in conflict at M, denoted by cf(t1,t2,M).

4. If there is a transition t and a place b such that ∀s ∈﹒t1 : M(s)≥W(s,t)∧M(b) +

W(t,b)>K(b), then t leads to a contact in b at M, denoted by ct(t,b,M). ◆

Two concurrently enabled transitions can fire either concurrently or one after another.

Theorem 1

The marking reached by concurrently fired transitions can also be reached by the transitions

fired one after another.◆

This theorem guarantees that the next definition includes markings reached by concurrent

transition firings.

Definition 6

The set of markings reachable from M0 by consecutive transition firings is usually denoted

by [M0>.◆

Petri Nets – Manufacturing and Computer Science 112

The set [M0> may be infinite for a finite system. The algorithm for computing [M0> produces

a finite tree, denoted by T(Σ), and this tree can be re-structured to become a graph, denoted

by G(Σ). G(Σ) will be used for the computing of synchronous distances later on. All these

concepts and algorithms are in the category of techniques, we will go no further here.

So far we have not said a word about how to relate a net to the real world. This reflects an

important aspect of Petri net, that is, a net is unexplained. This nature of nets has its good

point and bad point. The good point is: the same net or net system may be explained in

different application areas to solve different problems; the bad point is: unexplained

transition firings lead to general analysis methods that are bound to be of low efficiency,

since they cannot make use of application specific properties.

A net is “physically implementable” when every element in S∪T has an explaination for a

fixed application problem, and every transition firing describes real changes in that

application area. A net describes how real changes relate with each other. This chapter aims

to show how to build, with the guidance of GNT, net systems for workflow modelling and

how to find efficient analysis methods.

Some transitions are defined as “instant transitions” in Timed Petri Nets, for they fire

instantly when they become enabled. What would happen when two instant transitions are

in conflict? Conflict resolution takes time since it needs to be detected and it requires a

decision from the system environment. Generally speaking, an enabled transition may be

disabled (by others) without firing.

4. Synchrony

Careful observation reveals that sequential relation, concurrent relation and conflict relation

are not relations between two transitions, but rather, they are relations between transition

firings, i.e. two transitions may fall into one relation at a marking and fall into a different

relation at another marking. Thus, a more precise way to denote these relations is: sq(M[t1>,

M[t2>), cn(M[t1>, M[t2>), and cf(M[t1>, M[t2>) respectively. Note that sq(M[t1>, M[t2>) is

asymmetry.

Synchrony is about how transitions themselves are synchronized. It describes laws exhibited

in the course of transition firings. For example, the sunrise and the sunset are alternating

“transitions” while a hand-clapping “transition” consists of simultaneous actions of the two

hands. One may observe one more sunrise or one more sunset, depending on the times the

observation starts and ends, but one always counts the same number of actions of the two

hands for hand clapping. The laws exhibited by alternating transitions and simultaneous

transitions are given by “the synchronous distance is 1” and “the synchronous distance is 0”

respectively.

The concept of synchronous distance was originally defined in terms of events in a C/E-

system, which is a model describing changes in the nature, like the changes of 4 seasons. A

C/E-system has no initial marking. Instead, it has a current marking. This chapter is about

Workflow Modelling Based on Synchrony 113

artificial systems. We have to redefine this concept of synchronous distance to serve our

need.

4.1. Synchronous distance in a P/T-system

A net system as defined by Definition 3 and 4 is conventionally called a Place/Transition-

system, P/T-system for short.

Definition 7

LetΣ= (S,T;F,K,W,M0) be a P/T-system. A sequence of transitions δ= t1t2⋯tn is called a

transition sequence if they can fire one after another in the given order, starting from the

initial marking. The length of δ is n.

An infinite sequence of transitions is a transition sequence if any of its finite prefix is a

transition sequence. ◆

In what follows ρ denotes the set of all transition sequences of Σ.

Definition 8

Let Σ=(S,T;F,K,W,M0) be a P/T-system and T1, T2 be subsets of T, T1≠ ∅, T2≠ ∅. Let	઼ be a

finite transition sequence, i.e. δ	∈ ρ. Let ＃(δ, T1), ＃(δ, T2) denote the numbers of firings of

transitions in T1,T2 respectively, and ＃(δ, T1,T2) = ＃(δ, T1) -＃(δ, T2). The synchronous

distance between T1 and T2, denoted by σ(T1,T2), is defined by σ(T1,T2) = max{＃(δ, T1,T2)∣δ∈ ρ} - min{＃(δ, T1,T2)∣δ∈ ρ }if exists, other wise	σ	(T1,T2) = ∞.

◆

Figure 3 (a) is P/T-system Σ1 and its set of transition sequences is {a, ab, b, ba}. We have, for

T1 = {a} and T2 ={b}, max{＃(δ, T1,T2)∣δ∈ ρ} = 1 and min{＃(δ, T1,T2)∣δ∈ ρ } = -1, so	σ(T1,T2) =

2.

(a) Σ1, (b) Σ2

Figure 3. σ(a,b) =2

Note that we write	σ(a,b) =2 instead of	σ(T1,T2) =2 in figure 3 by convention when both T1,T2

are singletons.

The set of transition sequences of Σ2 is infinite and it contains infinite sequences. It is easy to

check that any repeatable portion in a finite or infinite transition sequence contains the same

Petri Nets – Manufacturing and Computer Science 114

number of firings of transition b and transition a. This is why	σ(a,b) is finite. The consecutive

firings of transition a count at most to 2, so do the consecutive firings of transition b. This is

the physical meaning of 	σ(a,b) =2 for Σ2.

The distance (i.e. synchronous distance from now on) between left hand action and right

hand action is 0, since it is impossible to see only an action of either hand in the course of

hand clapping.

Figure 4 (a) shows another situation of	σ(a,b) =2, where transitions a and b are in conflict at

the initial marking. Figure 4 (b) is still another case of	σ(a,b) =2.

(a) Σ3 (b) Σ4

Figure 4. σ(a,b) =2: a and b in conflict

Theorem 2

The synchronous distance defined by Definition 8 satisfies distance axioms: σ(T1,T2) = 0 if and only if T1 = T2 ;		σ(T1,T2)≥ 0; σ(T1,T2) = 	σ(T2,T1); 	σ(T1,T2) +	σ(T2,T3)≥ σ(T1,T3).
◆

This theorem explains why the concept is called distance. It is assumed that T1∩T2= ∅

when	σ(T1,T2)> 0, since	σ(T1,T2) =	σ(T1-T2, T2 - T1) by definition.

Theorem 3 σ(T1,T2)<∞ if and on ly if for any repeatable portion δ of any sequence in	ρ, ＃(δ, T1,T2) = 0. ◆

It is easy to prove the above two theorems, so omitted here.

4.2. Transition synchronization and place synchronization

People would think, based on experiences in daily life, that synchronization is something

participated by different parties like hand clapping, or some events occurring at the same

time like a live casting on TV with an on-going game. Such synchronization is characterized

by distance 0, since one cannot see one hand clapping or see the TV show without the game.

