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1. Introduction 

This chapter aims at giving a critical overview of the major oxidant and antioxidant changes 

in arterial hypertension, summarizing the experimental and clinical evidence about the 

involvement of oxidative stress in the pathophysiology of hypertension, either as a cause or 

a consequence of this disease. This review also provides a description of the biomarkers 

commonly used to evaluate lipid peroxidation and antioxidant defenses in experimental and 

human hypertension. Finally, we review the strategies (antioxidants, antihypertensive 

drugs) known to prevent or ameliorate oxidative damage, both in animal models of 

hypertension and hypertensive patients. 

2. Pathophysiological role of oxidative stress in arterial hypertension 

2.1. ROS sources and oxidative pathways involved in the pathogenesis of 

hypertension 

In aerobic organisms, the beneficial effects of oxygen come with the price of reactive oxygen 

species (ROS) formation. These highly bioactive and short-lived molecules can interact with 

lipids, proteins and nucleic acids, causing severe molecular damage. However, living 

organisms have evolved specific mechanisms to adapt to the coexistence of ROS. In 

physiological conditions, there is a delicate balance between oxidants and antioxidants that 

not only protects our cells from the detrimental effects of reactive oxygen species (ROS), but 

also allows the existence of redox signaling processes that regulate cellular and organ 

functions. However, the disruption of redox homeostasis, leading to persistent high levels of 

ROS, is potentially pathological [1, 2]. Besides ROS, another group of molecules collectively 

designated as reactive nitrogen species (RNS) also exerts important functions in diverse 

physiological and pathological redox signaling processes. The excess of RNS is often termed 

nitrosative stress [3, 4]. 

© 2012 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
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and reproduction in any medium, provided the original work is properly cited.
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ROS can be classified into two main categories: free radicals [e.g. superoxide (O2.-), hydroxyl 

(HO.), peroxyl (ROO.)], which are highly reactive species due to the presence of one or more 

unpaired electrons, and non-radical oxidants [e.g. singlet oxygen (1O2) hydrogen peroxide 

(H2O2), hypochlorous acid (HOCl)] that have generally more specific reactivity and higher 

stability [3, 5, 6]. RNS include nitric oxide (.NO) and nitrogen dioxide radicals (.NO2 and also 

non radicals such as nitrous acid (HNO2), peroxynitrite (ONOO-), peroxynitrous acid 

(ONOOH) and alkyl peroxynitrites (ROONO) [3]. Among biological ROS and RNS, O2.-, 

H2O2, .NO and ONOO- appear to be especially relevant in neuronal, renal and vascular 

control of blood pressure [3, 7 ,8] (Table 1). Major sources of ROS (and also RNS) within 

these systems include, but are not limited to, NADPH oxidases, xanthine oxidase, 

mitochondrial respiratory chain enzymes, .NO synthases and myeloperoxidase [3, 8, 9].  

 

 Free radicals Non radical oxidants 

ROS 

O2.- 

HO. 

ROO. 

H2O2 

HClO 

RNS .NO ONOO_ 

Table 1. Reactive oxidant species involved in cardiovascular and renal physiology or pathophysiology 

NADPH oxidases (Nox) are enzyme complexes that catalyze the reduction of molecular 

oxygen using NADPH as an electron donor. Generally, the product of the electron transfer 

reaction is O2.- but H2O2 is also rapidly formed from dismutation of Nox-derived O2.- due to the 

presence of superoxide dismutase (SOD) in the cells or by spontaneous reaction. Nox-derived 

ROS have been shown to play a role in host defense and also in diverse signaling processes 

[10]. The Nox family comprises seven members (Nox1-5 and Duox1-2) with distinct tissue 

distribution and functions [10, 11]. So far, only Nox1, Nox2 and Nox4 have been shown to play 

relevant roles in hypertension pathophysiology [5, 8, 10]. These isoforms are localized in major 

sites of blood pressure control. For example, Nox1, Nox2 and Nox4 are expressed in the central 

nervous system where they appear to regulate sympathetic nerve activity [8]. Nox2 and Nox4 

participate in the regulation of renal functions and contribute to end-organ damage associated 

with hypertension [8, 12]. In the vasculature, Nox1 controls smooth muscle cell growth and 

migration, Nox2 contributes to endothelial dysfunction and Nox4 controls vascular smooth 

muscle cell differentiation and improves endothelial-dependent vasodilatation [8, 13, 14]. 

Xanthine oxidoreductase has two inter-convertible forms, xanthine dehydrogenase (XDH) and 

xanthine oxidase (XO), that participate in purines metabolism catalyzing the conversion of 

hypoxanthine to xanthine and xanthine to uric acid [15, 16]. XDH preferentially uses NAD+ as 

an electron acceptor while the oxidase reduces molecular oxygen in a reaction that generates 

O2.- and H2O2 [15, 16]. The XO form predominates in oxidative stress conditions and may 

contribute to endothelium dysfunction due to its localization in the luminal surface of vascular 

endothelium [16, 17]. Besides the production of ROS by XO, both XDH and XO generate uric 

acid which possesses antioxidant properties, such as scavenging of ONOO- and HO., 

prevention of oxidative inactivation of endothelium enzymes and stabilization of Vitamin C 
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[18-22]. On the other hand, uric acid may also have prooxidant and proinflammatory effects 

[23, 24]. Indeed, high systemic levels of uric acid are associated with increased cardiovascular 

disease and poor outcome but it is not clear whether these effects reflect deleterious actions of 

uric acid or the oxidative damage caused by XO-derived ROS [23, 25].  

Mitochondrial respiratory chain enzymes are primary intracellular sources of ROS. More 

than 90% of the total oxygen consumed by aerobic organisms is utilized by mitochondrial 

oxidases which produce ATP in a process coupled to the reduction of cellular oxygen to 

water [26]. About 1-4% of the oxygen used in these reactions is converted to O2.- and H2O2 

which can be largely detrimental to mitochondrial functions if not adequately detoxified [26-

28]. ROS levels in the mitochondria are regulated by the respiratory rate and manganese 

SOD [29]. Hypertensive animals have increased mitochondrial ROS production in the 

vessels, kidney and CNS [30-32]. 

.NO synthases (NOS) constitute a family of enzyme isoforms (neuronal NOS, nNOS; 

inducible NOS, iNOS; endothelial NOS, eNOS) that produce .NO in a reaction that converts 

L-arginine to L-citrulline [28]. However, in conditions of limited bioavailability of the 

cofactor tetrahydrobiopterin, or the substrate L-arginine, these enzymes become unstable 

and reduce molecular oxygen to O2.- instead of .NO production (uncoupled NOS) [28, 29]. 

NOS uncoupling is more often described for eNOS and is triggered by oxidative/nitrosative 

stress [28, 33]. Numerous experimental studies have shown that arterial hypertension is 

associated with eNOS dysregulation and endothelial dysfunction [34, 35]. 

Myeloperoxidase (MPO) is a heme protein secreted by activated neutrophiles and 

monocytes in inflammatory conditions and produces several oxidizing molecules that can 

affect lipids and proteins [28, 36]. MPO uses H2O2 to produce ROS such as HOCl, 

chloramines, tyrosyl radicals and nitrogen dioxides [36, 37]. Although MPO-derived ROS 

have a primary role in microbial killing, they also cause tissue damage in the heart, vessels, 

kidney and brain and appear to contribute to endothelial dysfunction [37, 40]. Figure 1 

illustrates the major sources of ROS and/or RNS generation.  

Of all the putative oxidative pathways involved in the pathogenesis of hypertension, the 

impairment of endothelial-dependent vasorelaxation by O2.- is by far the most studied [41-

44]. In conditions of increased O2.- bioavailability, this ROS rapidly inactivates endothelial-

derived .NO leading to endothelial dysfunction [41]. In addition, O2.- may also modulate 

vascular tone by increasing intracellular Ca2+ concentration in vascular smooth muscle cells 

and endothelial cells [45]. The imbalance between O2.- and .NO also affects the renal 

function, leading to enhanced sodium reabsorption and increased ONOO- formation, which 

contributes to tissue damage [12, 46]. In the CNS, elevated O2.- generation also appears to 

contribute to hypertension by reducing the cardiovascular depressor actions of .NO in the 

rostral ventrolateral medulla [47]. In recent years H2O2 has also emerged as a pivotal 

molecule in the pathophysiology of arterial hypertension [48-50]. Of note, H2O2 seems to be 

even more harmful than O2.- due to its higher life span and diffusibility within and between 

cells [7, 51]. Furthermore, the conversion of O2.- to H2O2 appears to be favored in 

cardiovascular diseases since the expression and activity of SOD is enhanced by 
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inflammatory cytokines in hypertension or in response to the pressor peptide, angiotensin II 

[7]. Several prohypertensive effects have been described for H2O2, such as increased 

vasoconstriction, vascular hypertrophy and hyperplasia, decreased diuresis and natriuresis 

and also increased spinal sympathetic outflow [7, 50, 52-58]. Increasing evidence has also 

shown that H2O2 amplifies oxidative stress by stimulating ROS generation by NADPH 

oxidases, XO and eNOS [7, 51]. In addition, H2O2 also appears to enhance the activation of 

the intrarenal renin-angiotensin system, a major regulator of blood pressure and renal 

function [49]. Altogether, these effects propagate H2O2 generation and prolong the redox 

pathologic signaling involved in blood pressure dysregulation. The oxidative mechanisms 

contributing to hypertension are summarized in Table 2. 

