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1. Introduction 

Reactive Oxygen Species (ROS) were viewed as the ‘‘bad’’ molecules of cells for a long time, 

but in the recent years, several lines of evidence indicate the contrary: ROS are essential 

participants in cell signaling and regulation depending on their concentration.  

At present it is well established that ROS signaling is an important factor of many gene- and 

enzyme-catalyzed processes. ROS signaling is responsible for activation or inhibition of 

numerous processes catalyzed by protein kinases, phosphatases, and many other enzymes 

although these reactions proceed by heterolytic (non-free radical) mechanisms [1]. 

Therefore, ROS signaling can initiate both inhibition and activation of tumor formation. This 

fact might be of utmost importance for the development of anticancer treatment by the 

drugs possessing both prooxidant and antioxidant properties. 

In this chapter, we summarize a series of experiments that have allowed us to establish the 

role of oxidative stress in the early development of liver cancer process and the effects of 

cytokines on the modulation of this process. 

Through a series of in vivo and in vitro experiments we are able to describe: 

 The oxidative stress status of a preneoplastic liver 

 The modulating effect of Interferon α-2b (IFN α-2b) on this oxidative status that triggers 

the apoptotic mechanism in hepatic cells 

 The role of TGFβ1 in the whole process 

 The participation of FOXO transcription family proteins in the programmed cell death 

activated by IFN α-2b and TGFβ1 
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2. Experimental models of liver cancer development 

Hepatocellular carcinoma (HCC) is a malignant solid tumor that arises from the major cell 

type in the liver: the hepatocyte. HCC is the most common type of primary hepatic tumor; it 

represents approximately 6% of all malignancies and is the fifth most common tumor 

worldwide [2]. 

Nearly all types of primary liver tumors known to occur in humans can be reproduced by 

chemicals in laboratory animals, especially in rats [3]. In experimental carcinogenesis, 

preneoplastic foci of altered hepatocytes (AHF) emerge weeks or months before the 

appearance of hepatocellular adenomas and HCCs [4,5] and this has also been discovered in 

human with hepatocellular neoplasms and/or cirrhosis [6]. This fact has led to the 

development of a number of in vivo systems for the study of early neoplasia in rat liver [7,8]. 

The initiation-promotion or two-stage model of cancer development mimics the early events 

of the latent period of human carcinogenesis. Several two stages models have been 

developed, including the protocols of Solt and Farber [9], Ito et al. [10] and Rao et al. [11], 

that comprise necrogenic doses of carcinogens or other models such as the protocols of 

Peraino et al. [12] and Pitot et al. [13] that use low, non toxic doses of carcinogens. 

In this context, the initiation stage of cancer development can be produced in rat liver by the 

administration of diethylnitrosamine (DEN) [9–11], a complete carcinogen that produces 

DNA ethylation and mutagenesis [13]. Necrogenic doses of DEN cause massive hepatic 

necrosis followed by regeneration [14] and would be expected to cause not only increased 

gene expression related to regeneration, but also increased expression related to oncogene 

mutation. Administration of promoting agents causes selective enhancement of the 

proliferation of initiated cell populations over non-initiated cells in the target tissue [5]. 

Accordingly, we have developed a two-phase model of liver preneoplasia in rat: basically, 

the animals are initiated with two necrogenic doses of DEN and subsequently 2-

acetylaminofluorene (2-AAF) is administered as promoting agent. The experimental 

protocol takes six weeks, and at the end of the treatment animals show 5% of liver tissue 

occupied by microscopic preneoplastic foci. A diagram of the experimental model is shown 

in Figure 1. 

 

Figure 1. Two-phase or initiation-promotion (IP) model of rat chemical hepatocarcinogenesis. 

Initiation stage is performed by the administration of 2 necrogenic doses of diethylnitrosamine (DEN, 

150 mg / kg body weight, intraperitoneal), separated by 2 weeks. A week after the last injection of DEN, 

the promotion phase begins by the administration of 2-acetylaminofluorene (2-AAF, 20 mg / kg body 

weight) by gavage, 4 days per week during 3 weeks. At the end of the sixth week, rat livers show 

microscopic preneoplastic foci. 
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The presence of preneoplastic foci in this two-phase (initiation-promotion, IP) 

hepatocarcinogenic model was determined using rat Pi class isoenzyme of glutathione S-

transferase (GST) as a foci marker [15]. This isoenzyme has been described as the most 

effective single marker of hepatic preneoplasia in the rat [16], and immunohistochemical 

detection of Pi class GST is the most widely used method for identification, quantitation and 

assessment of rat AHF [17]. 

3. GSTs and liver preneoplasia: Our first studies 

GSTs are a family of multifunctional dimeric enzymes with an important role in 

detoxification processes of several xenobiotics, including anticancer drugs, carcinogens and 

mutagens [18–20]. These enzymes catalyze the nucleophilic attack of reduced glutathione 

(GSH) on electrophilic compounds [19,21]. 

Thus, GSTs are part of a cellular defense system which also includes GSH levels (and 

enzymes related to its biosynthesis) and proteins involved in the uptake of drugs and in the 

excretion of glutathione conjugates [22]. In the liver, among the several cytosolic classes of 

GSTs, Pi class GST (GST P), is particularly interesting because its expression in the adult 

tissue is associated with preneoplastic and neoplastic development [23]. In addition, 

increased expression of GST P was found to be associated with resistance of tumor tissues to 

several cytostatic drugs [24,25]. 

There is a significative increase of GST P in preneoplastic livers. This enzyme has shown to 

be the more efficient isoenzyme in the catalysis of conjugation of ethacrynic acid (EA) with 

GSH. How does this enzyme act in the preneoplastic condition? 

EA, an electrophilic loop diuretic drug, causes hepatotoxicity through lipid peroxidation 

mediated by its oxidative metabolism [26,27]. This drug has a preferential conjugation with 

GSH either spontaneous or GST catalyzed, reducing its intracellular levels and consequently 

favoring oxidative stress in isolated hepatocytes [27]. The glutathione conjugate of EA (EA-

SG) is a substrate of human multidrug-resistance protein 2 (MRP2) and probably of rat 

Mrp2 [28]. Thus, it has been suggested that EA-SG is excreted through this active canalicular 

transport protein into bile [29]. In addition, EA and EA-SG (as well as many others α,α-

unsaturated carbonyl derivatives and their glutathione conjugates) are important in vivo and 

in vitro inhibitors of several human and rat GSTs activities [19,30,31]. 

As was stated above, at the inactivation step, GSTs are playing a major role by catalyzing the 

conjugation reaction of GSH with the drug and leading to the inactivation of the therapeutic 

agent. EA and EA-SG have been proved to be good inhibitors of GSTs activities [19,30,31]. 