Workflow Modelling Based on Synchrony 115

We have said that hand clapping is a single transition consisting of actions of two hands; A

live show and the on-going game would appear in a net as one transition as well since if

they were separated as different transitions in parallel, ordered firings would produce the

same effect , but this cannot be true. Synchronization characterized by distance 0 is

“transition synchronization”. Synchronization with	σ(T1,T2) > 0 is “place synchronization”

since such synchronization is achieved via places and it can be observed by taking an added

place as an observation window.

System Σ5 in Figure 5 (a) is the same system as shown in Figure 3 (b) with an added place p

denoted by a dotted circle and connected to transitions by dotted arrows. This added place

does not belong to Σ5, it is to be used for observations.

(a) Σ5 (b) Σ6

Figure 5. Added Place as Observation Window

An observer records what he finds through the window by putting a token into p when

transition a fires and removing a token from p when transition b fires. It is assumed that

place p has enough tokens, say n tokens, to start with, so the recording would not be

interrupted. The maximum number of tokens in p is n+1 while the minimum is n-1. So the

difference is 2 between transition b and transition a. The same observation applies to Σ6 to

get the same distance.

The observation window p for disjoint transition sets	T1 and T2 is an added place whose

input arcs are from T1 and output arcs are pointing to T2. Place p gets a token whenever a

transition in T1 fires and loses a token whenever a transition in T2 fires. Place p has enough

tokens to start with to ensure a smooth observation. In case the number of tokens in p is not

bounded, the distance between T1 and T2 is 	∞. Otherwise, the difference between the

maximum and the minimum is the distance.

It is easy to find that		σ(a,b) = ∞ for the P/T-system in Figure 6 (a), since the repeatable

sequence t1abat2 contains two firings of a and only one firing of b. The added place p as

shown in Figure 6 (b) has weight 2 on the arc from p to transition b, it would have n+1

tokens after the first firing of a and n-1 tokens after the firing of b. The difference is 2.This is

a weighted distance between b and a: σ(a,2b) = 2, the weight for a is 1 while the weight for b

is 2. The concept of weighted synchronous distances makes a distinction when infinite

Petri Nets – Manufacturing and Computer Science 116

distance is encountered. For simplicity, the formal definition of weighted synchronous

distances is omitted here.

(a) Σ7 (b)Σ8

Figure 6. Weighted Synchronous Distance

Generally speaking, T1 and T2 may have more than one transition. It is possible that all

transitions in the same set share the same weight, it is also possible that different transitions

need different weights. It is assumed that the weights, if exist, would take the smallest

possible values. For simplicity, we write σ’(T1,T2) for weighted distance between T1 and T2

when the weights for individual transitions are known. The restriction on weights to be

smallest leads to uniqueness of the distance.

Theorem 4

For an arbitrary place s in S in P/T-systemΣ, as long as s has disjoint pre-set and post-set,

σ’(T1,T2) = max{ M(s)∣M∈[M0>} – min{ M(s)∣M∈[M0>} if exists, otherwise	σ′(T1,T2) = ∞,

where T1 and T2 are respectively the pre-set and post-set of s and	σ’(T1,T2) denotes a

weighted distance with W(s,t) as the weight of transition t in T2 and W(t,s) as the weight of

transition t in T1.◆

This theorem is true since what the added place records is exactly what happens in s.

In case there are no weights that yield a finite distance between T1 and T2, T1 and T2 are

asynchronous.

4.3. Computing synchronous distance

All transition sequences can be found on the graph G(Σ). Synchronous distances, weighted

or not, are defined in terms of transition sequences. Thus, it is possible to design algorithms

for the computing of distances. Firstly, if a ring exists on G(Σ) that contains different

numbers of firings of T1 transitions and T2 transitions, the distance is ∞. All algorithms are

designed for computing finite distances only. The book in Chinese entitled Petri Net

Applications by the author will soon appear, in which an algorithm for the computing of

synchronous distances in P/T-systems can be found. It is easy to design an algorithm for

computing weighted distances based on this algorithm.

Workflow Modelling Based on Synchrony 117

We go no further on synchronous distances in this chapter since what concerns us is

workflow modelling and what has been said about synchronous distances is already

sufficient.

5. Business process

A successful application of Petri nets requires a full understanding of the application

problem.

The term “workflow” was used as a synonym for “business process” in the book Workflow

Management by W. Aalst and K. Hee. The terminology was developed by the Workflow

Management Coalition (WFMC), an organization dedicated to develop standard

terminology and standard interfaces for workflow management systems components.

As the first step towards workflow modelling, we make a clear distinction between

“workflow” and “business process”.

5.1. Business process vs. workflow

A business process is a pre-designed process in an enterprise or an organization for

conducting the manipulation of individual cases of a business. It existed even before the

birth of computers. The manipulation of individual business cases consists of business tasks

and management tasks. The concept of “workflow” aims at “computerized facilitation or

automation of a business process, in whole or part” (WFMC). To this end, the separation of

business tasks and management tasks is of first importance. In a way, this is similar to the

separation of data processing from a program, leading to the concepts of databases and

database management systems.

A single business task may be carried out by a computer program. But “computerized

automation of a business process” focuses on management automation rather than task

automation. Management automation relies on clearly specified management rules. Most of

the rules apply to all cases while some of the rules apply to individual cases. The former is

“workflow logic” and the latter is “case semantics”. The purpose of workflow modelling is

nothing but to establish a formal specification of management rules to serve as a guide in

the design, implementation and execution of a computer system called “workflow engine”.

It is the execution of the engine that conducts the processing of business cases. Figure 7

illustrates how workflow is related to business process.

The workflow logic specifies how business tasks are ordered (for causally dependent tasks)

and/or synchronized. But, ordering is also a way of synchronization. Thus, workflow logic

specifies how business tasks are synchronized for all conceivable cases in a business. In

other words, workflow logic specifies all possible routes that a business case may take when

being processed. What workflow logic cares about a single business task is not what data it

requires or what data it will produce, let along what exact values are inputted or outputted.

In this sense, workflow logic is concerned with abstract business tasks only.

Petri Nets – Manufacturing and Computer Science 118

Figure 7. Business Process vs. Workflow

A selection is required at a crossing point of different routes. Concrete data of a given case

determine the selection. The so selected route is the “semantics” of the given case. Thus, case

semantics is concerned with those data that are used to decide whether a business task is on

the route to be selected. These data are called explicit data since they should appear

explicitly in the model of case semantics.

5.2. Management task vs. business task

A business must have a pre-designed form (paper form or electronic form) to record how an

individual case is initiated and processed. Such a form is called a business form, B-form for

short.

A business task can be characterized by

1. It requires professional knowledge, skill and/or experience related to the business.

2. It fills in at least one blank assigned to it on the B-form to tell what has been done.

A management task, on the other hand, requires knowledge on management rules. If it fills

in blanks on the B-form at all, the written content is for management need only, e.g. a serial

number for sorting and searching B-forms later on.