 

Figure 1. Sources of ROS and/or RNS generation - In normal cells, 1–2% of electrons carried by the 

mitochondrial electron transport chain leak from this pathway and pass directly to oxygen generating 

superoxide radical (O2.-) which can be a source of other ROS. O2.- can also be formed by xanthine 

oxidase (XO) which catalyzes the oxidation of hypoxanthine and xanthine. All NOX enzymes utilize 

NADPH as an electron donor and catalyze transfer of electrons to molecular oxygen to generate O2.- 

and/or H2O2. Nitric Oxide synthases (NOS) generate .NO and L-citrulline from arginine and O2. Under 

pathologic conditions of oxidative stress, or when tetrahydrobiopterin (BH4) or L-arginine are deficient, 

NOS enzymes become structurally unstable (uncoupled NOS) resulting in production of O2.- rather than 
.NO. Activated monocytes also secrete a heme enzyme, myeloperoxidase(MPO), that uses H2O2 as a 

substrate to generate products that can oxidize lipids and proteins. One of these oxidants is 

hypochlorous acid (HOCI) which plays a critical role in host defenses against invading bacteria, viruses, 

and tumor cells but may also injure normal tissue. Within cell membranes, ROS can trigger lipid 

peroxidation, a self-propagating chain-reaction that can result in significant tissue damage.  
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Affected organ Oxidative stress consequences 
Major ROS and RNS 

involved 

Vasculature Impaired endothelium-dependent 

vasodilation 

 

Increased vasoconstriction 

 

Increased hypertrophy and hyperplasia

O2.-, .NO, ONOO- 

 

 

O2.-, H2O2 

 

O2.-, H2O2 

Kidney Decreased blood flow 

Increased salt reabsorption 

 

Tissue damage 

O2.-, H2O2 

O2.-, H2O2 

 

HO., HClO, ONOO- 

Brain/Spinal cord Increased sympathetic efferent activity O2.-, H2O2 

Table 2. Putative oxidative pathways leading to arterial hypertension 

2.2. Evidence for redox changes in experimental and human hypertension 

In the last two decades several studies have consistently observed increased oxidative 

stress in experimental and human arterial hypertension. Studies in diverse experimental 

models of hypertension have demonstrated raised prooxidant activity and ROS levels, 

altered antioxidant defenses and increased ROS-mediated damage, both at peripheral and 

central sites of cardiovascular regulation [8, 33, 59]. In human hypertensive patients there 

is also evidence of redox dysfunction. O2.- release from peripheral polymorphonuclear 

leucocytes is higher in hypertensive patients than in normotensive subjects [60]. Plasma 

H2O2 production is also raised in hypertensive patients. Furthermore, among still 

normotensive subjects, those with a family history of hypertension have a higher H2O2 

production [61, 62]. An elevation of several oxidative stress byproducts, such as 

malondialdehyde, 8-isoprostanes, 8-oxo-2’-deoxyguanosine, oxidized low density 

lipoproteins, carbonyl groups and nitrotyrosine has also been observed in plasma or 

serum, urine or blood cells of hypertensive patients [63-66]. Furthermore, both enzymatic 

and non-enzymatic antioxidant defenses appear to be significantly reduced in human 

hypertension [65, 67]. Alterations of redox biomarkers in human hypertension are 

summarized in Table 3. 

 

 Biomarker Evaluated in: Alteration in 

hypertensive 

patients 

References 

ROS/RNS O2
.- Peripheral PMN  [60] 

H2O2 Plasma

Lymphocytes 


 

[61, 62] 

[68] 

 NOx Plasma

Urine 


 

[69] 

[70] 
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 Biomarker Evaluated in: Alteration in 

hypertensive 

patients 

References 

Prooxidant 

enzymes 

NADPH oxidase 

activity 

p22phox (Nox subunit) 

mRNA and protein 

expression 

Mononuclear cells

 

Mononuclear cells 


 

 

[71] 

 

[71] 

Oxidative or 

nitrosative stress 

byproducts 

Malondialdehyde 

(MDA)/Thiobarbituric 

acid reactive 

substances (TBARS) 

Plasma 

 

Erythrocytes  

 

Mononuclear cells 

and whole blood 


 

 

 

 

 

[67, 72] 

 

[64, 73, 74]  

 

[65] 

F2-Isoprostane (or 8-

isoprostane or 8-epi-

PGF2) 

Plasma 

 

 

Urine 


 

 

 

[63, 66, 74] 

  

[63, 74, 75] 

8-Oxo-2’-

deoxyguanosine 


 

 

[65] 

 

[76, 77] 

Carbonyl groups Serum  [64] 

Oxidized low density 

lipoproteins 

Plasma  [63, 78]  

 3-Nitrotyrosine Plasma  [66, 79] 

Redox status GSSG/GSH 

 

 

GSH/GSSG 

Mononuclear cells 

and whole blood 

 

Erythrocytes 


 

 

 

[65] 

 

 

[74] 

Antioxidants GSH Mononuclear cells 

and whole blood 

 

Erytrocytes 


 

 

 

[65] 

 

 

[64] 

Uric acid Plasma

Serum 


 

[79] 

[80] 

Vitamin C

(ascorbic acid) 

Plasma

Serum 


 

[67] 

 [81] 

Vitamin E

(-Tocopherol, 

Erytrhocytes  [67] 

Total antioxidant status 

(TAS) 

 

Ferric reducing activity 

of plasma (FRAP) 

Plasma

 

 

Plasma 


 

 

 

[63, 82] 

 

 

[74, 83] 
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 Biomarker Evaluated in: Alteration in 

hypertensive 

patients 

References 

SOD activity

 

Erythrocytes

 

Whole blood and 

mononuclear cells 


 

 
 

[64, 74]  

 

[65] 

Catalase activity Erythrocytes

Whole blood and 

mononuclear cells 

 or 
 

 

[64, 74] 

 

[65] 

Glutathione peroxidase 

activity 

Erythrocytes

Whole blood and 

mononuclear cells 


 

 

[64, 74] 

 

[65] 

Glutathione-S-

transferase activity 

Erythrocytes  [64] 

NOx- nitrites and nitrates; PMN – Polymorphonuclear leucocytes; GSH – reduced glutathione; GSSG- oxidized 

glutathione; 

Table 3. Altered oxidative/nitrosative stress biomarkers in human arterial hypertension 

2.3. Oxidative stress as a cause for arterial hypertension 

Whether oxidant imbalance is a cause or a consequence of high blood pressure remains a 

debatable question. The hypothesis that oxidative stress contributes to arterial hypertension 

is supported by several lines of evidence: (1) the induction of oxidative stress by the 

administration of lead or the glutathione synthesis inhibitor, buthionine sulfoximine, or the 

SOD inhibitor, sodium diethyldithiocarbamate, increases blood pressure in rats [48, 84]; (2) 

the infusion of H2O2 into the renal medulla leads to hypertension [48]; the treatment of 

hypertensive animals with antioxidants or inhibitors of ROS production prevents or 

attenuates hypertension [50, 85-87]; (3) the manipulation of genes related to ROS generation 

or elimination can alter blood pressure [88, 89]; (4) the in vitro exposure of cells and tissues 

to exogenous oxidants reproduces events involved in the pathophysiology of hypertension 

[43]; (5) systemic and tissue redox dysfunction appears to precede the blood pressure 

elevation [90]. 

2.4. Oxidative stress as a consequence of arterial hypertension 

Arterial hypertension is associated with oscillatory shear stress and vascular stretch caused 

by increased vascular pressure. These mechanical forces are known to induce oxidative 

stress and vascular damage [91]. Furthermore, there is evidence that lowering blood 

pressure per se causes reduction of oxidative stress and improvement in endothelial function 

[92]. Several antihypertensive drugs with distinct mechanisms of action have been shown to 

decrease oxidant biomarkers in experimental and human hypertension [93-95]. However, 

there is limited evidence supporting the use of antioxidants to lower blood pressure in 

human hypertensive patients [5, 92]. Nevertheless, the failure of these studies does not 
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exclude a role for oxidative stress in human essential hypertension but instead suggests that 

the antioxidant supplementation approach was not the appropriate therapeutic strategy 

[96]. 

3. Biomarkers of redox status in arterial hypertension 

The evaluation of redox status may provide valuable information about the pathogenesis 

and progression of arterial hypertension and related cardiovascular and renal diseases. 

However, the short lifetime of ROS turns their assessment in animal models and humans 

a significant challenge, leading to a growing interest in the development and validation of 

oxidative stress biomarkers. Traditional approaches to evaluate oxidant status have 

frequently relied on indirect measurements of ROS bioavailability (e.g. evaluation of 

prooxidant and antioxidant activity, oxidized products from ROS and the GSH/GSSG ratio) 

as indicators of normal biological processes, pathogenic processes, or pharmacologic 

responses to therapeutic intervention [9, 96-99].  