For this reason, we evaluated the enzymatic and cellular in vitro response to EA in isolated 

hepatocytes from preneoplastic rat livers, which present high levels of GST P, and analyzed 

the role of the GSTs/GSH system and Mrp2 (as a measure of the multidrug resistance) in 

these cells [15]. 

Results showed that hepatocytes from IP animals presented higher levels of cell viability 

than control hepatocytes in the presence of EA. In accordance with this data, IP hepatocytes 
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showed lower levels of release of lactate dehydrogenase and alanine aminotransferase than 

control cells throughout the incubation time, indicating higher levels of cellular integrity. 

This suggests that hepatocytes from IP animals are more resistant to the cytotoxic effects of 

EA than control cells. 

Control hepatocytes suspensions showed increased levels of lipid peroxidation measured 

through the quantification of TBARS (Thiobarbituric Acid Reactive Substances, [32]) 

production in a time- and dose-dependent manner in the presence of EA. This data was 

expected since oxidative metabolism of the drug and a subsequent lipid peroxidation was 

already described as part of the EA-induced toxicity [27]. However, IP hepatocytes 

suspensions did not show increased levels of lipid peroxidation during incubation at all 

times and EA-doses evaluated. 

The higher basal levels of TBARS observed in preneoplastic hepatocytes could be attributed 

to the hepatocarcinogenic treatment, since it was described that lipid hydroperoxides are 

produced by some promotion regimens [33]. The unchanged levels during EA incubation 

are probably a consequence of both GST P activities: lipid peroxidase [34] and catalysis of 

EA conjugation with GSH, avoiding its oxidative metabolism. 

Although intracellular total GSH (tGSH) levels decreased in both hepatocytes suspensions 

without EA, initial tGSH levels showed a mild although significantly higher value in 

hepatocytes from IP animals. This fact suggests that the small extra pool of tGSH is certainly 

an advantageous factor to prevent susceptibility to oxidative stress. 

GST P has shown to be the more efficient isoenzyme in the catalysis of conjugation of EA 

with GSH [35,36] and may have a role in the detoxification of lipid hydroperoxides through 

its selenium-independent peroxidase activity [34]. We observed decreased levels of both 

Alpha and Mu class GSTs in preneoplastic hepatocytes. This fact, and the presence of GST P 

in hepatocytes from IP rats, gives to this induced isoenzyme a compensatory role in these 

cells. Based on the measurement of total GST activity and in data obtained from other 

publications [37,38], we have proposed that GST P could be playing a major role in the 

defense system against the cytotoxic effects of EA in our preneoplastic model. At high EA 

concentrations this resistance is overwhelmed over time, probably as a consequence of 

inhibition of GST P activity by EA-SG acummulation and depleted levels of intracellular 

tGSH. In the absence of GST P and GSH, EA may alkylate cell proteins thiols, which might 

be the major determinants of the cytotoxic effects observed with higher EA concentrations. 

It has been demonstrated that MRP2 expression, the canalicular membrane protein reported 

to be the transporter of GSH and GSH conjugates, is higher in human HCCs than in normal 

cells [39]. MRP2 increased expression could suggest accelerated GSH depletion and hence, 

enhanced toxicity of cytotoxic compounds. On the other hand, diminution of MRP2 

expression could indicate a preservation of GSH intracellular pool. In spite of the data 

demonstrated in human HCC, in our preneoplastic model, we observed a 75–85% decrease 

in the expression of Mrp2 in freshly isolated hepatocytes compared to control cells. Thus, for 

this reason, reduced levels of Mrp2 in preneoplastic liver cells could contribute to the 
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preservation of intracellular GSH and would result, in addition, in an accumulation of EA-

SG and a consequent inhibition of GSTs activities suppressing more GSH consumption. 

We also saw increased levels of Mrp2 in intracellular microsomal membrane fraction in a 

EA-dose dependent manner in both control and IP hepatocytes. This internalization 

phenomenon was already described [40] and could imply a process which takes place as a 

feedback mechanism under GSH-consumption conditions at the highest dose of EA. Our 

results showed that the rate of internalization of Mrp2 with increasing doses of EA was 

markedly higher in IP hepatocytes, although the initial basal values were significantly 

lower. To our knowledge, this was the first study evaluating this accelerated internalization 

process in isolated hepatocytes from preneoplastic rat livers. 

In conclusion, hepatocytes of IP rats showed an intrinsic resistance to the cytotoxic effects of 

low doses of EA and it seems likely that the presence of GST P, the higher levels of GSH, 

and the lower expression of Mrp2 in the cellular membrane are closely related to this 

phenotype. 

4. Interferon α-2b gets into scene 

Human lymphoblastoid IFN α has been shown to have a powerful antiproliferative effect on 

human hepatoma cell line PLC/PRF/5 in a dose-dependent manner, both in vitro and in vivo, 

after implantation in nude mice. Moreover, IFN α inhibits liver regeneration by decreasing 

DNA and total protein synthesis [41,42]. 

Considerable expectations in reducing the incidence of HCC were connected with the use of 

IFN α in antiviral treatment of hepatitis B or C. By now, clinical trials have indeed 

confirmed a reduced incidence of HCC in IFN α–treated patients with chronic hepatitis B or 

C [43,44]. In contrast, the benefit derived from IFN α treatment of established HCC remains 

controversial [45,46]. It is important to deepen the understanding of the action of IFN α on 

HCC cells, because some patients with hepatitis B– or hepatitis C–related liver diseases may 

already have small, clinically undetectable preneoplastic foci during IFN α therapy. 

Experimental studies have shown that IFN α exerts its antiproliferative effects against HCC 

cell lines in vitro by inducing apoptosis and inhibiting cell-cycle progression [47–49]. 

However, the sensitivity of early-stage HCC to IFN α could not be estimated from the 

sensitivity of the cell lines that have a larger number of gene abnormalities and higher 

proliferation capability, whereas the activity of IFN is expected to be minimal [50]. 

However, it was unknown whether IFN α prevents in vivo oncogenesis by expressing these 

effects in the very-early-stage, clinically undetectable cancer cells.  

In this context, we have demonstrated that administration of IFN α-2b during the 

development of rat liver preneoplasia significantly decreased both number and volume 

percentage of GST P–positive foci [14]. Particularly, these reductions where observed 

when IFN α-2b was administered during the initiation phase or during the entire 

experimental protocol. However, when IFN α-2b was administered during the promotion 

phase no effect on these parameters could be observed. Thus, the use of IFN α-2b as an 
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antitumor agent was lost when it was administered only at the 2-AAF phase. 

Nevertheless, we cannot discount that the lack of IFN α-2b effect during the 2-AAF phase 

reflects some interaction between 2-AAF and the cytokine. Administration of IFN α-2b 

during the initiation stage seems to be essential to exert inhibitory effects against DEN-

initiated hepatic carcinogenesis in the rat. 