In the book Workflow Management, 16 tasks have been listed for “insurance claim” business

in a (fictional) insurance company, among them, the first two tasks are:

1. Recording the receipt of the claim;

2. Establishing the type of claim (for example, fire, motor vehicle, travel, professional).

The first task may assign a serial number to the claim. Otherwise, it would leave no trace on

a B-form. In fact, it is even not concerned with what B-form to be used. The second task

must fill in the blank “type of claim” at least. Thus, the first task is a management task (may

be shared by all businesses in a company) while the second task is a business task. In other

words, the first task should be excluded from the workflow logic for “insurance claim”, but

the second task must be included.

Workflow Modelling Based on Synchrony 119

5.3. Iteration vs. no iteration

The author of Workflow Management wrote: “This example of a process (i.e. insurance claim)

also includes iteration or repetition — namely, the repeated assessment of an objection or

the revision of the amount to be paid. In theory, this could go on forever.”

As a management rule, an objection to a claim may need to be assessed more than once, but

it must be a fixed number of times and by different persons; furthermore, the conclusion of

each assessment must be recorded on the B-form. In other words, reassessment is a different

task rather than a repetition of assessment.

Mathematically or logically, repetition could go on forever, but not for a theory of

management. Endless repetition is not even thinkable in a management theory.

Iteration or repetition implies “redo” of the same task, i.e. what has been written on the B-

form should be erased. “Redo” caused by wrong doings could, in theory, occur for every

single task since human beings are erroneous by nature. No one would suggest a repetition

for every task in a workflow model. “Redo” is nothing but a management measure to heal

wrong doings, not a normal portion in a business process. Besides, workflow logic is about

abstract tasks, but iteration is case dependent.

Endless redo could not occur since it is under control of the engine.

The execution of a single business task may include iteration. For example, when the

amount of goods exceeds the truck load, the truck(s) would have to return after unloading.

Such iteration is the detail of task execution, not a measure of management. Besides, it is

case dependent. Iteration has nothing to do with workflow logic. What case semantics is

concerned with is whether a task is on the route, not how a task is executed.

5.4. Set of tasks vs. set of blanks on B-form

Let T = {t1,t2,…,tn} and B = {b1,b2,…,bm} be the set of business tasks and respectively the set of

blanks on the B-form for a give business process. The investigation here aims at properties

of T and B for a well-defined business process.

There must be a correspondence between T and B, telling which blank(s) each task is

responsible for. This correspondence should guarantee that no more than one task is

responsible for the same blank in the course of processing a single case, and no blank is left

empty upon termination of the case processing (those blanks that are not in relation with a

given case are assumed to have been crossed out by the engine). Such correspondence has

become common sense today. We will say no more about it.

Causal dependence among tasks in T leads to a combinatorial acyclic partial order on T:﹤⊑T×T , and a sub-relation < of < : x<y ≡ x<y ∧∀z∈T:￢(x<z∧z<y). < is the “immediate

successor” relation: y is the immediate successor of x. Since the ordering relation < is

derivable from < by transitivity of <, we will talk about (T, <) instead of (T, <). No iteration

among tasks in T leads to acyclic partial order.

Petri Nets – Manufacturing and Computer Science 120

Let u be a task in T, u is a start task if it is before every other task, i.e. ∀t∈T:￢(t<u); u is an

end task if u has no immediate successor. It is assumed that there is a unique start task, i.e.

all cases share a unique beginning to recognize and to accept a case.

Let T1, T2 be nonempty subsets of T. T2 is called an immediate successor set of T1 , denoted

by T1<T2, if ∀u∈T1∀v∈T2:u<v. It is easy to prove that T1 and T2 are disjoint, and tasks in T1

(T2) are not ordered. Synchronization for management need can only be introduced between

T1 and T2. Here, the synchronization between T1 and T2 must be place synchronization since

they are different transitions. In case T1 and T2 are both singletons, the synchronization can

only be the immediate successor relation. As an example, let be T1 = {a, b} and T2 = {c, d}, σ(T1,T2)=2 and	σ(T1,2T2)=2 are two different ways of synchronization. Taking into account

the fact that every task, if it is included on a route, can only be (effectively, redo is not

counted) executed once, σ(T1,T2)=2 requires that tasks a ,b being executed in parallel

followed by tasks c, d being executed in parallel; σ(T1,2T2)=2 requires that tasks a, b being

executed in parallel followed by either task c or task d being executed alone. Data from a

given case will be used for the selection between task c and task d. It is clear that

synchronous distances would be of no use if redo is taken into account.

Now the processing of a given case goes like this: it begins from the unique start task, each

task on the route carries out its duty and fills in blank(s) it is responsible for on the B-form,

and passes it to its immediate successor(s) via the engine. The engine takes care of quality

checking, successor selection and appointing executer(s) for selected task(s); and finally, the

engine passes the B-form to appointed executer(s).

6. Synchronizer and workflow logic

P/T-systems will be used for the modelling of workflow logic. A synchronizer is a special

place to connect transitions (tasks) with immediate successor relation (<).

To capture the fact that every task (transition) is executed (effectively) at most once for a

single business case and workflow logic contains no iteration, a concept of restricted P/T-

systems, RP/T-systems for short, is proposed.

Definition 9

A P/T-system Σ=(S,T;F,K,W,M0) is a RP/T-system if it is acyclic (F+∩(F-1)+) =∅) and any

transition is restricted to fire at most once. ◆

The P/T-system in Figure 2 is a good example: as a normal P/T-system, transition t2 can fire

twice when p1 has 2 tokens; but as a RP/T-system, t2 can fire only once at the same marking.

In fact, transitions t2 and t3 would fire when p1 has 2 tokens for a RP/T-system, though t2

remains enabled after its first firing.

Note that RP/T-systems are not a new class of net systems. If we introduce a control place c

for every transition t such that c has an empty pre-set and {t} is its post-set, and initially it

has one token. Apparently, with an added control place for every transition, every transition

can fire at most once by conventional transition rules.

Workflow Modelling Based on Synchrony 121

6.1. Synchronizer

Definition 10

A place p in a RP/T-system is a synchronizer if T1 and T2 are the pre-set and post-set of p

and they are not empty; and ∀t ∈ T1: W(t, p) = b and ∀t ∈ T2: W(p, t) = a where b and a are

integers such that 0≤ a ≤ n and 0≤ b ≤ m ; n, m are respectively the numbers of transitions in

T1 and T2; and K(p) = ab.◆

The RP/T-system in Figure 2 has two synchronizers p1 and p2 since K(p1) = 2 and K(p2) = 2.