A biomarker of oxidative stress is classically defined as a biological molecule whose 

chemical structure has been modified by ROS and that can be used to reliably assess 

oxidative stress status in animal models and humans [100]. The ideal biomarker of oxidative 

stress depends on its ability to contribute to an early indication of disease severity and/or its 

progression, as well as to evaluate therapy efficacy. The measurement of redox status 

biomarkers may also help to clarify the pathophysiologic mechanisms mediating oxidative 

injury and may allow the prediction of disease. Ideally, biomarkers of oxidative damage for 

human studies would be evaluated in specimens that can be collected relatively easily, such 

as blood or urine. However, to serve these purposes, an ideal biomarker of oxidative 

damage should fulfill several conditions, such as: a) being a stable product, not susceptible 

to artifactual induction, oxidation, or loss during sample handling, processing, analysis, and 

storage; b) having a well-established relationship with the generation of ROS and/or 

progression of disease; c) allowing direct assessment in a target tissue or being able to 

generate a valid substitute that quantitatively reflects the oxidative modification of the 

target tissue; d) being present at concentrations high enough to be a significant detectable 

product; e) showing high specificity for the reactive species in question and free of 

erroneous factors from dietary intake; f) being noninvasive; g) being measurable by a 

specific, sensitive, reproducible and inexpensive assay; h) being measurable across 

populations; i) being present in concentrations that do not vary widely in the same persons 

under the same conditions at different times [97]. 

3.1. Systemic and tissue antioxidant defenses 

ROS are involved in many biological processes including cell growth, differentiation, 

apoptosis, immunity and defense against micro-organisms [1, 101, 102]. Low or moderate 

concentrations of ROS are beneficial for living organisms. However, high concentrations of 

ROS can cause direct damage of macromolecules such as DNA, proteins, carbohydrates, and 

lipids, or disrupt redox signaling and control pathways, leading to a myriad of human 
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diseases [103]. ROS bioavailability is determined by the balance between their production by 

prooxidant enzymes and their clearance by various antioxidant compounds and enzymes 

[1]. As defined by Halliwell and Gutteridge, an antioxidant is any substance that, at low 

concentration, is able to significantly delay or inhibit the oxidation of an oxidizable substrate 

[104]. Biological antioxidant defenses have evolved to match the diversity of prooxidants 

and several enzymatic and non-enzymatic molecules exist in cells and body fluids to control 

ROS levels within the physiological range [105]. The coordinated action of antioxidants 

results in the interception and deactivation of the damaging species. For example, the 

radical chain events initiated by free radicals can be terminated by the interaction of radicals 

with different non-enzymatic antioxidants [e.g. GSH, ascorbic acid, uric acid, α-tocopherol, 

etc] or prevented by specialized enzymatic defenses such as SOD, catalase and glutathione 

peroxidase (GPx) [105, 106]. The reduction of antioxidants bioavailability disrupts redox 

homeostasis leaving organisms more vulnerable to oxidative damage. Therefore, 

antioxidants may be useful biomarkers for risk stratification and disease prognostication. 

3.2. Enzymatic antioxidants defenses 

All eukaryotic cells possess powerful antioxidant enzymes which are responsible for 

neutralizing ROS.The first line of defense against ROS is achieved by SOD which is active in 

catalyzing the detoxication of O2.-. This radical can be readily converted into H2O2 by SOD 

enzymes present in the cytosol and organelles (Cu,Zn-SOD or SOD-1), mitochondria (Mn-

SOD or SOD-2) and extracellular fluids (EC-SOD or SOD-3) [36, 107, 108]. H2O2 generated in 

this reaction can be further decomposed to water and oxygen. This is achieved primarily by 

catalase in the peroxisomes and also by GPx enzymes in the cytosol and mitochondria [107, 

108]. GPx are selenium-containing enzymes whose activity is dependent on GSH availability 

[108]. Besides neutralizing H2O2, GPx also degrades lipid hydroperoxides to lipid alcohols 

[36]. These reactions lead to the oxidation of GSH to GSSG. Catalase and GPx are 

differentially required for the clearance of high-levels or low-levels of H2O2, respectively 

[36]. Figure 2 illustrates major antioxidant enzymatic pathways.  

In addition to these key antioxidant enzymatic defenses, there are other specialized enzymes 

with direct and/or indirect antioxidant functions. Glutathione reductase (GR) is responsible 

for the replenishment of GSH from GSSG disulphide. Glutathione-S-transferase catalyzes 

the conjugation of GSH with reactive electrophiles and is also involved in the detoxification 

of some carbonyl-, peroxide- and epoxide-containing metabolites produced within the cell 

in oxidative stress conditions [109]. Peroxiredoxins are selenium-independent enzymes that 

decompose H2O2, organic hydroperoxides and peroxynitrite [110]. Thioredoxin (Trx) and 

glutaredoxin (Grx) systems include several enzymes that regulate the thiol-disulphide state 

of proteins and influence their structure and function [110]. Trx isoforms reduce disulphide 

bonds in proteins, especially in peroxiredoxins and Trx reductase regenerates the oxidized 

Trx. Grx protects proteins SH-groups from irreversible oxidation by catalyzing S-

glutathionylation and restores functionally active thiols through catalysis of 

deglutathionylation [110]. Grx enzymes are functionally coupled to GR which reduces the 

GSSG produced in the deglutathionylation reaction [110].  
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Figure 2. Major antioxidant enzyme defenses  

Hypertensive patients have reduced activity and decreased content of antioxidant enzymes, 

including SOD, GPx, and catalase [43]. However, several studies have also described an 

adaptive increase in antioxidant enzyme activities in some experimental models of 

hypertension [50, 111, 112]. The uncoordinated activity of antioxidant enzymes may 

aggravate oxidative stress. For example, the increased dismutation of O2.- by SOD 

significantly increases H2O2 concentration, and may lead to deleterious consequences for the 

tissue in the absence of compensation of catalase and GPx activities [113]. Examples of 

altered antioxidant defenses in human and experimental hypertension are shown in Table 3 

and Table 4, respectively. 

 
Biomarker Evaluated 

in: 

Alteration Hypertension Model Reference 

SOD Brain  expression and activity of 

Mn-SOD 

 

 Cu, Zn-SOD activity 

 

 expression and activity of 

SOD1 and SOD2 

Spontaneously hypertensive rats 

(SHR) 

 

Stroke prone spontaneously 

hypertensive rats (SHRSP) 

 

SHR 

[114]  

 

 

[115] 

 

 

[116] 



 
Lipid Peroxidation and Antioxidants in Arterial Hypertension 355 

Biomarker Evaluated 

in: 

Alteration Hypertension Model Reference 

Kidney  expression of EC-SOD 

 

 SOD activity 

 

 

 expression of SOD1 and 

SOD3 

SHR 

 

Angiotensin II (Ang II) induced 

hypertension 

 

SHR 

[117] 

 

[49] 

 

 

[118] 

Arteries   SOD activity 

 

 

 SOD activity 

 

 expression and activity of 

Cu, Zn-SOD and Mn-SOD 

Hypertension induced by renin-

angiotensin system (RAS) activation 

 

SHR 

 

 

SHR 

[50] 

 

 

[119, 120] 

 

 

[121] 

Catalase Brain  Catalase expression and 

activity 

 

 Catalase activity 

SHR 

 

 

Renovascular hypertensive rat; SHR 

[116] 

 

 

[122, 123] 

Kidney  Catalase activity 

 

 Catalase expression 

 

 Catalase expression 

SHR; Ang II-induced hypertension; 

 

SHR 

 

SHR 

[49, 122] 

 

 [124] 

 

[125]  

Arteries   Catalase activity 

 

 

 Catalase activity 

Hypertension induced by RAS 

activation 

 

SHR 

[50] 

 

 

[120] 

GPx Brain  GPx activity SHR [122] 

Kidney  GPx activity 

 

 GPx expression 

 

  GPx activity 

Ang II-induced hypertension 

 

SHR 

 

SHR 

[49] 

 

[124, 125] 

  

[122]  

Arteries  GPx activity 

 

 

 GPx activity 

 

 

 GPx expression 

Hypertension induced by RAS 

activation 

 

SHR 

 

 

Salt- sensitive hypertension 

(Ovariectomized female rats) 

[50] 

 

 

[120] 

 

 

[126] 

 

Table 4. Alterations in major antioxidant enzyme defenses in the brain, kidney and arteries in 

experimental models of hypertension 
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3.3. Non-enzymatic antioxidants defenses 

Non-enzymatic antioxidants such as GSH, ascorbic acid (vitamin C) and α-tocopherol (vitamin 

E) play an excellent role in protecting the cells from oxidative damage [4]. GSH has a potent 

electron-donating capacity that renders GSH both a potent antioxidant per se and a 

conventional cofactor for enzymatic reactions that require readily available electron pairs. In 

physiological conditions, GSH is present inside the cells mainly in its reduced form and less 

than 10 percent of total GSH exists in the oxidized form, GSSG [127]. Therefore, intracellular 

GSH status can be used as a sensitive marker of the cell health and resistance to toxicity. 