Contrary to our expectations, the proliferation index (measured by immunohistochemical 

detection of proliferating cell nuclear antigen or PCNA) in preneoplastic foci was not 

reduced by treatment with IFN α-2b. On the other hand, the apoptotic index (measured 

by TUNEL technique) in AHF was significantly increased in the groups that received IFN 

α-2b. The number of apoptotic cells and bodies in AHF after treatment with IFN α-2b was 

higher than for control rats. Then, the reduction of both number and volume percentage 

of AHF in IFN α-2b–treated animals is explained by a greater programmed cell death 

within the foci. 

In regard to the effects of IFN α on the cell cycle progression of various normal and tumor 

cell lines, most studies have observed inhibitory effects on G1 to S phase transition [51,52]; 

other studies have shown S phase accumulation in response to treatment with IFN α [48,49]. 

In our studies, the animals with liver preneoplasia that were treated with IFN α-2b showed 

a diminution in the percentage of preneoplastic hepatocytes in S phase and an accumulation 

in the G1 phase. Although apoptosis may be initiated in any phase of the cell cycle, most 

cells undergo apoptosis primarily in the G1 phase of cycling cells, and there is a positive 

relationship between apoptosis and cell proliferation [53]. This relationship is explained by 

the presence of many cell cycle regulators/apoptosis inducers such as p53, which operates at 

the G1/S checkpoint [54]. 

In this connection, we examined whether p53 and 3 members of the Bcl-2 family (Bax, Bcl-2, 

and Bcl-xL), which are important regulators of apoptosis [53] were involved in IFN α-2b–

mediated programmed cell death. It is known that p53 down-regulates Bcl-2 [55] and up-

regulates Bax genes [56]. The role of the Bcl-2 family in IFN α–induced apoptosis still 

remains controversial. For example, IFN α–induced apoptosis in cells of hematopoietic and 

hepatic origins can occur without involvement of the Bcl-2 family [48,57] whereas 

transfection of IFN α–sensitive cell lines with a Bcl-2 expression vector conferred partial 

resistance to cell death mediated by IFN α [58]. Our results showed that members of the Bcl-

2 family were involved in the apoptotic elimination of preneoplastic hepatocytes after 

treatment with IFN α-2b. Specifically, treatment with IFN α-2b increased levels of the 

proapoptotic protein Bax, in parallel with increases of p53 protein levels. In addition, there 

were decreases in the levels of Bcl-2 and Bcl-xL proteins, which are known to promote cell 

survival through homodimerization. Bax protein promotes cell death via homodimerization, 

whereas heterodimerization with either Bcl-2 or Bcl-xL results in cell survival [59,60]. The 

relative prevalence of Bax and Bcl-xL protein are critical factors influencing cell fate, 

promoting either survival or death, whose ultimate outcome largely depends on the 

Bax/Bcl-xL ratio. Thus, apoptosis pathways can be activated under conditions in which Bax 

protein expression is elevated and/or Bcl-xL protein expression is decreased. 
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We also observed increased Bax protein translocation into the mitochondria in the animals 

that received IFN α-2b. It has been established that subcellular localization of Bax protein is 

an important regulator of apoptosis. Bax is localized in the cytoplasm and translocates to the 

mitochondria at the early stage of apoptosis. Bax mediates its proapoptotic effects through a 

channel-forming activity of the mitochondrial membrane, resulting in disruption of 

mitochondrial function, release of cytochrome c, and apoptosis [61].  

In brief, our experimental observations led us conclude that preneoplastic hepatocytes in the 

IFN α-2b–treated rats are “primed” for apoptosis and undergo programmed cell death as a 

primary result of a substantial increase in the level of mitochondrial Bax protein, producing 

a further increase in the Bax/Bcl-xL protein ratio.  

5. Has TGFβ1 any role in this scenario? 

Given its antiproliferative, proapoptotic role in the liver, TGFβ1 could be expected to act as a 

tumor suppressor. However, various types of neoplastic liver cells respond quite differently 

to TGFβ1. Whereas some human and rat hepatoma cell lines are sensitive to TGFβ1 [62–64], 

resistance has been reported for other hepatoma cells [64,65]. In addition, TGFβ1 

overexpression seems to be a hallmark of human liver cancer [66]. Thus, the relationship 

between TGFβ1 and cancer is complex: TGFβ1 may stimulate malignant progression itself; 

conversely, it can have tumor suppressor activity [67]. The escape of certain hepatoma cells 

from TGFβ1–induced apoptosis seems to be an important and essential step in malignant 

progression [68,69]. Moreover, it has been suggested that TGFβ1 overexpression is a late 

event in human hepatocarcinogenesis [66]. These data indicate that loss of TGFβ1 

responsiveness is not an initiating or strongly predisposing event, but rather a late event in 

carcinogenesis [67,70]. 

Therefore, it was of interest to study if liver preneoplasia as an early stage of cancer 

development is still sensitive toward TGFβ1 actions. 

Given that the changes of pro- and anti-apoptotic proteins induced by IFN α-2b in rats with 

liver preneoplasia were similar to those attributed to TGFβ1 in other experimental models 

[62,63,71], we studied the possibility that TGFβ1 could be involved in the programmed cell 

death induced by IFN α-2b [72]. Primary, we observed that serum TGFβ1 levels in the 

animals treated with IFN α-2b were significantly increased. In accordance with this, 

immunohistochemical studies showed that IFN α-2b treatment significantly augmented the 

quantity of TGFβ1–positive hepatocytes in preneoplastic livers. At first sight, these findings 

seemed to indicate that administration of IFN α-2b increased serum TGFβ1 production and 

the number of TGFβ1–positive hepatocytes. Although the mechanisms by which IFN α-2b 

treatment induced TGFβ1 in the preneoplastic livers were not completely explored, we 

observed, using Western blot analysis, that preneoplastic livers expressed higher levels of 

IFN α receptors than control livers. In addition, IFN α-2b administration in animals 

subjected to the preneoplastic protocol induced elevated levels of phosphorylated Stat1, 

indicating activation of the IFN α pathway. 
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Recent investigations have reported that the induction of apoptosis by endogenous TGFβ1 

does not require an overall increase in its hepatic concentration [70]. In view of the fact that 

TGFβ1 hepatic content may not reflect the induction of apoptosis by this cytokine, we 

determined the nuclear content of p-Smads-2/3 (critical intracellular transducers of TGFβ1 

signaling). We observed high levels of p-Smads-2/3 proteins in the nuclear extracts of IFN α-

2b–treated animals. These results corresponded with the increased number of TGFβ1–

positive hepatocytes, indicating increased TGFβ1 activation in rats with liver preneoplasia 

that received IFN α-2b. 