The synchronizer defined by Definition 10 is usually denoted by p = (T1, T2, (a, b)) or p =

(．p, p．, (a, b)). Figure 8 (a) is the graphical presentation of a synchronizer p and (b) is the

detail of p, explaining how synchronization is achieved. Theorem 4 concludes that σ(bT1,

aT2) = ab, i.e. the weighted synchronous distance between T1 and T2 are ab where b is the

weight for all transitions in T1 and a is the weight for all transitions in T2.

Figure 8. A Synchronizer and its Detail

Definition 11

Let p = (T1, T2, (a, b)) be a synchronizer and n, m be the numbers of transitions in T1 and T2.

P can be classified as below:

n=m=1, p is sequential synchronizer,

m>1, p is a split,

n>1, p is a join,

a>1 and a=n, p is an ALL-join,

1<a<n, p is an OR-join,

a=1 and a<n, p is a XOR-join,

b>1 and b=n, p is an ALL-split,

1<b<m, p is an OR-split,

b=1 and b<m, p is a XOR-split.

Here we have deliberately chosen terms used by Prof. Aalst for WF-net. The difference is,

our synchronizers are places while synchronization is achieved via transitions in WF-net.

Synchrony in Section 3 has made it clear that synchronization with a distance greater than

zero is place synchronization. We will see what advantages the concept of synchronizers

brings with it when we approach to management logic.

Petri Nets – Manufacturing and Computer Science 122

Figure 9 shows how to achieve mixed synchronization where p1 is an XOR-split and p2 is an

ALL-split. What follows task t would be one of t1 and t2 plus both t3 and t4.

Figure 9. ALL-split and XOR-split mixture

Definition 12

Let x, y be variables of integer type. The place p1 = (T1, T2, (a, y)), p2 = (T1, T2, (x, b)) and p3 =

(T1, T2, (x, y)) are variations of synchronizer p = (T1, T2, (a, b)) as long as 0 < x ≤n and 0 < y≤
m. p1, p2 and p3 are flexible synchronizers, since x and y can take different values.◆

Figure 10 explains how flexible synchronizers work: x may take 1 or 2 as its value to achieve

different synchronization.

Figure 10. Flexible Synchronizers p1 and p2

We have not found a way to express flexible synchronization in terms of WF-net since an

OR-split or OR-join transition in WF-net does not tell the exact number “OR” represents.

6.2. Workflow logic

RP/T-systems are candidates for modelling workflow logic, but not every RP/T-system is

suitable.

Workflow Modelling Based on Synchrony 123

Definition 13

For RP/T-systemΣ= (S,T;F,K,W,M0), relation next T×T is given by next = {(t, t’) |t∩t’≠ ∅}.

We write next(t, t’) for (t, t’)	∈	next. Σ is well ordered if, for any t, t’ in T, next(t, t’) implies ∀u ∈ T:￢(next(t,u)∧next(u, t’).

The system in Figure 11 is not well-ordered, since we have next(t1, t3) and next(t1, t2)∧ next(t2,

t3).

Figure 11. A System not Well-ordered

Remember that we are seeking for net systems that are suitable for modelling workflow

logic. If t1, t2 and t3 are tasks, then the B-form would be passed from t1 to t3 twice: one

directly and one via t2. This redundancy leads to structure complexity and analytical

difficulty. Besides, there might be semantic inconsistency for this or that reason.

Definition 14

A well-ordered RP/T-systemΣ= (S,T;F,K,W,M0) is a workflow logic if :

Every transition has nonempty pre- and post- sets; there is a unique place s0 such that it has

an empty pre-set and its post-set is a singleton {t0} and K(s0) = 1, W(s0, t0) = 1; every

intermediate place p is a synchronizer; every end-place, i.e. a place with an empty post-set,

has a capacity 1 and its input arc(s) has 1 as its weight; The initial marking has a unique

token in s0.◆

A task is initiated upon receiving a B-form, and passes it over to its successor upon

termination. Thus, its pre-set and post-set are nonempty. The unique place s0 is the place to

receive initiated B-forms one by one and one at a time. Transition t0 is the unique start task.

An end-place is to receive completed B-forms, one by one and one at a time. All tasks must

be well synchronized, so intermediate places are synchronizers. The weight on an input arc

(t, p) of synchronizer p represents that W(t, p) immediate successors need the B-form

completed by t, and the weight on an output arc of p represents that B-forms completed by

W(p, t) different immediate predecessors of t are needed by t. The unique token in s0

represents an abstract single case. It is an abstract case since no data is needed. An abstract

case resembles all conceivable cases.

Petri Nets – Manufacturing and Computer Science 124

The system in Figure 2 is workflow logic. The conventional transition rules would apply to a

workflow logic if a control place is added to each of the transitions (so, no transition can fire

for the second time for one case) and the detail of every synchronizer as given in Figure 8 is

also made explicit. But, this would make workflow logic too complicated for practical use.

The following is the transition rules for workflow logic.

Definition 15

LetΣ= (S,T;F,K,W, M0) be a workflow logic, t in T is a transition and M is a marking (i.e. the

initial marking M0 or reachable from M0 by rules given here).

1. t is enabled by M (or at M), denoted by M[t≫, if ∀s ∈t:M(s)=K(s),

2. Once M[t≫ is true, it remains true until either t occurs or t is not enabled according to

conventional transition rule.

3. The successor marking, when t fires, is computed according to the conventional rule.◆

It is recommendable to compute the set of reachable markings for the workflow logic given

in Figure 2. We denote with [M0	≫ the set of reachable markings.

Redundancy is always closely connected to complexity. The property of being well-ordered

has removed certain redundancy. The next definition reveals different redundancy.

Definition 16

A workflow logic is well-structured if for every synchronizer p and a reachable marking M,

M(p) = K(p) implies the fact that either all transitions in the post-set of p are enabled, or

none of them is enabled.◆

Figure 12 illustrates this definition: the workflow logic in (a) is not well- structured, since t3

is enabled but t4 is not when p2 has a token (the capacity of a synchronizer is known without

saying). On the other hand, transitions t3, t4 and t5 are all enabled when p2 has 2 tokens in the

system in (b).

Careful readers may have noticed that p2 in (b) is not a synchronizer. No, it is not. It is a

variation of a synchronizer. The two transitions t3 and t5 in (b) are viewed as twins: either

both of them to be on a route, or none of them to be selected since t4 requires 2 tokens. Thus,

as far as route selection is concerned (workflow logic aims at the description of all possible

routes), twin transitions could and should be combined as shown in Figure 13. Variations of

synchronizers may be allowed in practice for convenience. But for the analysis of workflow

logic, combined twins are preferred.

If the system in Figure 12 (b) is taken as workflow logic with a synchronizer variation, it

reveals another problem: there would be two tokens upon the completion of one case

when t3 and t5 are on its route. This is inconsistent with common knowledge: A single case

cannot have two separated conclusions. This observation raises a question: what

properties a well-defined workflow logic should have, in addition to being well-ordered

and well-structured?