Furthermore, it has been demonstrated that GSH depletion can lead to cell apoptosis [128]. The 

measurements of GSH and GSSG have been considered useful indicators of the status of 

oxidative stress [4, 129]. Vitamins E and C are among the major dietary antioxidants. The 

vitamins have received considerable attention in clinical trials of primary and secondary 

prevention of cardiovascular diseases (CVD) and cancer. Vitamin E is found in lipoproteins, 

cell membranes and extracellular fluids. It terminates lipid peroxidation processes and 

converts O2.-and HO. to less reactive forms [130]. Vitamin C, a water soluble antioxidant, is 

found in high concentrations in the adrenal and pituitary glands, liver, brain, spleen and 

pancreas. It is hydrophilic and can directly scavenge ROS and lipid hydroperoxides. Vitamin C 

can also restore oxidized vitamin E and can spare selenium [131]. Carotenoids, such as -

carotene are lipid soluble antioxidants that function as efficient scavengers of 1O2 but may also 

quench ROO. radicals [108]. Uric acid is a highly abundant aqueous antioxidant, considered to 

be the main contributor for the antioxidant capacity in the plasma [96, 132]. It has the ability to 

quenche HO. and ONOO- and may prevent lipid peroxidation [21, 132]. The scavenging of 

ONOO- by uric acid is significantly increased in the presence of Vitamin C and cysteine which 

regenerate the urate radical formed in these reactions. Uric acid also acts as a chelator of iron in 

extracellular fluids [16]. However, once inside the cells, uric acid appears to exert prooxidant 

effects. It is not clear whether the correlation between the raised plasma levels of uric acid and 

cardiovascular risk are due to increased ROS generation by XO or to the prooxidative effects of 

uric acid itself. Some authors speculate that the increased concentrations of urate might be an 

adaptive mechanism that confers protection from oxidative damage [132]. It is likely that uric 

acid effects have different consequences depending on the surrounding microenvironment 

[21]. Bilirrubin, the end-product of heme catabolism, also appears to function as a chain-

breaking antioxidant [133]. Low circulating bilirrubin levels are considered a risk factor for 

cardiovascular diseases [134]. Plasma albumin, the predominant plasma protein, is also an 

antioxidant due to its sulfhydryl groups and is able to scavenge MPO-derived chlorinated 

reactive species and ROO. radicals [108, 135]. 

The combined antioxidant activities of aqueous- and lipid-antioxidants, including GSH, 

vitamins, uric acid, bilirrubin, albumin, etc, can be evaluated in the plasma and serum by 

several assays that measure the ability of the antioxidants present in the sample to inhibit 

the oxidation of the cation radical ABTS+ [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 

acid] (Total Antioxidant Status assay), to reduce a ferric-tripyridyltriazine complex (Ferric 

Reducing Ability of Plasma, FRAP assay) or to trap free radicals (Oxygen Radical 

Absorbance Capacity, ORAC assay; Total radical Trapping Parameter, TRAP) [50, 136-138]. 
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The measurement of the overall antioxidant capacity may be more representative of the in 

vivo balance between oxidizing and antioxidant compounds than the evaluation of 

individual antioxidants [139]. Nevertheless, these assays have also some limitations. First, 

they correlate poorly with each other as the various antioxidants react differently in each 

assay. Second, in biological fluids, uric acid appears to account for more than 50% of the 

total antioxidant activity measured in most assays [108]. However, the putative protective 

effect of uric acid is debatable [140, 141]. 

Under conditions of high ROS levels it is expected a decrease of non-enzymatic antioxidants 

defenses in plasma, since the need for neutralization ROS species implies a higher 

consumption of endogenous antioxidants. For example, decreased levels of antioxidant 

vitamins C and E have been demonstrated in newly diagnosed untreated hypertensive 

patients compared with normotensive control subjects [142-144]. 

3.4. Systemic, urinary and tissue markers of lipid peroxidation 

Measuring oxidative stress in biological systems is complex and requires accurate quantification 

of ROS or damaged biomolecules. One method to quantify oxidative stress is to measure lipid 

peroxidation. Lipids that contain unsaturated fatty acids with more than one double bond are 

particularly susceptible to the action of free radicals. The peroxidation of lipids disrupts 

biological membranes and is thereby highly deleterious to its structure and function [145]. A 

large number of by-products are formed during this process and can be measured by different 

assays. Common biomarkers of lipid peroxidation damage include hydroperoxides, which are 

primary products generated in the initial stages of lipid peroxidation, and secondary products 

formed at later lipid peroxidation stages, such as malondialdehyde (MDA) or F2-isoprostanes 

(Table 5) [146, 147] .The lag time required for the exponential generation of lipid peroxidation 

products can also be used to evaluate the susceptibility of lipid molecules to free radical 

damage. Therefore, lipids with higher resistance to oxidative stress exhibit longer lag times than 

those which are easily attacked by free radicals [147].  

3.5. F2-isoprostanes  

F2-isoprostanes are prostaglandin F2α isomers primarily produced by free radical-catalyzed 

peroxidation of the polyunsaturated fatty acid (PUFA), arachidonic acid [97]. Although 

there is also evidence of F2-isoprostane formation by the action of cyclooxygenase, it is 

currently assumed that systemic and urinary F2-isoprostanes are mostly derived from free 

radical-induced lipid peroxidation, independently of cyclooxygenase enzymatic activity. 

Therefore, F2-isoprostanes have been regarded as reliable biomarkers of oxidative stress. 

Furthermore, F2-isoprostanes have been shown to exert potent vasoconstrictor effects on 

animal and human vessels, suggesting a pathogenic role in cardiovascular diseases and 

have been extensively used as markers of lipid peroxidation in human diseases [74, 75,148]. 

Their high stability and presence in measurable concentrations in many biological tissues 

and fluids, under physiological and pathological conditions, has also allowed the 

establishment of reference intervals and the comparison or monitoring of disease states 
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[97,149,150]. Urine specimens are particularly suited for F2-isoprostanes measurements. 

First, the ex vivo formation of F2 isoprostanes is minimized in these samples due to the low 

urinary lipid content, avoiding the need for time-sensitive sample processing [97, 149, 151, 

152]. Second, they provide a noninvasive route for systemic oxidative stress evaluation. 

Although they can also be locally produced in the kidney, many studies have demonstrated 

that urinary F2-isoprostanes are mainly derived from free F2-isoprostanes filtered from the 

circulation [97, 149, 151, 152]. Only hydrolyzed isoprostanes are excreted into the urine 

whereas blood plasma samples contain both free and esterified isoprostanes. Since plasma 

samples have considerable amounts of arachidonic acid, the addition of preservatives, such 

as butylated hydroxytoluene (BHT) and indomethacin, and the storage at -80°C, are 

recommended to avoid degradation and/or ex vivo formation of F2-isoprostanes [97. 

3.6. TBARS 

The free radical attack to PUFAs in cellular membranes leads to the disruption of cell structure 

and function.  MDA, one of the end products of these oxidative reactions, can be detected in 

several biological fluids and tissues and is therefore used as a biomarker of lipid peroxidation 

and oxidative stress [153]. High MDA levels indicate a high rate of lipid peroxidation [154]. 

The reaction of MDA with 2-thiobarbituric acid (TBA) is frequently used to estimate oxidative 

stress [155]. MDA reacts with TBA under conditions of high temperature and acidity 

generating 2-thiobarbituric acid reactive substances (TBARS) that can be measured either 

spectrophotometrically or spectrofluorometrically. However, these products can also be 

formed by sample autooxidation under assay conditions or by cross-reactivity with non-MDA 

substrates such as bile pigments, proteins, carbohydrates and other aldehydes. Therefore, 

TBARS measurements often originate doubts due to their limited specificity as markers of 

lipid peroxidation [156]. Nevertheless, undesirable autooxidation and non-MDA substrates 

reactivity can be minimized by adding BHT during sample preparation. Plasma TBARS 

measurements have been reported to correlate with some clinical features of cardiovascular 

disease, preeclampsia, ischemia/reperfusion, chronic kidney disease and cerebrovascular 

disorders [157-160]. Since the TBARS assay may overestimate MDA, other methods can be 

used to evaluate lipid peroxidation products, such as the lipid hydroperoxide (LPO) test. The 

principle of the LPO test is that in the presence of hemoglobin, lipid hydroperoxides are 

reduced to hydroxyl derivates with the equimolar production of a methylene blue product, 

which can be quantified spectrophotometrically [161]. 