Nonparenchymal cells, including Kupffer cells and peritoneal macrophages, are the main 

source of hepatic TGFβ1 [73,74]. Hepatocytes, however, may synthesize TGFβ1 in vitro [75] 

as well as during hepatocarcinogenesis [66]. During liver preneoplasia, neither peritoneal 

macrophages nor Kupffer cells secreted detectable levels of TGFβ1 when they were 

stimulated with IFN α-2b. Conversely, hepatocytes from normal, untreated livers did not 

secrete TGFβ1 in the absence or presence of IFN α-2b. Nevertheless, hepatocytes from 

preneoplastic livers produced and secreted detectable levels of TGFβ1 when they were 

cultured without IFN α-2b stimulus, and IFN α-2b presence in the culture media induced 

several-fold increases of TGFβ1 production. 

In vitro studies with isolated hepatocytes have allowed us to demonstrate that IFN α-2b 

induces apoptosis in hepatocytes from preneoplastic livers, measured by fluorescence 

microscopy and caspase-3 activity. These cells also had higher nuclear accumulation of p-

Smads-2/3, indicating increased TGFβ1 activation. When anti–TGFβ1 was added to the 

culture media, TGFβ1 activation and apoptosis induced by IFN α-2b were completely 

blocked. Therefore, the apoptotic effect of IFN α-2b is mediated by the production of TGFβ1 

from hepatocytes. 

Thus, our work determined for the first time that endogenous TGFβ1 is implicated in the 

increased apoptosis into the AHF of IFN α-2b-treated rats. Taken together, these data clearly 

showed that TGFβ1, which is produced and secreted by hepatocytes from preneoplastic 

liver under IFN α-2b treatment, stimulates hepatocytes apoptotic cell death in an 

autocrine/paracrine fashion. This postulated mode of action is in agreement with data 

published previously [70,76,77]. The reduction of preneoplastic foci by endogenous TGFβ1 

early in the carcinogenesis process would likewise protect against tumor formation. 

6. Participation of ROS 

In a new series of in vitro experiments, we proved that IFN α-2b induces the production of 

TGFβ1 in hepatocytes from preneoplastic livers by activation of NADPH oxidase complex 

(superoxide-producing enzyme consisting of membrane (gp91phox and p22phox) and 

cytosolic (p47phox, p67phox, and p40phox) components [78]), and TGFβ1 induces apoptosis 

through a mechanism linked to the production of ROS by the same oxidase [79]. In order to 

confirm that the induction of NADPH oxidase activity was the main pathway producing 

ROS, additional experiments were made using IFN α-2b plus an inhibitor of NADPH 

oxidase activity, diphenyleneiodonium (DPI). Presence of DPI in the culture media totally 
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blocked the activity of NADPH oxidase, the production of ROS and the subsequent 

apoptosis induced by IFN α-2b. 

ROS production induced by IFN α-2b showed a singular pattern of two peaks: one peak in 

ROS generation at 1 hour of culture, and another peak at 9 hours. The addition of anti-

TGFβ1 to the culture media did not block the production of the first peak of ROS whereas 

totally blocked the appearance of the second one. On the other hand, when ASC was added 

to the culture media the production of both peaks was abolished. Based on these findings, 

the postulated mechanism by which ROS act as signaling molecules in liver preneoplasia is 

as follow: IFN α-2b induces, via NADPH oxidase activation, an early ROS production that 

serves as a messenger, promoting TGFβ1 production and secretion. This growth factor 

triggers the production of more reactive oxygen intermediates, as a late event, by inducing 

the same enzyme complex. It was demonstrated that synthesis of new protein is required for 

NADPH activation and subsequent apoptosis [80]. This event shows an additive response in 

ROS production and imposes the final onset of the apoptotic effect. The presence of ASC in 

the culture media totally blocked the increase in the activity of the NADPH oxidase 

complex, ROS production and the final apoptotic effect induced by IFN  

α-2b. 

Once the source of ROS was assessed, we analyzed the cellular antioxidant defenses and 

their behavior during the studied times. We observed a reduction in tGSH levels from 7 

hours of culture onwards. For that reason we studied if any form of glutathione was being 

exported out of the cell, and whether the biosynthetic GSH capacity was altered. We found 

an increase in oxidize glutathione (GSSG) levels probably due to the oxidation of the 

reduced form within the cytosol, and its exportation to the culture media, possibly in order 

to protect cells from a shift in the redox equilibrium. IFN α-2b treatment resulted in the loss 

of GSH biosynthetic capacity since glutamate cysteine ligase (GCL) activity was decreased at 

7 hours of culture and a rapid decrease of the mRNA expression of the catalytic subunit of 

GLC (GCLC) through a mechanism mediated by TGFβ1 was also observed. Moreover, it 

was found that IFN α-2b-induced apoptosis in hepatocytes from rat preneoplastic livers is 

accompanied by the cleavage and loss of GCLC protein, through a mechanism mediated by 

TGFβ1. 

A decrease in the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) 

activities was observed when hepatocytes were treated with IFN α-2b. On the other hand, 

treatment with anti-TGFβ1 or ASC totally blocked the decrease in CAT and SOD enzymatic 

activities. These findings indicate that IFN α-2b induced the decrease in enzymatic CAT and 

SOD activities by a mechanism mediated by ROS and TGFβ1. These enzymes probably 

protect hepatocytes from the initial IFN α-2b-induced burst of ROS and this may be the 

reason for the rapid decrease of the first peak of ROS. 

These results confirmed that the perturbation of the redox status produced by the IFN α-2b 

induction of NADPH oxidase complex triggered TGFβ1 synthesis and secretion and 

assessed the downregulation of antioxidative systems. Similar data have been reported by 

Herrera et al. [80] when they treated fetal rat hepatocytes with TGFβ1.  
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Since ASC abolished all the apoptotic effects induced in vitro by IFN α-2b, we determined 

the relevance of ROS on the onset of the apoptotic process in vivo, in the whole preneoplastic 

liver. IFN α-2b plus ASC treatment of rats with liver preneoplasia abrogated the apoptotic 

effect induced by IFN α-2b, leading to no reduction on size/number of foci. Interestingly, 

foci volume was almost twice higher in the animals that received IFN α-2b plus ASC than in 

IFN α-2b-treated rats. This result highlights the importance of ROS signaling during the 

beneficial effects of IFN α-2b treatment of hepatic preneoplasia. In this regard, it was found 

that ASC at low concentrations stimulates growth of malignant cells [81], while inhibits their 

growth at high doses [82]. At the present time, many cancer patients combine some forms of 

complementary and alternative medicine therapies with their conventional therapies. The 

most common choice of these therapies is the use of antioxidants such as vitamin C. It must 

be assumed that any antioxidant, used to reduce toxicity of tumor therapy on healthy tissue, 

has the potential to decrease effectiveness of cancer therapy on malignant cells [83]. Some 

data suggest that antioxidants can ameliorate toxic side effects of therapy without affecting 

treatment efficacy, whereas other data suggest that antioxidants interfere with radiotherapy 

or chemotherapy [83]. 