Workflow Modelling Based on Synchrony 125

Figure 12. Not well- structured workflow logic

Figure 13. Combined Twins

Soundness! This is the answer from WF-net. Soundness requires:

“A process contains no unnecessary tasks and every case submitted to the process must be

completed in full and with no references to it (that is case tokens) remaining in the process.”

(a)

(b)

Petri Nets – Manufacturing and Computer Science 126

What we propose is throughness: the token in s0 (an abstract case) will be passed over by

transition firings (tasks) via the engine, to a unique end-place. All properties required by

soundness are covered by being through.

In what follows, workflow logic is always assumed well-structured.

6.3. Throughness and reduction rules

Let Σ = (S,T; F, K, W, M0) be a well-structured workflow logic, and M is a reachable

marking.

Definition 17

1. M is a termination marking if it enables no transition; M is an end-marking if there is a

unique end-place e such that M(e) = 1 and M(s) = 0 for all places s other than e.

2. Σ is through if every termination marking is an end-marking and every end-marking is

also a termination marking. ◆

The workflow logic in Figure 2 is through.

Theorem 5

If workflow logicΣis through, then for every transition t, there is a reachable marking M

that enables t and there is a route to which t belongs.◆

From the fact that Σ is acyclic and s0 is unique, we know that there is a directed path from s0

to t. By mathematical reduction on the length of this path, this theorem is easy to prove.

Soundness of a WF-net is proved via computing T-invariant by adding an extra transition

between its unique place o and its unique initial place i. This method applies to workflow

logic as well. But we do it differently.

Keep in mind the principle of local determinism. Our attention focuses on local structures of

workflow logic rather than global properties like T-invariants.

Characteristics of local structures bring up the following reduction rules for proving

throughness of workflow logic.

Reduction Rule 1

Synchronizer p1 = (T1,T0,(a1, a2)) and p2 = (T0,T2,(b1,b2)) can be reduced to synchronizer p =

(T1,T2,(a1,b2)) if a2 = b1. ◆

Figure 14 illustrates this rule.

Let Σ be the workflow logic to which rule 1 is applied and Σ’ is resulted by replacing p1, T0,

p2 with p in Σ. We have

Theorem 6

Σ is through if and only if Σ’ is through.◆

Workflow Modelling Based on Synchrony 127

Synchronizer p1 requires that a2 transitions from T0 to fire after the firings of a1 transitions

from T1 while synchronizer p2 requires that b1 transitions from T0 to be fired before any

transition firing from T2. Given a2 = b1, p1 and p2 are consistent with each other on T0: a1

transitions from T1 followed by b2 transitions from T2. Thus, the theorem is true. (p1,T0, p2) is

in fact the detail of p. This reduction of omitting consistent detail is a net morphism in net

topology. No wonder the property of being through is reserved. All reduction rules are in

fact to conceal local details, and as such, they reserve throughness. But there will be no

more theorems and proofs to be given below for simplicity.

Figure 14. Reduction Rule 1

Reduction Rule 2

For synchronizer p = ({t1}, {t2}, (1,1)), if t1.∩.t2 = {p}, then (t1, p, t2) can be replaced by a single

transition t with .t = .t1∪.t2– {p} and t. = t1.∪t2.– {p}. All weights on remaining arcs remain.◆

Figure 15 illustrates this rule.

Figure 15. Reduction Rule 2

It is easy to see that the combined effect of t1 and t2 on all places other than p is the same as

the effect of t. The dotted circles and arcs may exist, but not necessarily.

Reduction Rule 3

For transition t and places p1, p2, if p1.∩.p2 ={t} and W(p1, t) = W(t, p2) = 1, then (p1,t,p2) can be

replaced by p, .p = .p1∪.p2– {t} and p. = p1.∪p2.–{t}. All weights on remaining arcs remain. ◆

Note that places p1 and p2 are not necessarily synchronizers, i.e. it is possible .p1 = ∅ and/or

p2. = ∅.	
Figure 16 (a) illustrates this rule.

Petri Nets – Manufacturing and Computer Science 128

Figure 16. Reduction Rule 3

The workflow logic in Figure 16 (b) is not through since the termination marking would

have two tokens at two different end-places. Rule 3 can be applied to reduce it in size, but

the resulted place p turns out to be inconsistent between its pre-set and its post-set.

Reduction Rule 4

For T1 = {t1, t2,…, ta} and T2 = {t1’, t2’,…, tb’}, if pi = ({ti}, T2, (1, b)) is a synchronizer, i = 1, 2,…, a,

then p1, p2,… pa can be reduced to a single synchronizer p = (T1,T2, (a, b)); If pi’ = (T1, {ti’},

(a,1)) is a synchronizer i = 1,2,…, b, then p1’, p2’,…pb’ can be reduced to the same single

synchronizer p = (T1,T2, (a, b)).◆

Figure 17 illustrates this rule where a = 3 and b = 2.

Figure 17. Redaction Rule 4

Workflow Modelling Based on Synchrony 129

We will see the significance of this rule and the rule next when management logic is

discussed, since separated managements before the rule is applied become centralized

management after it.

Reduction Rule 5

If pi = ({t}, {ti}, (1, 1)) is a synchronizer for every i, i = 1, 2, …, a, then these synchronizers can

be reduced to a single synchronizer p = ({t}, {t1, t2,…, ta}, (1, a)).

If pj = ({tj}, {t}, (1, 1)) is a synchronizer for every j, j = 1, 2, …, b, then these synchronizers can

be reduced to a single synchronizer p = ({t1, t2,…, tb}, {t}, (b, 1)).◆

Figure 18 illustrates this rule, where a = b = 3. .

Figure 18. Reduction Rule 5

The next reduction rule reserves throughness, but a place element rather than a

synchronizer is used for reduction.

Reduction Rule 6

In this rule, i = 1, 2, …, a and j = 1, 2, …, b. For transition sets T = {t1, t2,…, ta} and Ti = {ti1, ti2,

…, tib}, if pi = ({ti}, Ti, (1, b)) is a synchronizer for every i, then these synchronizers can be

reduced to the place p:.p = T, p. = ⋃ T௜ୟ୧ୀଵ , K(p) = ab, W(ti, p) = b and W(p, tij) = 1, If pi.’ = (Ti,

{ti}, (b, 1)) is a synchronizer for every i, then these synchronizers can be reduced to the place

q: .q = ⋃ T௜ୟ୧ୀଵ , q. = T, K(q) = ab, W(tij, q) = 1, W(q, ti) = b.◆

Figure 19 illustrates this rule, where a = 3 and b = 2.

A noticeable fact is: places p and q are different from a synchronizer at two aspects. Firstly,

their capacities are both ab instead of the product of the input weight and the output

weight. Secondly, transitions in Ti and Tj , i ≠ j, maybe enabled at different times before

reduction, but they will be enabled at the same time by p; similarly, transitions in T will be

enabled at the same time by q, but maybe not before reduction. The important point is, the

number of transitions to be selected for a route remain unchanged (real selection is to be

Petri Nets – Manufacturing and Computer Science 130

determined by concrete data from a practical case later by case semantics.) due to the fact

that all synchronizers in question are either ALL-split or ALL-join. This means that the

property of being through is reserved.