3.7. HNE 

The aldehyde 4-hydroxy-2-nonenal (4-HNE) is one of the most cytotoxic products of free 

radical attack on ω6-PUFA, namely arachidonic and linoleic acids, being able to react with 

diverse biological molecules such as proteins, peptides, phospholipids and nucleic acids. It 

also acts as an important mediator of oxidant-induced signaling, cellular proliferation and 

apoptosis [97, 162]. 4-HNE can be detected in plasma and several biological tissues under 

physiological conditions but its generation is significantly raised in pathological states 

associated with oxidative stress [97, 162-164]. Renovascular hypertensive rats showed 
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increased 4-HNE deposition in the intima of injured  mesenteric arteries, suggesting the 

presence of free radical injury and cytotoxicity induced by 4-HNE [163]. A wide diversity of 

effects have been demonstrated for 4-HNE depending on its concentration. Concentrations 

below 0.1 microM are within the physiological range and appear to induce chemotaxis and 

stimulation of guanylate cyclase and phospholipase C [165]. 4-HNE concentrations between 

1-20 microM inhibit DNA and protein synthesis and stimulate phospholipase A2. Higher 

concentrations (100 microM and above) are cytotoxic and genotoxic leading to cell death 

[165]. Thus, 4-HNE represents a broad indicator of lipid peroxidation. 

3.8. Early stage of lipid peroxidation products 

Lipid hydroperoxides are the primary products of lipid peroxidation and can further react 

to form secondary products including aldehydes such as MDA and 4-HNE [166,167]. 

Therefore, lipid hydroperoxides may be used to evaluate initial stage or acute lipid 

peroxidation while MDA and 4-HNE appear to be more representative of chronic oxidative 

stress. Recent reports described that 13‐hydroperoxyoctadecadienoic acid (13‐HPODE), a 

precursor to 3‐hydroxyoctadecadienoic acid (13‐HODE) is able to react with proteins 

forming adducts by covalently binding to specific amino acid residues. The Hexanoyl‐
Lysine (HEL) adduct results from the oxidative modification of ω6‐PUFAs such as linoleic 

acid, the predominant PUFA in the human diet, and arachidonic acid [168]. HEL may be 

another useful biomarker for detecting and quantifying the earlier stages of lipid 

peroxidation. Monoclonal antibodies and ELISA kits have been developped, and HEL can 

be detected in oxidatively modified LDL, in human atherosclerotic lesions, human urine and 

serum. It has been also reported that HEL is formed in rat muscle during exercise and that 

its formation is inhibited by antioxidants such as flavonoids [169]. 

The lipid peroxidation biomarkers most commonly evaluated in hypertensive patients or 

experimental hypertension are shown in Table 3 and Table 5, respectively. 

 

Lipid peroxidation 

biomarker 

Measured in: Alteration Experimental model of 

hypertension 

References 

MDA Plasma 

 

Aorta 


 

 

SHR 

 

Salt-loaded SHR 

[170]  

 

[94]  

TBARS Plasma 

 

 

Plasma 

 

Plasma, Heart 

 

 

Urine 

 

Aorta, Left Ventricle


 
 

 

 
 

 

 
 

 


Hypertension induced by RAS 

activation 

 

Ang II-induced hypertension 

 

Mineralocorticoid-induced 

hypertension 

 

Salt-sensitive hypertension 

 

Ang II-induced hypertension 

[50] 

 

  

[171]  

 

[172]  

 

 

[173]  

 

[174]  
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Lipid peroxidation 

biomarker 

Measured in: Alteration Experimental model of 

hypertension 

References 

F2-Isoprostanes Plasma 

 

Plasma 

 

 

Urine


 

 

 

 

 

Salt-sensitive hypertension 

 

Glucocorticoid-induced 

hypertension 

 

SHR

[175] 

 

[87]  

 

 

[170, 176]  

4-HNE Mesenteric arteries 

 

Aorta 


 

 

Renovascular hypertension 

 

SHRSP 

[163]  

 

[177]  

4-HNE adducts Blood  SHR [178]  

Table 5. Lipid peroxidation biomarkers in experimental hypertension 

3.9. Other prooxidant biomarkers 

Besides antioxidants and lipid peroxidation parameters, there are other important indexes of 

oxidant status. These include the expression and activity of prooxidant enzymes, ROS 

concentration, byproducts formed by ROS/RNS interaction with DNA (8-hydroxy-2-

deoxyguanosine) or proteins (3-nitrotyrosine, carbonyl groups) and redox-sensitive 

transcription factors such as nuclear factor kappa B (NF-KB). Major sources of cellular ROS 

include Nox enzymes, mitochondrial electron transport enzymes, uncoupled NOS, XO and 

MPO. Table 6 summarizes several prooxidant biomarkers evaluated in experimental models 

of hypertension. 

 

Biomarkers of 

prooxidant status 

Evaluated in: Alteration Hypertension model Reference 

Mitochondrial electron 

transport chain 

enzymes/ 

mitochondrial ROS 

production 

Brain Oxidative impairment 

of mitochondrial 

enzymes 

SHR [30]  

Kidney  mitochondrial ROS 

production 

SHR, Mineralocorticoid 

hypertension 

[179, 180]  

NADPH oxidase 

family enzymes (or 

NOXs) 

Brain  NADPH oxidase 

activity 

Salt-loaded SHRSP [181]  

Kidney   Nox4 expression,  

NADPH oxidase 

activity 

Ang II–induced 

hypertension 

[49]  

Arteries  expression of 

NAD(P)H oxidase 

subunits (p67(phox) 

and gp91(phox)  

 

 Nox1 and Nox4 

expression 

Ang II-induced 

hypertension 

 

 

 

SHRSP 

 

[182]  

 

 

 

 

[183] 
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Biomarkers of 

prooxidant status 

Evaluated in: Alteration Hypertension model Reference 

 NADPH oxidase 

activity  

Ang II-induced 

hypertension; 

Hypertension induced by 

RAS activation 

 

[50, 184-

186]l 

eNOS Arteries

 

 

Arteries 

Uncoupled eNOS/ 
eNOS-derived ROS 

 

 eNOS expression/ 

eNOS activity 

SHR

 

 

SHR 

[34] 

 

 

[35] 

XO Arteries

 

Arteries

XO activity

 

XO expression 

SHR

 

SHR

[187] 

 

[188] 

H2O2 Kidney, Blood 

/urine 

 renal production/
production in plasma 

/ urinary excretion 

Ang II-induced 

hypertension 

[49] 

MPO Arteries

 

Kidney, Heart, 

Brain 

 MPO activity

 

 MPO activity 

SHRSP

 

Renovascular 

hypertension 

[189] 

 

[190] 

GSH/GSSG Kidney

 

Plasma, Heart, 

kidney 

 ratio

 

 ratio 

SHR

 

Salt-sensitive 

hypertension 

[191] 

 

[192] 

3-nitrotyrosine Kidney  expression SHR [193] 

Protein carbonyl 

groups 

Arteries, Heart, 

Kidney 

 

Kidney 

 expression

 

 

 expression 

SHR

 

 

SHR 

[194] 

 

 

[195] 

8-Hydroxy-2-

deoxyguanosine  

(8-OH-dG) 

Arteries, Heart, 

Kidney,  

 expression SHR

 

[194]. 

NF-κB Kidney

 

 

Arteries 

 activation 

 

 

 activation 

SHR; Ang II-induced 

hypertension 

 

Ang II-induced 

hypertension 

[49, 196] 

 

 

[197] 

Table 6. Other Prooxidant status biomarkers in experimental hypertension 

4. Prophylactic and therapeutic strategies to reduce oxidative damage in 

arterial hypertension 

A plethora of studies has demonstrated that hypertension is associated with an imbalance 

between oxidants and antioxidants that leads to altered cell signaling and oxidative damage. 
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Therefore, extensive research has been conducted in order to identify the ROS involved in 

blood pressure dysregulation, as well as the major prooxidant enzymes and antioxidant 

defenses that contribute to the loss of redox homeostasis in cardiovascular and renal 

systems. Furthermore, studies on experimental models of hypertension recognized several 

important neurohumoral stimuli responsible for ROS overproduction and also the main 

targets for ROS-induced dysfunction [8, 43]. Therapeutic interventions to reduce oxidative 

stress in hypertension have mostly relied on the administration of drugs that increase 

antioxidant capacity or inhibit ROS generation. In addition, other strategies aimed at 

reducing the activation of neurohumoral pathways that stimulate ROS production 

(upstream mediators) or at blocking/repairing the downstream targets affected by ROS have 

also been tested [196, 198, 199]. 

4.1. Targeting oxidative stress in experimental hypertension 

The pharmacological modulation of ROS bioavailability in animal models of hypertension 

has been useful to demonstrate a causative role for oxidative stress in the pathophysiology 

of hypertension [43, 50]. However, the blood pressure lowering efficacy of these strategies 

appears to differ when comparing distinct experimental models [48, 50, 85, 200, 201]. This is 

probably because the development of each animal model was based on a particular 

etiological factor presumably responsible for human hypertension, such as high salt intake, 

overactivation of the renin-angiotensin system, genetic factors or renal disease. Since these 

factors may stimulate different redox pathways, the effectiveness of an antioxidant in one 

model does not necessarily translate to other models or to human essential hypertension 

which is known to have a multifactorial nature. Another important observation is that 

treatments with antioxidants or ROS inhibitors are generally more effective in preventing 

rather than reversing the hypertension [49, 50, 87, 202]. Indeed, there are several studies 

demonstrating that ROS activate feed-forward mechanisms that amplify the cardiovascular 

and renal dysfunction [8, 43, 49, 51]. Once triggered, these pathways may be sufficient to 

sustain the deleterious effects of oxidative stress even after ROS blockade or elimination 

[49]. In vivo drug treatments targeting oxidative stress in experimental models of 

hypertension are reviewed below and their effects on blood pressure are summarized in 

Table 7. 