In summary, we demonstrated that increase in ROS levels turns on the process of 

programmed hepatocytes death, leading to the elimination of these malignant cells. The 

inhibition of ROS production with an antioxidant such as ASC in the co-treatment with IFN 

α-2b may be not a beneficial therapy for the prevention of preneoplastic foci. 

7. Is p38 MAPK implied in the process? 

p38 MAPK pathway has been implicated in a wide range of cellular functions. However, it is 

now well established that p38 MAPK activation and its role depends on the cellular context, on 

the specific stimuli, and on the specific p38 MAPK activated isoform [84]. There are 

controversies about the role of p38 MAPK in apoptosis. It has been shown that p38 MAPK 

signaling promotes cell death [85,86], whereas it has also been shown that p38 MAPK cascades 

enhance survival [87,88], cell growth [89], and differentiation [90]. Furthermore, it has been 

reported that p38 MAPK participates on the estradiol-mediated inhibition of apoptosis in 

endothelial cells [91], while participates on the apoptosis induced by thrombospondin-1 [92], 

or by high leves of D-glucose in the same cells [93]. It is believed that p38 MAPK mediates its 

apoptotic effects through the phosphorylation of proteins of the apoptotic pathways [94]. 

Previous reports in hematopoietic cells have shown that IFN α and TGFβ1 play their growth 

inhibitory effects through activation of the p38 MAPK pathway via phosphorylation 

(activated p38 MAPK or p-p38 MAPK) [95]. However, these effects are primarily ascribed to 

G1 cell cycle arrest and not to induction of apoptosis. Others have suggested that during the 

TGFβ1-induced apoptosis in fetal rat hepatocytes, ROS activates p38 MAPK not by induction 

of apoptosis, but mediating ROS regulation of TGFβ1-gene expression [96]. On the other hand, 

it was demonstrated that inactivation of p38 MAPK pathway in cultured mice fibroblasts 

promotes tumor development [97]. Moreover, it was demonstrated that treatment with an 

inhibitor of p38 MAPK activation, induced carcinogenesis in mice resistant to tumor 

development, indicating the leading role of p38 MAPK in the regulation of tumor growth [98]. 
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Using in vivo studies we could demonstrate that rats subjected to a 2-phase model of 

chemical hepatocarcinogenesis have less hepatic p38 MAPK activation than control rats, 

determined as p-p38 MAPK levels [79]. This is in agreement with Honmo et al. [99] that 

showed that 2-AAF administration induces a decrement of p38 MAPK activation promoting 

tumor development. 

Another important finding of the in vivo studies was the effect of IFN α-2b on the activation 

of p38 MAPK in rat preneoplastic livers. Preneoplastic animals treated with IFN α-2b 

showed similar p-p38 MAPK levels to those in controls. In this connection, cultured 

hepatocytes from preneoplastic livers treated with IFN α-2b plus SB-203580 (inhibitor of α 

and β isoforms of p38 MAPK), totally blocked the IFN α-2b-induced apoptosis. It is clear 

that activation of p38 MAPK pathway plays a key role in promoting apoptosis after IFN α-

2b treatment in our model of experimental preneoplasia. It was previously reported that IFN 

α suppresses the growth of leukemia cell progenitors through activation of p38 MAPK, 

which leads to cell cycle arrest in different phases [100].  

We demonstrated that IFN α-2b induces an early production of ROS (first peak), in 

hepatocytes from preneoplastic livers. Then, ROS stimulate the production and secretion of 

TGFβ1 from hepatocytes, which in turn, generates a new burst of ROS (second peak). These 

oxygen radicals act as signaling mediators of the onset of the IFN α-2b-induced apoptosis. 

Activation of p38 MAPK after IFN α-2b stimulus occurred preceding each increment in ROS 

generation and so, the particular pattern of two peaks was also functioning for p38 MAPK 

activation. Interestingly, treatment with ASC was able to block only the second peak, 

indicating that early activation of the pathway was independent of ROS, while late 

activation depended on ROS produced by endogenous TGF-β1. Treatment with anti-TGFβ1 

completely blocked the second p38 MAPK, demonstrating that TGF β1 induces activation of 

p38 MAPK through ROS, as previously reported in fetal rat hepatocytes [96]. 

Another relevant issue is the activation of transcription factors by p38 MAPK. Cell signaling 

pathway activation could be transmitted to the nucleus in different ways, depending on the 

stimulus. To assess whether activation of p38 MAPK transmitted the IFN α-2b stimulus to the 

nucleus, we analysed phosphorylation status of specific p38 MAPK transcription factors 

CREB/ATF-1 and ATF-2. Our findings documented that early p38 MAPK activation under IFN 

α-2b stimulus mainly activates the transcription of ATF-2-regulated genes, whereas the late 

signal of p38 MAPK activation is transmitted to the nucleus mainly by the phosphorylation of 

CREB/ATF-1. Moreover, it can be also inferred that early phosphorylation of ATF-2 may be 

dependent on activation of p38 MAPK by IFN α-2b, while late phosphorylation of CREB/ATF-

1 may be dependent on activation of p38 MAPK by TGFβ1. 

8. Relationship between p38 and NADPH oxidase 

We inferred that p38 MAPK activation is essential for NADPH oxidase to function in 

preneoplastic hepatocytes treated with IFN α-2b, because the presence of p38 MAPK 

inhibitor SB-203580 totally blocked the activation of the enzyme [101]. Cytosolic component 

of NADPH oxidase complex, p47phox got phosphorylated following the same pattern as 
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p38 MAPK induction and ROS generation: an early, first increment and a late, second 

increase. The first increase of p47phox phosphorylation by IFN α-2b was independent of 

ROS, since ASC did not block such phosphorylation. However, it was dependent of p38 

MAPK activation, since it was blocked by SB203580. This is a very interesting finding since it 

suggests that p-p38 MAPK phosphorylates p47phox, initiating the activation of NADPH 

oxidase in cells from preneoplastic livers. Analysis at higher times demonstrated that late 

phosphorylation of p47phox was completely blocked by anti-TGFβ1 or ASC, evidencing the 

participation of TGF β1 and ROS in this process. Studies of p47phox translocation from 

cytosol to plasma membrane were consistent with the phosphorylation findings. 

It is clear that in liver preneoplasia there is a positive cross-talk between IFN α-2b, TGFβ1 

and p38 MAPK pathways. Taken altogether, evidence indicates that p38 MAPK pathway 

plays a critical role in the generation of the suppressive effects of IFN α-2b, as well as TGFβ1 

in the very early stages of hepatic neoplasia. There is strong indication that this signaling 

cascade acts as a converging signaling point for signaling pathways activated by different 

cytokines to mediate apoptotic or suppressive signals. These findings may have important 

clinical implications, as improving the pharmacological development of better drugs for the 

prevention and treatment of hepatic illness such as cancer. 