Figure 19. Reduction Rule 6

Definition 18

A place p with .p = T1 and p. = T2, T1≠ ∅, T2≠ ∅, is called a virtual synchronizer if there exist

integers a and b such that ∀t ∈ T1:W(t,p)=b,∀t ∈ T2:W(p, t)=a, K(p)	≠ ab, but K(p)/b = n,

K(p)/a = m, where n, m are respectively the numbers of transitions in T1 and T2. For virtual

synchronizer p, we also write p = (.p, p., (a,b)).◆

The two places p and q in Figure 19 are virtual synchronizers. It is easy to check that the two

places used for reduction by Rule 6 are virtual synchronizers in general.

For further reduction when a virtual synchronizer is involved, we have the revised version

of Reduction Tule 1:

Reduction Rule 1’:

Let each of p1 = (T1, T0, (a1, a2)) and p2 = (T0, T2, (b1, b2)) be a synchronizer or a virtual

synchronizer. As long as K(p1)/a1 = K(p2)/b2, (p1, T0, p2) can be reduced to p = (T1, T2, (a, b)),

where a = K(p1)/b1 and b = K(p2)/a2, and K(p) = ab, ∀t ∈ T2: W(t, p) = b and ∀t ∈ T2: W(t, p) = a.
◆

This rule is applicable when the involved virtual synchronizer is of ALL-join and ALL-split

nature. Otherwise, local consistence should be checked since a virtual synchronizer is more

flexible than a synchronizer. Figure 20 explains: the workflow logic on top is not through

since just one of p2 and p3 may have 2 tokens while p4 requires the two of them to have two

Workflow Modelling Based on Synchrony 131

tokens each. As shown in the figure, a virtual synchronizer p5 is obtained when rule 6 is

applied. The resulted system after rule 6 remains being not through. If rule 1’ is further

applied to p5 and p4, we get a system that is through. Inconsistence between p1 and p4 is

concealed. The virtual synchronizer p5 does not tell whether it is ALL-split or OR-split. It

inherits property of being ALL-split or OR-split from p1.

Figure 20. Reduction Rule 1’ leads to Error

Figure 21 illustrates Reduction Rule 1’, in which the workflow logic on top is apparently

through. After twice applications of rule 6, the resulted p6 and p7 are virtual synchronizers

both. By reduction rule 1’, these two virtual synchronizers are replaced by p, which is a

synchronizer. This time the property of being through is reserved.

Reduction Rule 6 is suggested not to be used as long as there is a different reduction rule

applicable.

Theorem 7

A well-structured workflow logic has the property of being through if it can be reduced to a

single isolated place, i.e. a place whose pre-set and post-set are both empty.◆

Petri Nets – Manufacturing and Computer Science 132

Figure 21. Reduction Rule 1’

This theorem is true since all reduction rules (including carefully used rule 1’) reserve

throughness . The isolated place is the start-place and the end place at the same time, thus

the concealed detail has the property of being through.

This isolated place represents “harmony” as far as workflow logic is concerned. An

interesting fact is, the isolated transition represents “contradiction” when it is resulted by

applying the Resolution Rule and the Expansion Rule in Enlogy (a branch in GNT, net logic)

for logical reasoning. A pair of dual elements, i.e. a place and a transition, lead to opposite

concepts in philosophy, could this happen by chance? In fact as we will see soon, the dual of

workflow logic is exactly the logic for workflow management.

We do not claim the completeness of this set of reduction rules. Whenever a user finds

workflow logic not reducible to “harmony” though it is indeed through, please try to figure out

new reduction rules and to let us know. Reduction rules would be enriched this way, we hope.

Figure 22 shows how to reduce to harmony the workflow logic for insurance claim where t0,

t1, t2, t3 and t4 are respectively the tasks “accept”, “check policy”, “check claim”, “send letter”

and “pay” (See Workflow Management).

Workflow Modelling Based on Synchrony 133

Figure 22. Reducing Workflow to Harmony

Figure 23 is a more complicated net from Dr. Aalst during his visit to Tsinghua University

(Beijing, China) in 2004, where (a) is the original net in which every place has the capacity

1 and all weights on arcs are also 1, i.e. a WF-net. The author would suggest to take (b) as

the workflow logic for whatever business in mind. Note that (c) contains virtual

synchronizers.

Petri Nets – Manufacturing and Computer Science 134

Figure 23. Reduction Process

Workflow Modelling Based on Synchrony 135

6.4. Develop a workflow logic for a given business

Let T = {t1, t2,…tn} and B = {b1, b2, …bm} be respectively the set of business tasks with < as its

immediate successor relation, and the set of blanks on the B-form for a well-designed

business. There should be a fixed correspondence between T and B to make clear

responsibilities for each of the tasks in T. This correspondence will not be mentioned any

more.

Let Σ= (S,T;F,K,W,M0) be the net system such that T is the task set and S = {p1, p2, …pk}∪{s0}

∪E where for each i, i = 1, 2, …, k, k is the number of non-end tasks t1, t2, …tk in T, .pi = {ti},

pi. is the set of immediate successors of ti. Let ai be the number of tasks in this immediate

successor set, ai’ is the intended number of tasks to be executed after ti, then K(pi) = ai’, and

W(ti, pi) = ai’ for every immediate successor t of ti, W(pi, t) = 1. It is easy to see that pi is a

synchronizer: pi = ({ti}, pi. ’ (1, ai’)).

The place named s0 is the unique start place: it has an empty pre-set and its post-set contains

the unique start task with arc weight 1.

For every end-task in T, there is a unique end place e in E with 1 as the arc weight between

them. E contains nothing else.

M0(s0) = 1 and all other elements in S have no token.

As a workflow logic of a business process, transition rules for RP/T-systems are assumed for

Σ.

Σ must be well-ordered since < is exactly its next relation among transitions.

Σ may be not well-structured as shown by Figure 12 (a). In this case, measures must be

taken as suggested from Figure 12 (a) to (b), then to Figure 13.

Redundant synchronizers may be removed by Reduction Rule 3.

As an example, Let T = {t1, t2, t3, t4, t5} and <= {(t1, t2), (t1, t3), (t2, t4), (t2, t5), (t3, t4), (t3, t5)}. There

are 3 non-end tasks in T, namely t1, t2 and t3. So there 3 synchronizers: p1, p2 and p3. Figure

24 shows the developed workflow logic.

Figure 24. A developed Workflow Logic

There is redundancy in the developed system at p2 and p3. By Reduction Rule 3, these two

synchronizers are reduced to a single synchronizer p = ({t2, t3}, {t4, t5}, (2, 1)). This is the

workflow logic for insurance claim, as shown in Figure 22, there it was reduced to harmony.