4.1.1. Drugs inhibiting ROS production 

Apocynin is a methoxy-substituted catechol (4-hydroxy-3-methoxy-acetophenone), originally 

extracted from the roots of the tradicional medicinal herb Picrorhiza kurroa which has anti-

inflammatory properties [203]. Several experimental studies have used apocynin for its ability 

to inhibit Nox enzymes. The mechanism of inhibition involves the blockade of translocation of 

cytosolic protein subunits to the membrane which is crucial for the activation of Nox1 and 

Nox2 [204]. Thus, the effect of apocynin is restricted to inducible Nox enzymes that require 

cytosolic activators and it does not seem to affect constitutively active Nox isoforms and their 

putative physiological actions [204]. However, to be an effective Nox inhibitor, apocynin has to 

undergo a peroxidase-mediated oxidation to be converted into the metabolically active 
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diapocynin [205-207]. The activation of apocynin occurs in the presence of MPO and H2O2 

[205, 207]. This fact suggests that apocynin may function only in conditions of high 

inflammatory and prooxidant activity. Apocynin has also been shown to have direct 

antioxidant properties, being able to scavenge H2O2 derived products [205, 207]. However, it 

can also function as a prooxidant in resting cells [203]. Nevertheless, it is possible that when 

administered in conditions of enhanced oxidative stress, the protective effect prevails.  

Gp91ds-tat is a chimeric peptide that specifically inhibits NADPH oxidase by preventing 

the assembly of its subunits. It is constituted by a segment of gp91phox (gp91ds) important 

for the interaction of this membrane subunit with the cytosolic subunit, p47phox, and by a 

tat peptide from the HIV virus, which allows the uptake of the peptide into the cell [208, 

209]. However, since it is a peptide it may have poor oral bioavailability and may induce 

sensitization reactions. Furthermore, the tat segment may have side effects on cellular 

signaling and activity [204, 208]. Thus, it is not suitable for long treatments or to clinical use 

in the treatment of human cardiovascular diseases. Although it was designed to block Nox2, 

it may also inhibit Nox1 given the substantial degree of homology between the two isoforms 

[204]. As for apocynin, Nox4 is not likely to be affected by gp91ds-tat since it is 

constitutively active and does not require the activation of cytosolic subunits [204].  

Allopurinol and its metabolite oxypurinol are hypoxanthine and xanthine analogs, 

respectively, that inhibit XO activity [16]. At low concentrations, allopurinol is a competitive 

inhibitor of XO, while at higher concentrations it behaves as a non-competitive inhibitor 

[16]. XO rapidly metabolizes allopurinol into oxypurinol, a noncompetitive inhibitor of the 

enzyme which has a much higher half-life and is therefore responsible for most of the 

pharmacological effects of allopurinol [16]. In addition, both allopurinol and oxypurinol 

have intrinsic antioxidant properties, being able to scavenge ROS such as O2.-, HO. and 

HClO [210-212]. However, these effects appear to require higher doses than those required 

for XO inhibition [210]. Allopurinol is approved for the treatment of human patients with 

gout or hyperuricemia, but it has also potential therapeutic application in cardiovascular 

diseases. Most common adverse effects are nauseas, diarrheas, hypersensitivity reactions 

and skin rash [16]. 

4.1.2. Antioxidants 

Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a membrane-permeable 

nitroxide that catalyzes the conversion of O2.- to H2O2 thus functioning as a SOD mimetic 

[213, 214]. Tempol protects the lipids or proteins from oxidative damage and interacts with 

other antioxidants to promote the reduction of oxidized lipids [214]. The main 

antihypertensive effect of this drug is related to the reduction of the O2.- interaction with .NO 

which improves vasodilation [213, 214]. It also promotes natriuresis by enhancing the 

vasodilation of renal medullary vessels in a .NO independent manner [214]. Indeed, tempol 

has been shown to have sympatholytic actions, being able to inhibit afferent, peripheral and 

central activation of the sympathetic nervous system [214]. These actions are responsible for 

the rapid fall of blood pressure and heart rate after acute intravenous administration of 

tempol [214]. Nevertheless, some studies reported that the formation of H2O2 by tempol can 
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counteract its vasodilator, natriuretic and antihypertensive effects in models of hypertension 

where H2O2 plays a more prominent role than O2.- [48, 50, 53]. The co-administration of 

catalase in these conditions restores the protective action of tempol [48, 50].  

N-acetylcysteine (NAC) is a thiol containing compound. It is the acetylated derivative of the 

aminoacid L-cysteine and a precursor for reduced glutathione (GSH) [215, 216]. It appears to 

have direct antioxidant action since its free thiol can interact with the electrophilic groups of 

ROS [215]. However, this effect does not seem likely to occur in vivo because NAC has poor 

oral bioavailability being rapidly metabolized into GSH, among other metabolites [216]. 

Thus, the main protective action of NAC is probably related to its role as a GSH precursor, 

which then detoxifies reactive species either by enzymatic or non-enzymatic reactions [216]. 

In humans, NAC is approved as a mucolytic agent because it destroys the disulphide 

bridges of mucoproteins [215]. It is also used as an antidote for acetaminophen poisoning 

which dramatically depletes hepatic GSH content causing severe damage [217]. NAC may 

also have potential therapeutical applications in the treatment of heart diseases [218]. 

Polyethylene glycol-catalase is the conjugated form of the enzyme catalase with 

polyethylene glycol (PEG) which enhances the stability in aqueous solution, reduces 

immunogenicity and decreases sensitivity to proteolysis, thus increasing the circulatory 

half-life of catalase [219]. PEG also enhances the catalase association with cells [219]. The 

antioxidant effect of PEG-catalase results from the enzymatic degradation of H2O2 to water.  

Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) is a lipid-soluble seleno-organic compound 

that mimics glutathione peroxidase activity, being able to react with H2O2 and organic 

hydroperoxides including membrane-bound phospholipid and cholesterylester 

hydroperoxides [220]. It appears to reduce lipid peroxidation initiated by hydroperoxides but 

not free radicals initiators [221]. In addition, ebselen reacts rapidly with ONOO-. The ebselen 

selenoxid product yielded in this reaction is regenerated to ebselen by GSH, which allows its 

reutilization as a defense against ONOO- [222, 223]. Ebselen also directly inhibits 

inflammation-related enzymes such as 5-lipoxygenase, .NO synthases, protein kinase C, 

NADPH oxidase and H+/K+-ATPase by reacting with the SH group, leading to the formation of 

a selenosulphide complex [221]. Some authors have also proposed that the antioxidant and 

anti-inflammatory actions of ebselen are mediated through interactions with the thioredoxin 

(Trx) system [220]. Reduced Trx is important for growth and redox regulation by thiol redox 

control [220]. Ebselen was found to be an excellent substrate for mammalian TrxR and a highly 

efficient oxidant of reduced Trx. It also seems to function as a Trx peroxidase or peroxiredoxin 

mimic, thus contributing to the elimination of H2O2 and lipid hydroperoxides [220]. Ebselen 

has been used in clinical trials for the treatment of patients with acute ischemic stroke or 

delayed neurological deficit after aneurismal subarachnoid hemorrhage [224, 225]. 

Vitamin C (ascorbic acid) is a water soluble antioxidant found in the body as an ascorbate 

anion. It acts as a free radical scavenger [226]. Although this effect requires higher 

concentrations than those achieved in the plasma by oral administration, ascorbate appears 

to concentrate in tissues in much higher levels than those found in the plasma and can act 

effectively as a ROS scavenger [227]. In addition, it reduces membrane lipid peroxidation 
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and regenerates Vitamin E [226]. Recent reports also suggest that Vitamin C can suppress 

NADPH oxidase activity [227].  

Vitamin E is a generic term for a group of compounds including tocopherols and 

tocotrienols. The isoform -tocopherol appears to be the most abundant in vivo [227]. 

Vitamin E terminates the propagation of the free radical chain reaction in lipid membranes 

and inhibits LDL oxidation [226, 227]. Vitamin E can also have non antioxidant actions 

primarily through the regulation of enzymes involved in signal transduction. Enzymes 

inhibited by vitamin E include protein kinases C and B, protein tyrosine kinase, 

lipoxygenases, mitogen activated protein kinases, phospholipase A2 and cyclooxygenase-2. 

In contrast, vitamin E has stimulatory effects on protein tyrosine phosphatase and 

diacylglycerol kinase [228]. Both vitamins C and E have been shown to stimulate the 

activation of NOS activity and increase .NO synthesis in endothelial cells and thus may 

contribute to improved endothelial-dependent vasodilation in hypertension [229]. However, 

although Vitamins C and E are generally considered to be non-toxic, they can undergo 

oxidation and generate pro-oxidant molecules [226]. Nevertheless, it appears that this is 

more likely to occur with Vitamin E, especially in the absence of sufficient Vitamin C to 

regenerate the -tocopherol radical [227, 230, 231]. 