9. How are IFN α and TGFβ1 signaling pathways connected? 

Interactions between TGFβ and other cytokines signaling pathways have been extensively 

studied, particularly the cross-talk between TGFβ/Smad and IFN γ/Stat signaling in their 

antagonistic role on collagen deposition and fibrosis [102–107]. However, despite the fact 

that TGFβ plays a crucial role in cancer, little is known about TGFβ signaling interactions 

during this process. An investigation in hepatoma cells have described a cross-talk between 

Il-6 and TGFβ signaling [108] and another study in a melanoma cell line normally resistant 

to IFN α, have demonstrated that co-stimulation with IFN α and TGFβ induces 

antiproliferative activity [109]. 

As was stated above, the relationship between TGFβ and cancer is complex: it functions as a 

tumor suppressor in early epithelial carcinogenesis, but often becomes prooncogenic in late 

stages of tumor progression [110]. Autocrine TGFβ1 is known to suppress tumorigenesis 

and tumor progression in normal and early transformed cells, but it can also promote the 

survival of various cancer cells [111]. Besides, dysregulation of the downstream effectors of 

TGFβ has been described in late steps of promotion stage, indicating that may contribute to 

the progression of preneoplastic lesions [112]. 

We demonstrated that during liver preneoplasia TGFβ1 has a beneficial role, promoting 

apoptotic death of AHF. Therefore, we attempted to get more insight into the relationship 

between IFN α-2b and autocrine TGFβ1 in preneoplastic rat livers. Many in vitro cell 

systems are good tools to explain related actions of distinct types of cytokines in various 

biological signaling pathways, but they are not physiological. However, the study of IFN α-

2b and TGFβ1 signals interactions in hepatocytes derived from the whole preneoplastic liver 

may be relevant for understanding the mechanisms operating in patients with chronic 
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hepatitis B or C treated with IFN α-2b, who already have small, clinically undetectable 

preneoplastic liver foci during therapy. 

The obtained results provided evidence for the integration of TGFβ1 and IFN α-2b signaling 

pathways during the development of liver carcinogenesis. IFN α-2b treatment of 

hepatocytes from preneoplastic livers produced a rapid activation of IFN α signaling, with 

increased p-Stat1 levels. Subsequently, autocrine TGFβ1 produced under IFN α-2b stimulus 

was able to induce the activation of TGFβ1/Smad signaling pathway, determined by nuclear 

content of p-Smad2/3 and confirmed by the use of specific TGF β1 signaling inhibitors (anti-

TGFβ1 and SB-431542) [113]. 

A critical mechanism for regulating the cellular response to cytokines resides at the level of 

receptor expression. TGFβRII plays a key role in receptor activation and subsequent TGFβ1 

signal propagation, functioning both to bind ligand and to activate TGFβRI. Disorders of 

TGFβRII expression lead to various diseases. For example, reduction of TGFβRII levels 

contributes to the resistance of tumor cells to TGFβ [114].  

We observed that TGFβRII was up-regulated at mRNA and protein levels. This induction 

was mediated by autocrine TGFβ1, since it was blocked by inhibitors of TGFβ1 signaling. 

This is an outstanding finding, since TGFβ1-dependent regulation of TGFβRII has not been 

previously reported. 

Inhibitory Smad7 is a key component of TGFβ1 signals. Its expression is not only induced by 

TGFβ, but also controlled by, for example, IFN γ [102,107]. Therefore, Smad7 is considered 

as a protein involved in the fine-tuning of the cellular responses to the TGFβ family by 

integrating various signaling pathways. However, in our model, Smad7 did not show 

changes in its protein levels, at least during the studied times. Furthermore, Smad7 protein 

levels in hepatocytes from preneoplastic livers were significantly reduced with respect to 

their levels in hepatocytes from normal livers. So, additional experiments of Smad7 

induction by phorbol 12-myristate 13-acetate (PMA) were performed in order to evaluate if 

the decreased Smad7 levels showed in preneoplastic livers may contribute in TGFβ1 

signaling activation. Results showed that this possibility seems unlikely; provided that 

Smad7 protein reached similar levels to those in normal hepatocytes, and TGFβ1 signaling 

continued activated. These experiments indicated that Smad7 protein is not directly related 

with TGFβ1 and IFN α signals interaction in hepatocytes from preneoplastic livers. 

Another decisive aspect in signaling pathways relationships is the availability of certain co-

activators for interacting with specific transcription factors. The cofactor p300 is an important 

component of the transcriptional machinery that integrates TGFβ/ IFN γ-induced signals [115]. 

In normal fibroblasts exposed to IFN γ and TGFβ simultaneously, activated Stat1 and 

activated Smad2/3 compete each other for limiting p300. IFN γ-activated Stat1 appears to 

sequester p300, thereby disrupting TGFβ-induced interaction of p300 with Smad2/3. Ectopic 

p300 rescues stimulation in the presence of IFN γ, suggesting that p300 acts as an integrator 

of IFN γ/Stat1 and TGFβ/Smad2/3 signals [103]. In addition, Inagaki et al. [116] have 

demonstrated that IFN α antagonizes TGFβ/Smad-induced hepatic fibrosis by competition 

between Stat1 and Smad3 for binding to p300 protein. 
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In our study, we found that IFN α-2b induced a direct interaction between activated Stat1 

and p300 in hepatocytes from preneoplastic livers. Furthermore, activated Smad2/3 induced 

by autocrine TGFβ1 were able to physically associate with p300. In addition, levels of p300 

in hepatocytes from preneoplastic livers were significantly higher than in normal 

hepatocytes. Together, these findings suggested that in hepatocytes from preneoplastic 

livers, the intracellular signals triggered by TGFβ1 and IFN α-2b are integrated at the 

nuclear level, where p-Stat1 and p-Smad2/3 are capable of interact with p300, present in no 

restrictive cellular amounts. 

It was recently found that TGFβ signals potentiate Il-6 signaling in hepatoma cells. This 

cross-talk occurs by physical interactions between Stat3 and Smad3, bridged by p300 [108]. 

In our model of liver preneoplasia we did not observe physical interaction between Stat1 

and Smad3, but it seems to be enough p300 protein available to interact with p-Stat1 on one 

hand, and with p-Smad2/3 on the other, leading to the activation of TGFβ1 and IFN α 

signaling simultaneously.  

In fact, we have described for the first time a positive cross-talk between IFN α and TGFβ1 

signaling.  

10. Summary # 1 

In these series of experiments, it was demonstrated that NADPH oxidase complex is 

activated when IFN α-2b binds to type I receptor. This binding produces early amounts of 

ROS. ROS, in turn, trigger TGFβ1 production and secretion. TGFβ1, when binding to its 

receptor, also induces NADPH oxidase complex activation, and, besides, decreases the 

antioxidant defenses of the cell. Moreover, we demonstrated that p38 MAPK activation is 

essential for NADPH oxidase to function. 