Petri Nets – Manufacturing and Computer Science 136

7. Case semantics

Let Σ= (S,T;F,K,W,M0) be the workflow logic developed for a business process. Case

semantics is to select a route for the processing of a given case.

A healthy enterprise should have new cases arrive every day. It is impossible to have

different routes for different cases. Cases must be classified so that one route for one case

class.

Let C= {c1, c2, …ck} be the set of conditions for case classification. For example, let Boolean

variable x, y be used to record conclusions given by tasks “check policy” and “check claim”

respectively for insurance claim i.e. x and y are blanks on the B-form. One way to specify

case classes is: c1 = x∧y, c2 =¬x∨¬y. This classification is consistent with the workflow logic

developed in Figure 24. Another way of case classification is to have 4 classes: c1 = x∧y, c2

=¬x∧y, c3=x∧¬y, c4 =¬x∧¬y. This classification leads to a different task set: there have to be 4

end tasks. Thus the workflow logic is also different. The B-form should as well be changed

accordingly.

Before going on from conditions to routes, a definition of routes is needed.

Definition 19

A route on a workflow logicΣ= (S,T;F,K,W,M0) is a RP/T-systemΣ’= (S’,T’;F’,K’,W’,M0’)

such that S’,T’, and F’ are subsets of S,T and F respectively:

S ‘contains the start place s, a unique end place e, and all synchronizers in S that have a

directed path to e

T’ consists of the start transition (task), the transition in the pre-set of e, and for every

synchronizer p= (.p, p.,(a, b)) in S’, a transitions from .p and b transitions from p..

F’ = {(x,y) | x,y∈ S’∪ T’∧ (x,y)	∈ F}.

For x ∈ S’, K’(x) = K(x); For (x, y) ∈F’, W’(x, y) = W(x, y); M0’(x) = M0(x) for all x in S’.◆

The difference betweenΣ= (S,T;F,K,W,M0) and Σ’= (S’,T’;F’,K’,W’,M0’) appears when a

synchronizer p is an OR-join and/or OR-split. Conditions c1, c2, …ck will be used to select a

transitions from .p and b transitions from p.. Thus, variables (blanks in B) used in these

conditions are explicit variables, since they will appear explicitly in the system model for

case semantics.

7.1. C-net: Net with variables [5,8]

C-net was originally defined for programming, i.e. for computation and communication.

Variables are essentially different from conventional place elements of directed nets. A

conflict between transitions in a net system is caused by either the lack of tokens in a shared

place, or by the limited capacity of a shared place; a conflict between operations on a

variable is read-write conflict: simultaneous read-write on the same variable is impossible

Workflow Modelling Based on Synchrony 137

by nature regardless of the exact value of that variable. Besides, there is a rich variety of data

types and operations for data types. Conditions for case classification cannot be formally

expressed without variables and operations on variables. The example of insurance claim

explains: c1 = x∧y, c2 = (¬x∧y)∨(x∧¬y), c3 =¬x∧¬y provide a third way of case classification.

When variables are introduced into a net as another kind of state elements, a net becomes a

C-net. A simplified version of C-net is introduced next, just to serve the need of modeling

case semantics.

Definition 20

Σ= (S,V,T;F,K,W,R,Wr, MT, M0) is a C-net system if

S,V,T are the sets of places, variables and transitions respectively; F,R,Wr are respectively

the flow relation, the read relation and the write relation; K,W are the capacity function and

the arc weight function; MT is a marking on T and M0 is a marking (initial marking) on S.◆

A transition may read and/or write a variable, but not must. The marking on a transition has

a Boolean expression as its guard and assignments as its body when it writes. The guard and

the body must be consistent in relation to read and write. For example, the guard can only

refer to variables that are to be read by the transition.

If a transition has nothing to do with variables, conventional transition rules apply. If a

transition has nothing to do with places, it is enabled when its guard is true. If a transition is

related with places as well as variables, it is enabled if it is enabled by places and its guard is

true.

Isolated transitions are excluded in a C-net.

An enabled transition may fire to produce a successor marking on S, the marking on T

remains like the weight function and the capacity function; variables in write relation with

this transition are assigned values by the assignments.

A c-net transition in general has a figure called “status” as part of MT. Transition firings may

change “status”. But this does not concern us.

To save space, detailed formal definitions are avoided. Figure 25 illustrates them, including

graphical presentation of C-nets.

Figure 25. A C-net System: Case Semantics for Insurance Claim

Petri Nets – Manufacturing and Computer Science 138

The case semantics of insurance claim given in Figure 25 divides conceivable cases into 2

classes. Variables like x and y are drawn as double circles, write relation is represented by a

zero-headed arc from transition to variable, reversed zero-headed arc represents read

relation. For example, t2 writes x and t4 , t5 read x.

The start transition t1 is in no relation with x and y, it has no guard, no body. The guards of

both t2 and t3 are “true”, denoted by default. The write operations of these two transitions

are to be performed by their executers, denoted as x:= D where D is the abbreviation of

“default”. Transitions t4 and t5 have conditions for case classification as their guards. They

have empty body since they write no variables.

Apparently, the case semantic contains two routes: one for each class. As long as the

classification of cases is complete and consistent (every case falls into exactly one class),

there would be a unique route for each case.

7.2. Workflow logic and its case semantics

Let (T,<), B ={b1, b2, …bm} and C = {c1, c2, …ck} be the main constituents of a business process.

There is a precise correspondence between tasks in T and blanks (on B-form) in B; Condition

set C is complete and consistent; the immediate successor relation < is implied by a

combinatorial acyclic partial order on T. With all these requirements satisfied, ((T,<), B ,C) is

a well-designed business process. We will not put all these into formal definitions since that

would be cumbersome and uninteresting.

Definition 21

The C-net systemΣ’=(S,V,T;F,K,W,R,Wr,MT,M0) is a case semantics of the workflow logicΣ=

(S,T;F,K,W,M0) developed for well-designed business process ((T,<), B , C), if the marking

MT (which is constant) satisfies that for those t in T that have a guard, the guard is a

condition in C, and every condition in C is the guard of some transition.◆

Definition 22

Let C-net systemΣ’=(S,V,T;F,K,W,R,Wr,MT,M0) be a case semantics of the workflow logicΣ=

(S,T;F,K,W,M0) developed for well-designed business process ((T,<), B , C). If Σ is through,

and for every OR-split synchronizer p = (.p, p., (a, b)), b<|p. |, for every condition ci in C, i =

1,2, … k, |{t|t∈ p.∧ guard (t) = ci}|= b, then Σ’is consistent with Σ.◆

Theorem 8

If Σ is a through workflow logic and Σ′ is a case semantics consistent with Σ, then there is

a unique route for every conceivable case. ◆

For a case in class ci, the route it will take is obtained by deleting from Σ all transitions

whose guard is not ci together with their successor elements.