Alpha-lipoic acid (1,2-dithiolane-3-pentanoic acid or thioctic acid) has a wide range of 

effects on cell functions, acting as an antioxidant, a metal chelator and a signaling mediator 

[232]. Both lipoic acid (LA) and its reduced form dihydrolipoic acid (DHLA), may scavenge 

HO. and HClO, although neither species is able to neutralize H2O2 [232]. DHLA also 

regenerates Vitamins C and E and does not become a free radical after reacting with these 

species. Furthermore, LA and DHLA chelate transition metals, thus reducing the metal-

catalyzed free radical damage [232]. LA also contributes to improve antioxidant defenses by 

increasing the intracellular levels of Vitamin C and GSH. Many of LA protective actions 

have been attributed to its interference in cell signaling processes [232]. For example, LA 

effect on GSH appears to be mediated by nuclear factor erythroid 2- related factor 2 (Nrf2), 

an important transcription factor regulating gene transcription through the Antioxidant 

Response Element. LA was also shown to interact with several kinases and protein 

phosphatases [232]. Its interaction with components of the insulin signaling cascade also 

appears to improve glucose disposal in animal models of diabetes and human diabetic 

patients [232]. In addition, LA improves endothelial .NO synthesis and endothelial-

dependent vasodilation and prevents deleterious modifications of thiol groups in Ca2+ 

channels [232]. It has also important anti-inflammatory effects by inhibiting the activation of 

NF-KB, a transcription factor that regulates the expression of proinflammatory genes [232].  

Pyrrolidine dithiocarbamate (PDTC), a low-molecular weight thiol compound, has the 

ability to scavenge oxygen radicals and to chelate metals [233, 234]. It may also act as a 

prooxidant and a thiol group modulator [233]. PDTC has been shown to interfere with the 

activation of several transcription factors, being a potent inhibitor of NF-KB [233, 234]. 

PDTC can also activate other signaling pathways, such as the extracellular signal-regulated 

kinase (ERK), c-Jun N-terminal kinase (JNK) and the transcription factor Heat Shock Factor 

(HSF) [233, 235]. 
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5, 6, 7, 8-Tetrahydrobiopterin (BH4) is a key cofactor of NOS [236, 237]. It is involved in the 

formation and stabilization of eNOS and iNOS [236, 238]. In the absence of BH4, NOS can 

become uncoupled and starts producing O2.- instead of .NO [33, 237]. Furthermore, BH4 also 

possesses direct antioxidant activity, being able to scavenge O2.- and HO. [239]. The 

protective effects of BH4 on the development of hypertension appear to be due an increase in 

eNOS activity, a reduction in O2.- production and a decrease in iNOS expression [199].  

 

Drug Antihypertensive effect Lack of antihypertensive effect 

Apocynin Prevented/attenuated mineralocorticoid-induced 

hypertension [86, 240] 

Prevented/reversed glucocorticoid-induced 

hypertension [241] 

Prevented/reversed adrenocorticotropic 

hormone-induced hypertension [242] 

Prevented the development of Ang II-induced 

hypertension in mice [186] 

Prevented the development of renovascular 

hypertension [243] 

Prevented the development of hypertension 

induced by RAS activation [50] 

Reduced blood pressure in borderline and 

spontaneous hypertension [244] 

Attenuated salt-sensitive hypertension [245] 

Normalized blood pressure in a model of 

hypertension induced by disruption of dopamine 

D2 receptor [246] 

Failed to prevent the hypertension 

induced by chronic infusion of 

endothelin-1 [200] 

 

Failed to prevent hypertension in 

transgenic mice overexpressing renin 

or angiotensinogen [247, 248]  

 

Failed to prevent Ang II-induced 

hypertension in rats [249, 250] 

Gp91ds-tat Attenuated the blood pressure rise induced by 

Ang II in mice [209] 

Failed to attenuate salt-sensitive 

hypertension [251] 

Allopurinol Attenuated salt-sensitive hypertension [252] 

 

 

Prevented glucocorticoid-induced hypertension 

[253]  

Failed to prevent or attenuate 

mineralocorticoid-induced 

hypertension [254] 

Failed to prevent glucocorticoid-

induced hypertension [255] 

Failed to prevent or attenuate 

adrenocorticotropic-induced 

hypertension [242] 

Failed to prevent the development of 

hypertension induced by the blockade 

of nitric oxide synthesis [256] 

Failed to prevent the progression of 

hypertension in young SHR [257] 

Oxypurinol Reduced blood pressure in SHR [258]  

Tempol Attenuated hypertension in SHR [201] 

Prevented the progression of hypertension in salt-

loaded SHRSP [259] 

Attenuated mineralocorticoid-induced 

hypertension [260] 

Failed to prevent Ang II-induced 

hypertension [264] 

Failed to attenuate hypertension 

induced by inhibition of superoxide 

dismutase [48] 
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Drug Antihypertensive effect Lack of antihypertensive effect 

Prevented/attenuated glucocorticoid-induced 

hypertension [87] 

Attenuated salt-sensitive hypertension [261] 

Prevented the development of renovascular 

hypertension [243] 

Attenuated high-volume hypertension [262] 

Attenuated hypertension induced by NO 

inhibition [112] 

Partially prevented/reversed adrenocorticotropic 

hormone-induced hypertension [263] 

Failed to prevent hypertension 

induced by RAS activation [50] 

 

NAC Attenuated hypertension in young SHR [265] 

 

Prevented the development of glucocorticoid-

induced hypertension [202] 

 

Prevented the development of 

adrenocorticotropic hormone-induced 

hypertension [266] 

 

Markedly reduced salt-sensitive hypertension [267]

 

Prevented/ attenuated hypertension induced by 

nitric oxide synthesis inhibition [268] 

Failed to reduce blood pressure in 

adult SHR [265] 

Failed to attenuate glucorticoid-

induced hypertension [202] 

 

Failed to reverse adrenocorticotropic-

induced hypertension [266] 

 

 

Failed to prevent the development of 

hypertension induced by the blockade 

of nitric oxide synthesis [256] 

PEG-

catalase 

Prevented the development of hypertension 

induced by RAS activation [50] 

Transiently decreased blood pressure in Ang II-

hypertensive rats [49] 

Reduced blood pressure in high-volume 

hypertension in mice [269] 

Lacked a sustained antihypertensive 

effect in Ang II-induced hypertension 

[49] 

Ebselen Attenuated the blood pressure rise induced by 

Ang II in mice overexpressing p22phox in 

vascular smooth muscle and in littermate control 

mice [270] 

Failed to prevent the development of 

hypertension induced by the blockade 

of nitric oxide synthesis [256] 

Vitamin C Prevented the progression of hypertension 

induced by salt administration in SHRSP and in 

SHR [229, 271]  

Attenuated salt-induced hypertension [272, 273] 

Failed to prevent adrenocorticotropic 

hormone-induced hypertension [274]  

Vitamin E Prevented the progression of hypertension 

induced by salt administration in SHRSP [229] 

Attenuated hypertension in young SHRSP [275] 

Attenuated salt-induced hypertension [273] 

Failed to prevent adrenocorticotropic 

hormone-induced hypertension [274] 

 

Lipoic acid Reduced blood pressure in SHR [276] 

Prevented fructose-induced hypertension [277] 

Prevented/attenuated salt-induced hypertension 

[278] 

Prevented mineralocorticoid-induced 
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Drug Antihypertensive effect Lack of antihypertensive effect 

hypertension [279] 

PDTC Perinatal administration ameliorated 

hypertension in SHR offsprings [280] 

Prevented /Reduced hypertension in SHR [32, 

196] 

Attenuated mineralocorticoid-induced 

hypertension [260] 

 

BH4 Suppressed the development of hypertension in 

SHR [199] 

Reduced hypertension in SHR [281] 

Failed to attenuate hypertension in 

castrated SHR [281] 

Failed to prevent the development of 

adrenocorticotropic hormone in rat 

[282] 

Table 7. Effect of chronic treatment with antioxidants or inhibitors of ROS production on blood 

pressure 

4.2. Antioxidant approaches in human hypertension 

Although there is considerable evidence of oxidative stress involvement in the 

pathophysiology of hypertension, the attempts to demonstrate benefits from antioxidant 

therapy in human cardiovascular diseases have been very disappointing [5, 96, 283]. Most of 

the large trials regarding the effects of diet supplementation with Vitamin C, Vitamin E and 

-carotene failed to show significant improvements in blood pressure and other 

cardiovascular endpoints [5, 283]. Furthermore, some of them also led to the conclusion that 

antioxidant treatment with Vitamin E or -carotene may even be harmful [283-285]. In 

contrast, smaller clinical trials have provided some evidence of antioxidant treatment 

advantages. For example, some studies showed that systemic Vitamin C levels inversely 

correlates with blood pressure and that Vitamin C supplementation effectively attenuates 

hypertension [142, 286]. Vitamin E and lipoic acid have also been shown to improve 

vascular function, though there is not consistent evidence of a blood pressure lowering 

effect of these agents in human patients [5, 287, 288]. Nevertheless, it has been demonstrated 

that a high consumption of dietary fruits and vegetables increases plasma antioxidant 

capacity and reduces blood pressure [289, 290]. Thus, it appears that a diet rich in fruits and 

vegetables is a better strategy than antioxidant supplementation to improve antioxidant 

status and cardiovascular health [5]. Overall, the clinical trials with antioxidant supplements 

have been very unsatisfactory and are in disagreement with the findings obtained in 

experimental hypertension studies. There are some possible justifications for the 

disappointing outcomes of these trials. First, the type of the drug used as well as the dose 

and duration of the therapy might not be adequate [5, 291, 292]. Most trials followed an 

antioxidant strategy based in the administration of ROS scavengers such as Vitamins C and 

E. However, these drugs do not neutralize H2O2 which has been shown to play a relevant 

role in the pathophysiology of hypertension and other cardiovascular diseases [5, 7, 48-50]. 