Furthermore, ROS initiate mitochondrial apoptosis directly and/or acting by the Bcl-2 family 

proteins inducing a mitochondrial permeability transition pore (MPTP), releasing 

cytochrome c and activating caspase 3. TGFβ1 could induce, as a late event, the activation of 

caspase 8, which, in turn, induces a higher MPTP through activation of Bid, another Bcl-2 

family member [117]. A graphic outline of these concerns is shown in Figure 2. 

Altogether, our results demonstrate that the oxidative stress induced in preneoplastic liver 

by IFN α-2b is able to trigger the apoptotic mechanism and brings into the play another key 

cytokine in the cancer process: TGFβ1. 

11. Targeting the Wnt/β-catenin signaling pathway 

Among the growth factor signaling cascades dysregulated in HCC, evidences suggest that 

the Wnt/Frizzled-mediated signaling pathway plays a key role in hepatic carcinogenesis. 

Aberrant activation of the signaling in HCC is mostly due to dysregulated expression of the 

Wnt/β-catenin signaling components. This leads to the activation of the β-catenin/TCF 

dependent target genes, which control cell proliferation, cell cycle, apoptosis or motility. It 

has been shown that disruption of the Wnt/β-catenin signaling cascade displayed anti-

cancer properties in HCC [118]. 
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For this reason, we determined the status of the Wnt/β-catenin/TCF pathway in the 

preneoplastic stage and evaluated the possible effects of IFN α-2b on this pathway.  

 

Figure 2. Graphic outline of IFN α-2b, TGFβ1, p38 MAPK, NADPH oxidase and ROS interactions in 

liver preneoplasia. 

The major findings of our studies were related to the impairment of the canonical Wnt/β-

catenin/TCF pathway in a very early stage of hepatic carcinogenesis. In addition, we 

demonstrated that in vivo IFN α-2b treatment produces an attenuation of TCF 

transcriptional activity and enhances FOXO transcriptional activity in preneoplastic livers. 

The common denominator of an abnormal Wnt signaling is the stabilization and 

accumulation of unphosphorylated β-catenin in the cytoplasm of a cell. Eventually, this 

allows entry of unphosphorylated β-catenin into the nucleus where it promotes the 

transcription of a subset of genes implicated in cellular proliferation. This β-catenin 

stabilization was demonstrated in our two-phase carcinogenic model, where plasma 

membrane delocalization and cytoplasmic accumulation of β-catenin were observed [119]. 

Moreover, significant reductions of phosphorylated β-catenin levels were found in IP 

animals. Since total β-catenin (phosphorylated and unphosphorylated) protein levels were 

preserved in all studied groups, these results indicate a lower phosphorylation rate of 

cytoplasmic β-catenin in IP rats. 
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We have also found up-regulation of TCF target genes Cyclin D1, MMP-7, Axin 2, and SP5 

in preneoplastic livers. Up-regulation of Cyclin D1 was predicted since this protein is an 

important regulator of cell cycle progression, and its activity is required for G1 to S-phase 

transition. Overexpression of this gene has been associated with the development and 

progression of several cancers [120]. In addition, it has been reported that overexpression of 

Cyclin D1 in tumor cells contributes with their resistance to cytotoxic drugs [121]. In fact, 

inhibition of Cyclin D1 enhances the effects of several chemotherapeutic agents [121]. In 

agreement with these results, we have previously described (see GSTs and liver preneoplasia: 

our first studies) a drug-resistance phenotype in isolated hepatocytes obtained from rat 

preneoplastic livers. Thus, it is possible that the overexpression of Cyclin D1 could play a 

role in the drug-resistance phenotype of this model. MMP-7, a member of the matrix 

metalloproteinase family, acts as a specific proteolytic enzyme for degradation of certain 

components of the extracellular matrix. This protein was already shown to be important for 

the growth of early adenomas [122] and its function is essential in more advanced stages 

such as tumor progression and metastasis, where an invasive growth is a highlight of these 

steps [123,124]. Hence, enhanced MMP-7 expression could be proposed as an indicator of 

potential tumor progression, invasiveness, and metastatic ability at a very early stage of 

hepatocarcinogenic development. It has been reported that the tumor suppressor Axin 2 is a 

target of Wnt signaling [125,126]. The up-regulation of Axin 2 showed in IP rats, which is 

known to be a negative regulator of free β-catenin [127,128], could be an expression of a 

feedback preservation mechanism of the preneoplastic tissue, and might not be sufficient to 

prevent cytoplasmic β-catenin accumulation. SP5, a member of the SP1 transcription factor 

family and known target of Wnt signaling [129] was also over-expressed. This protein seems 

to work as a transcriptional repressor, preventing the expression of genes involved in cell 

cycle G1 phase arrest such as p21 [129]. 

In order to determine the involvement of a mutated β-catenin protein in the activation of 

this pathway as was described for HCC [130–133], we performed a direct sequencing of 

amplicons encoding a region of exon 2 of rat liver β-catenin gene. Our results demonstrated 

that this sequence had no deletion or point mutations in any of the studied groups. 

Even with a wild-type β-catenin, the pathway can also be triggered because of alterations in 

other components of the cascade signaling. The Frizzled protein family acts as a seven-span 

transmembrane receptor for Wnt proteins. It was recently reported an up-regulation of the 

Frizzled-7 receptor in the presence of wild-type β-catenin in four murine transgenic models 

of hepatocarcinogenesis [134] and in human HCC [135] with activation of the Wnt/β-

catenin/TCF pathway. Therefore, it was suggested that overexpression of Frizzled-7 could 

lead or contribute to activation of Wnt signaling. The obtained data showed a marked 

increase of this receptor in preneoplastic livers at mRNA and protein levels. Since it was 

reported that Frizzled-7 is also a target gene of the Wnt/β-catenin/TCF pathway [136], we 

presume that overexpression is rather a consequence than a cause of abnormal activation of 

the Wnt/β-catenin/TCF pathway.  

Once we demonstrated that the Wnt/β-catenin/TCF pathway is activated in preneoplastic rat 

livers, we analyzed the effects of IFN α-2b treatment. Results showed that in vivo IFN α-2b 
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administration did not prevent β-catenin delocalization and cytoplasmic accumulation; 

however, it certainly attenuates activation of the canonical Wnt/β-catenin/TCF pathway as 

measured by four TCF target genes. The transcription levels of these genes were similar to 

controls in IP animals that received IFN α-2b. 

In addition, IFN α-2b-treated IP rats showed that Frizzled-7 levels remained unchanged 

compared to control animals. These results reinforced our hypothesis that Frizzled-7 up-

regulation occurs as a result of the abnormal activation of the studied pathway. 