Figure 26 shows another case semantics of the insurance claim business process where cases

are divided into 3 classes by conditions c1 = x∧y, c2 = (x∧¬y)∨(¬ x∧y) and c3 = ¬x∧¬y . The

task set has one more end-task for this classification.

Workflow Modelling Based on Synchrony 139

Figure 26. Another Case Semantics for Insurance Claim

The only OR-split synchronizer in Figure 26 is p2. It has 3 tasks in its post-set and each of

which bears a different condition as its guard. This is consistent with p2: p2 is a XOR-split

synchronizer.

8. Business process management

So far we have proposed a formal model as workflow logic and a formal model as case

semantics for a well-designed business process. Case semantics in embedded in a Workflow

logic when they are consistent with each other. There is a unique route for every conceivable

case as the semantics of that case. Thus, a firm foundation has been laid for management

automation. The computer system that conducts the processing of each given case based its

semantics is the workflow engine.

8.1. Management logic

As suggested by Figure 8 (b), every synchronizer p = (.p, p., (a, b)) requires management

(transition t in the detail of the synchronizer) to keep tasks in .p well synchronized with

transitions in p.. The start-place requires management, so do all end-places. At the start-

place, the engine must recognize the proper business process when a case (B-form) arrives,

and to have the corresponding workflow logic ready, and to appoint an executer for the

start-task and passes the B-form to the executer. At an end-place, the engine must check

whether the case is well processed and to put the completed B-form in place.

All in all, places and synchronizers are exactly where the engine does its duty. In other

words, the dual of workflow logic is the management logic, and the dual of case semantics

with given condition ci in C produces the route for all cases classified by ci.

Definition 22

1. The directed net N’ = (T,S;F) is the dual net of directed net N = (S,T;F).

2. ∑’= (T, S; F,K’,W’, M0) is the workflow management logic for workflow logic ∑= (S, T;

F,K,W, M0), where K’(t) = ∑W(p, t) for every t in T, i.e. the capacity of t is the sum of all

weights on its input arcs; W’(x, y) = W(x, y) for all (x, y) in F; M0 (t) = 0 for t in T.

3. (∑,∑’) is the logic pair for the business process in question.◆

Petri Nets – Manufacturing and Computer Science 140

Figure 27 is the logic pair for insurance claim with two case classes.

Figure 27. Logic Pair

Management tasks (transitions inΣ’) and business tasks (transitions inΣ) are executed in

turn: whenever a place (including synchronizers) inΣhas a full capacity of tokens, the

transition with the same name inΣ’ is enabled. The enabled transition fires to put tokens

into its output places inΣ’, whenever a place inΣ’has a full capacity of tokens, the transition

with the same name inΣ is enabled. This interactive transition firings continue till a

transition named with an end-place is fired to move the case token out of the pair. This is the

way how management tasks and business tasks interact with each other.

8.2. Route for cases in the same class

A logic pair specifies, for a given business process, how individual cases are processed

under the conduction of the engine (the manager). Figure 28 shows a case semantics and

its dual, that is a semantic pair, a pair of C-net systems. The guard on a transition (task)

will be used by the engine (transitions named after a synchronizer) for the selection of

routes. We will not give a formal definition of this pair, since it is clearly specified by the

figure. The interaction between this pair is the same with the logic pair, except details

given by guards.

Figure 27 and Figure 28 serve as the main part of a formal specification for a workflow

engine. The rest of the engine is enterprise specific (personal, organizational division etc.).

Workflow Modelling Based on Synchrony 141

Figure 28. Semantic Pair

8.3. Duty of the engine

The main duty of the engine is to conduct the manipulation of individual cases based on the

logic pair (before the class to which the case belongs is known) and the semantic pair

(transitions named after an OR-split synchronizer), including appointing executers for

selected tasks.

In addition to this major duty, other duties include (not exclusive):

 Set a time upper bound for each task to be executed next, and to remind before

expiration, check whether it is done on time;

 Check whether a task is properly done (e.g. whether the content filled in a blank

matches its type);

 Decide, based on given rules, what to do when an expiration or quality failure is

detected (e.g. redo for quality failure, bad record on the due person for expiration);

 Other thinkable duties, especially enterprise specific ones.

An engine carries out its duty properly if and only if it has predefined management rules to

follow. In addition to global rules specified by the logic pair and the semantic pair, local rules

are also necessary, i.e. rules for every management task (every place in workflow logic).

Remember that all places in workflow logic are where the engine can and must put a hand on.

Some management rules are closely related to individual enterprises, some are even secrete

to outsiders. Current and historical business data, business partners data, conventions or

traditions etc. All rules related to these must be carefully established and checked together

with a well-designed business process, a well-structured workflow logic of the process, a

Petri Nets – Manufacturing and Computer Science 142

case semantics consistent with the logic. The two pairs are derivable from the logic and

semantics. We go no further here in this chapter.

9. Conclusions and acknowledgement

Prof. Carl Adam Petri wrote: “In order to apply net theory with success, a user of net theory

can just rely on the fact that every net which he can specify explicitly (draw on paper) can be

connected by a short (≤ 4)	chain of net morphisms to the physical real world; your net is, in

a very precise sense, physically implementable”.

We have seen this quotation at the very beginning of this chapter. This chapter tries to make

clear how to specify a net that is “in a very precise sense physically implementable”. A

successful application of net theory starts from a full understanding of the application

problem. A well designed business process ((T,<), B ,C) leads to the discovery of workflow

logic, case semantics and management pairs, a tree-layer model for workflow modeling.

Without theory, full understanding of application problems becomes hard. Well-structured

business process ((T,<), B , C) starts from a clear distinction between business process and

workflow, a clear distinction between business tasks and management tasks, and a clear

distinction between transition synchronizations and place synchronizations. Business

process and workflow are not synonym of each other.

A full understanding of application problems and a good grasp of theories in Petri nets that

build a road to success.

The author is grateful to the editors of this book. It is a great honor to me as well as a good

chance for me to exchange ideas on Petri nets with friends outside my country.

Author details

Chongyi Yuan

School of Electronics Engineering and Computer Science, Peking University, Beijing, China

10. References

[1] C.Y. Yuan: Petri Nets in Chinese, Southeast University Press,(1989).

[2] W. Brauer (editor): Net Theory and Applications, Springe LNCS Vol.84.

[3] C. A. Petri: Nonsequential Processes GMD-ISF Report 77, (1977).

[4] C.A. Petri: Concurrency incl. in 2 (in Theoretical Computer Science).

[5] C.Y. Yuan: Principles and applications of Petri Net. Beijing, China: Publishing house of

electronics industry, 2005.

[6] W. Aalst, K. Hee: Workflow Management, The MIT Press (2000).

[7] C.Y. Yuan, W. Zhao, S.K. Zhang, Y. Huang: A Three Layer Model for Business Process

—Process Logic, Case Semantics and Workflow Management, Journal of Computer

Science & Technology, Vol.22 No.3, 410-425 (2007).

[8] C.Y. Yuan: Petri Net Application, to appear .