Furthermore, it is known that human blood and tissues have plenty antioxidants and that 

several stimuli induce an adaptive increase of enzymatic antioxidant defenses which can 
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mask the benefits of exogenously administered antioxidants [293]. In addition, the 

antioxidant doses used in most of the experimental studies have been much higher than 

those tested in human patients [291]. So, there is the possibility that in humans the 

antioxidants did not achieve effective concentrations to neutralize ROS. Furthermore, it is 

not known if orally administered antioxidants can reach the precise sites of increased ROS 

production as oxidative stress is heterogeneously distributed throughout the organs, tissues 

and cellular compartments [5, 96, 291]. Indeed, the unspecific scavenging of ROS may even 

interfere with many important physiological functions in a deleterious manner [29, 96]. 

Another important limitation of most antioxidants tested is that they can exert themselves 

prooxidant effects in the absence of a coordinated antioxidant response [5, 96]. For example, 

Vitamin E needs to be regenerated by Vitamin C otherwise it may cause oxidative damage 

[231]. 

There are also drawbacks in clinical trials design. In large trials of antioxidant 

supplementation, patients have not been recruited accordingly to their redox status [5, 294]. 

It is unlikely that a beneficial effect of antioxidant therapy would be observed in patients 

without previous evidence of increased oxidative stress. Another important consideration is 

that these clinical trials often have heterogeneous populations in terms of the etiology of 

cardiovascular disease [295]. Indeed, most studies have indiscriminately enrolled any 

patient at cardiovascular risk [294]. This is in obvious contrast to the homogeneous 

populations analyzed in experimental studies. Furthermore, some of the patients may be at 

an advanced stage of disease exhibiting irreversible damage insusceptible to antioxidant 

interventions [5, 29]. It should also be highlighted that many patients enrolled in these 

studies were already being treated with drugs such as aspirin, lipid-lowering agents and 

some antihypertensive drugs which can themselves interfere with oxidant status and mask 

the effects of additional therapy with antioxidants [5, 92, 296, 297].  

So far, most interventions aimed at reducing oxidative stress in human hypertension have 

relied on antioxidant supplementation. However, it is possible that a strategy based on the 

inhibition of ROS production is more effective than the antioxidant interventions [5, 96]. The 

disruption of cardiovascular redox status is most likely triggered by an increase in 

prooxidant activity rather than a reduction in antioxidant defenses. Indeed, many 

neurohumoral or ambiental prohypertensive stimuli (angiotensin II, aldosterone, high-salt 

intake) are known to upregulate the expression and activity of prooxidant enzymes [5, 8, 

43]. Nevertheless, there are already some studies that investigated the cardiovascular effects 

of prooxidant enzyme inhibition. Patients treated with allopurinol showed improvements in 

vascular function [298, 299]. However, a blood pressure lowering effect of this XO inhibitor 

has been shown only in newly diagnosed hypertensive adolescents and in hyperuricemic 

patients with normal renal function [300, 301]. Furthermore, the combination of allopurinol 

with antihypertensive drugs did not provide additional benefits on blood pressure [299]. 

This is probably because XO is not a major contributor to the development of hypertension, 

even though its activity may be increased in pathophysiological conditions [5]. Indeed, 

compelling evidence indicates that NADPH oxidases are the main contributors to ROS 

overproduction in cardiovascular and renal diseases [5, 8, 302]. Moreover, Nox-derived ROS 
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are known to amplify redox dysfunction by inducing the activation of other prooxidant 

enzymes, such as XO, mitochondrial enzymes and NOS synthases [7, 51]. Since many 

antihypertensive drugs block upstream activators of Nox enzymes, it is not surprising that 

the inhibition of XO by allopurinol does not improve blood pressure control in patients 

already treated with antihypertensive drugs. To date, no Nox inhibitors have been tested in 

clinical trials although some specific Nox inhibitors have already been developed and 

patented [96, 296]. Future strategies to demonstrate the benefits of oxidative stress reduction 

in cardiovascular diseases should include the testing of specific Nox inhibitors in human 

patients. Moreover, the development of reliable oxidative stress biomarkers for risk 

stratification and monitoring of therapy is also highly desirable [96, 296]. Table 8 

summarizes the possible reasons for the failure of antioxidants in clinical trials.  

 

Limitations related to the drug treatment Limitations related to the clinical trials design 

Inadequate dose or duration of therapy 

Lack of effect on non-radical oxidants such as H2O2 

Lack of effect on prooxidant activity 

Inaccessibility of ROS scavengers to intracellular sites 

of increased ROS production 

Some antioxidants may themselves become 

prooxidants in the absence of a coordinated 

antioxidant response 

Unspecific scavenging of ROS may disrupt 

physiological functions 

Lack of previous evidence of increased redox 

dysfunction in patients analyzed 

Heterogeneous populations in terms of the 

etiology of cardiovascular disease 

Some patients may be at an advanced stage of 

disease exhibiting irreversible damage 

Patients treated simultaneously with drugs that 

interfere with oxidant status (aspirin, lipid 

lowering agents, antihypertensive drugs) 

Lack of validated oxidative stress biomarkers 

for risk stratification and monitoring of therapy 

Table 8. Possible reasons for the failure of clinical trials with antioxidants in cardiovascular diseases 

4.3. Antihypertensive treatments with direct and indirect antioxidant effects 

It is known that first-line antihypertensive drugs such as angiotensin II receptor blockers 

(ARB) and angiotensin converting enzyme inhibitors (ACEi) can reduce oxidative stress due 

to their inhibitory effect on angiotensin II, which is a major stimulus for the activation or 

upregulation of Nox enzymes [5, 296]. ROS such as O2.- and H2O2 are widely recognized as 

important downstream mediators of Ang II physiological and pathological effects [303]. 

Nevertheless, some of these antihypertensive drugs also possess antioxidant effects 

independently of RAS inhibition. For example, captoptil, a thiol-containing ACEi, is a ROS 

scavenger and a metal chelator [304]. The ARBs candesartan and olmesartan also exhibit 

antioxidant effects independent of AT1 receptor blockade or blood pressure control [305-

307]. In addition, other agents belonging to the beta-blocker or calcium channel blocker drug 

classes have also been shown to exert antioxidant effects unrelated to their blood pressure 

lowering action. The beta-blockers carvedilol and nebivolol appear to possess ROS 

scavenging properties as well as inhibitory effects on ROS production, such as the inhibition 

of Nox activation [308, 309]. In addition, nebivolol also increases .NO release from the 

endothelium, thus attenuating oxidative stress effects on endothelium-dependent 

vasodilation [309, 310]. The calcium channel blocker lacidipine has also been demonstrated 
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to have a potent antioxidant activity and to reduce the intracellular production of ROS 

induced by oxidized LDL [311, 312]. Therefore, even though convincing evidence is lacking 

regarding a clinical therapeutic effect of antioxidants, there is extensive data showing that 

currently approved antihypertensive treatments have the ability to modify oxidative stress 

status. 

5. Conclusions 

Extensive experimental evidence has shown that unbalanced ROS and/or RNS production 

can disturb several physiological functions, leading to the genesis and progression of 

arterial hypertension. Many studies have observed marked alterations in direct and indirect 

oxidative stress biomarkers, such as lipid peroxidation products, prooxidant enzymes and 

antioxidant defenses. However, most clinical trials with antioxidants have failed to 

demonstrate a protective effect on blood pressure and cardiovascular function. This does 

not necessarily exclude a role for oxidative stress in human cardiovascular diseases but 

instead suggests that other approaches should be addopted to recover redox homeostasis. 

The inhibition of Nox enzymes appears to be a promising strategy as these enzymes are 

major sources of ROS overproduction at cardiovascular and renal sites of blood pressure 

control. Indeed, several drugs already in use for the treatment of hypertension (e.g. ARBs, 

ACEi, the -blocker nebivolol) or dyslipidemia (statins) are known to reduce the activation 

of Nox enzymes. In addition, there is an urgent need to implement universally validated 

approaches to evaluate oxidative status in human patients. These should cover a broader 

range of redox biomarkers and would add valuable information for risk stratification and 

therapeutic monitoring in human patients.  
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