In an attempt to get more insight into the regulation of Wnt/β-catenin/TCF pathway, FOXO 

transcription family has come into scene. Recent studies reported that FOXO interacts with 

β-catenin in a competitive manner with TCF, particularly under cellular oxidative stress 

conditions [137,138]. Taking this into consideration and the fact that in vivo IFN α-2b 

treatment induces endogenous ROS formation in preneoplastic livers, we analyzed 

interactions between β-catenin with TCF4 and FoxO3a and association of these transcription 

factors with their corresponding target gene promoters. Co-immunoprecipitation assays 

showed that β-catenin/TCF4 interaction effectively occurs in preneoplastic livers and 

administration of IFN α-2b not only attenuates this interaction but also promotes β-

catenin/FoxO3a association. Using ChIP assay, we verified that interaction of FoxO3a with 

the promoter region of its target gene is enhanced in preneoplastic livers treated with IFN α-

2b. On the other hand, TCF4 remains associated with SP5 gene promoter region in all 

studied groups. It is known that TCF4 contains a conserved domain that binds DNA 

irrespective of its interaction with β-catenin; however, the transcriptional activity is blocked 

by the presence of a family of transcriptional repressors [139,140]. TCF4 must bind β-catenin 

for its transactivation and this interaction was verified by co-immunoprecipitation assays. In 

addition, it has been demonstrated that interaction of β-catenin with FOXO enhances its 

transcriptional activity [137,138], so we measured the expression of p130, a FOXO target 

gene whose main function is related to the maintenance of cell cycle arrest. Furthermore, it 

was suggested that p130 may exert a proapoptotic effect on certain tumor samples [141]. We 

found up-regulation of p130 transcript in preneoplastic livers treated with IFN α-2b. These 

findings suggest that IFN α-2b treatment in preneoplastic livers decreases β-catenin/TCF 

interaction and consequently reduces TCF transcriptional activity probably via ROS 

induction. Furthermore, IFN α-2b-induced ROS production could stimulate β-catenin/FOXO 

interaction, thereby favoring cell cycle arrest and apoptosis. In agreement with this 

proposal, recent unpublished results from our group demonstrate the participation of ROS 

in these events. 

Collectively, our data demonstrate that the canonical Wnt/β-catenin/TCF signaling pathway 

is activated at a very early stage of the development of the hepatocarcinogenic process, even 

with a wild-type β-catenin. More importantly, in vivo IFN α-2b treatment could be an 

efficient therapy to attenuate Wnt/β-catenin/TCF signaling promoting diminution of 

preneoplastic foci by an apoptotic process. A graphic outline of these concerns is shown in 

Figure 3. 
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Figure 3. Graphic outline of IFN α-2b, Wnt/β-catenin pathway and ROS/FOXO interactions in liver 

preneoplasia. 

12. Studies in HCC cell lines 

The elucidation of the signals induced by IFN α and TGFβ in human liver tumor cells, and 

their possible cross-talks with other intracellular signals, would have relevance in the future 

design of therapeutic tools to balance the cellular responses in favor of liver tumor 

suppression. To gain mechanistic insights into these cooperative signals, we analyzed the 

effects of IFN α-2b and TGFβ1 on Wnt/β-catenin pathway and Smads intermediates in 

HepG2/C3A and Huh7 HCC cell lines. We could demonstrate that IFN α-2b or TGFβ1 

stimulations not only decreased cellular proliferation but also increased apoptotic cell death 

[142]. The apoptotic and anti-proliferative effects of both cytokines separately have already 

been reported in HepG2 and Huh7 [143–145]. More interestingly, we demonstrated that the 

combined treatment increased these effects. Until now, combined treatment with both 

cytokines has only been used to analyze their impact on proliferation in human melanoma 

cell lines [109]. Treatments impact on Wnt/β-catenin pathway was analyzed, together with 

the analysis of the effects of IFN α-2b and TGFβ1 on Smads proteins. Insufficient 
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information is available concerning TCF4/Smads association and their impact on 

carcinogenesis in HCC cell lines. Labbé et al. [146] and Letamendia et al. [147] reported the 

interaction between Smads 2, 3 and 4 and TCF/LEF in HepG2. Additionally, treatment with 

TGFβ1 in HepG2 reduced the amount of Smad4 protein bound to TCF/LEF and this was 

associated with the capacity of TGFβ1 of inhibiting cell proliferation [148]. To date, no study 

on IFN α and Smads has been carried out. More insight could be gained by analyzing the 

amount of each Smad protein inside the β-catenin/TCF4 nuclear complex, since all Smads 

coexist in this complex and the balance between them could contribute to the overall cell 

response by differently regulating gene expression as suggested by Edlund et al. [149]. 

Our findings clearly showed a negative modulation of IFN α-2b and TGFβ1 on Wnt/β-

catenin pathway. This attenuation was evidenced by a decrease in β-catenin and Frizzled-7 

receptor proteins levels in C3A and Huh7 and by a diminution in the amount of β-catenin 

bound to TCF4. Stimulation with both cytokines also caused a decrease in Smads protein 

contents and their association with TCF4. This effect on Smads proteins seems to be linked 

to the decrease of β-catenin. Finally, the inhibition of β-catenin/TCF4/Smads complexes 

formation may have a critical role in slowing down oncogenesis, since the overall action of 

IFN α-2b and/or TGFβ1 treatments on both HCC cell lines was the diminution in cellular 

proliferation and the increase in apoptotic cell death. In conclusion, our results support the 

efficacy of inhibiting Wnt/β-catenin pathway in HCC cell lines through an IFN α-2b and 

TGFβ1 combined treatment, proving that is effective against either wild-type or truncated β-

catenin. These findings open a wide therapeutic option for patients with HCC.  

13. Summary # 2 

The presented data suggest a model in which IFN α-2b provides a link between TGFβ1 and 

Wnt signaling pathways and the oxidative stress/FOXO pathway. The stress caused by IFN 

α-2b treatment might strengthen the interaction between FOXO and β-catenin and 

potentially inhibit the interaction with TCF and Smads. The inhibition of β-

catenin/TCF4/Smads complexes formation may have a critical role in slowing down 

oncogenesis. These findings may have important clinical implications, since β-catenin, 

Smads, TCF, and FOXO arise as molecular targets for novel therapies that can modify their 

interactions favoring cellular apoptosis over proliferation in patients that underwent a 

potential carcinogenic hepatic injury. 

14. Concluding remarks: Oxidative stress as a critical factor in cancer 

therapy 

Preneoplastic hepatocytes are more resistant to oxidative stress than normal ones. 

Nevertheless, we demonstrated that increase in ROS levels triggered by IFN α-2b enhances 

the process of programmed hepatocytes death, leading to the elimination of malignant cells. 

The study of the mechanism of IFN α-2b-induced apoptosis led to demonstrate a link 

between TGFβ1 and Wnt signaling pathways and the oxidative stress/FOXO pathway. 
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In conclusion, reactive oxygen species emerge as key mediators in the context of using 

cytokines as therapeutic agents in the treatment of human liver diseases, so the use of 

antioxidants could have the potential to decrease effectiveness of the therapy. 
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