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1. Introduction 

Fast advances in several signal processing techniques, along with cost-effective digital 

technologies for their implementation, are ready to address important manufacturing and 

machine monitoring issues for which no solution currently exists. Among new 

technologies are advances in wavelet and time-frequency signal analysis. By virtue of 

their ability to characterize both transient phenomena and persistent harmonic structure, 

they appear well-matched to the signals associated with rotating machinery. Other recent 

developments, such as higher-order spectral theory, could also possibly contribute in 

these applications. 

Because of the complexity into detection and categorization of faults are normally difficult 

to solve analytically or through mathematical modelling, and usually require human 

intelligence, thus, higher-level techniques such as neural networks and statistical pattern 

recognition and classification have demonstrated improvements over traditional 

approaches. These methods, with appropriately directed research, may offer solutions for 

the critical technology needs in manufacturing and machine monitoring. The growing 

interest in the use of artificial intelligence for the solution of engineering problems is visible 

from the considerable number of articles published in the last decade [1]. 

Thus, the present chapter aims to present results of statistical tools to detect faults in 

machining processes, by digitally processing the acoustic emission signals generated during 

the process. 

2. Monitoring and process control of machining processes 

The implementation of intelligent processes in industries utilizing computer numerically 

controlled machining is increasing rapidly. However, these systems are not enough reliable 

to operate without human interference so far. It is common to observe operators of CNC 

machines correct the process parameters or identify the end of the tool life [2]. 
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In the grinding process, the workpiece quality depends to a great extent on the experience of 

the operator. This occurs because grinding is a very complex process affected by so many 

factors that a reproducible result is rarely obtained. The most important one is that the 

cutting ability of the grinding wheel changes considerably during the grinding time. In 

practice the grinding process is carried out with cutting parameters that are safe but not 

optimal. Another and no less important parameter to be controlled in grinding is dressing, 

which is the process of conditioning the grinding wheel surface in order to reshape the 

wheel when it has lost its original shape through wear [3-4]. 

Thus, there are three main goals related to grinding process monitoring: detection of 

problems during machining; provision of information necessary to optimize the process; 

and the contribution to the development of a database needed to determine the control 

parameters [5].  

The use of acoustic emission (AE) to monitor and control the grinding process is a relatively 

recent technology [6], besides being more sensitive to the grinding condition variations, 

when compared with the force and power measurements [7], standing as a promising 

technique to the process monitoring. 

Acoustic emission is the phenomenon in which elastic or stress waves are emitted from a 

rapid, localized change of strain energy in a material. Typically frequencies are in the range 

of 100 kHz to 2 MHz, well above the vibration frequencies of most machines and 

surroundings. At grinding process the AE signals are directly generated in the deformation 

zone. Thus, an important assumption is made: AE generated during the grinding process is 

assumed to contain information related to the micro mechanical phenomena of the grinding 

process and thus conditions of its components [8]. 

With the objective to determine features of the machining processes from the AE signal, 

techniques of signal processing are applied, and may include: root mean square (RMS), 

constant false alarm rate (CFAR), mean value dispersion statistic (MVD) etc. Features of the 

machining processes may be extracted as part of the particular monitoring system [9-10]. 

2.1. Root mean square (RMS) 

The root mean square of the raw AE signal can be expressed by Equation (1): 
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Where ΔT is the integration time constant and N is the number of discrete AE data within 

ΔT. AERMS can be obtained by using an analog RMS filter or digitally by calculating with a 

chosen ΔT according to the right part of the equation. There is no general rule in selecting 

suitable ΔT to obtain AERMS, however ΔT=1 ms provides a good resolution for grinding 

process, and have been used for many researchers. 
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2.2. Constant false alarm rate (CFAR) 

Constant false alarm rate (CFAR) is a statistic tool employed in detection of events, which is 

described by [11]: 
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Where the Xk is the kth magnitude-squared FFT bin, v is a changeable exponent and 2M is the 

total FFT bins. Respectively v=1 and v=∞ correspond to the energy detector and max{Xk}. 

Although v between 2 and 3 provides a good performance for a wide frequency band of the 

studied signal, this statistic needs pre-normalized data. Due to the fluctuation of the AE 

signal during the grinding process, a constant false alarm rate (CFAR) power-law [12] is 

used. The CFAR power-law is based on an assumption that the spectrum of AE signal is flat. 

An alternative version of this tool was employed due to system distortions, which is 

expressed by the following equation [13]. 
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Where Tbcpl is clearly not affected by signal amplitude. This version of the CFAR power-law 

statistics is band-limited by n1 and n2. 

2.3. Mean value dispersion statistic (MVD) 

The mean-value deviance (MVD) statistic quantifies in a certain way the average deviation 

of observations from its mean value. Unusually large value of Tmvd(X) implies such deviation 

is too great to be explained using a simple exponential distribution model. This statistic is 

sensitive to small outliers, that is, observations with extremely small values [14]. 

The MVD statistic was used successfully in burn detection [15], and is defined by Equation (4). 
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Where X  is the mean value of { }kX ; 2M  is the total number of FFT bins, and  is the kth 

magnitude-squared FFT bin. 

2.4. Kurtosis and skewness statistics 

The measurement if the distribution tail is longer than other is made by skew. In case of 

kurtosis, the tail size is expressed. Both statistics are utilized as an indicator to the acoustic 
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emission variations. Thus, abrupt changes in the AE signal may result in spikes in these 

statistics. The Equation (5) shows the way of calculating kurtosis of an x signal. 
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Where μ is the mean of x, N the number of samples in the range considered and σ the 

standard deviation. 

Similarly, the expression given in Equation (6) is used to calculate skewness. 

 
 3

3

x
S

N






  (6) 

2.5. Ratio of power (ROP) 

It is instinctive to think about the different behaviours expected for a good part or bad one 

by observing the frequency spectrum of the AE signal. Hence, for each block of AE data 

ROP is given by Equation (7). 
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The denumerator eliminates the local effect of power in equation, where N is the size of a 

block of AE data; n1 and n2 define a frequency range to analyse. 

2.6. Autocorrelation 

The time correlation of a function Φxy is defined by Oppenheim [16] in Equation (8). 

      xy t x t y d   
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   (8) 

Where Φxx is commonly referred to autocorrelation of x signal. 

2.7. DPO 

The combination of the RMS AE signal and the cutting power signal provided a parameter 

to indicate burning of the workpiece in surface grinding, which has been dubbed DPO, and 

consists of the relation between the standard deviation of the RMS AE signal and the 

maximum cutting force per grinding wheel pass [17]. Equation (5) represents the DPO 

parameter. 
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 ( )max( )DPO std AE pw  (9) 

Where std(AE) is the standard deviation of the RMS AE and max(pw) is the maximum value 

of cutting power in the pass. 

2.8. DPKS 

The DPKS statistic was developed by Dotto [18] in order to increase the sensitivity of the 

DPO parameter. This parameter allows to identify the exact moment when grinding burn 

begins, and in the case of dressing, the exact moment to stop the process. The DPKS is 

calculated by multiplying the standard deviation of AE by the sum of the cutting power 

subtracted from its standard deviation elevated to the fourth power. Equation (6) represents 

the calculated DPKS statistic: 
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Where i is the power index which varies from 1 up to m points in each pass, pw(i) and 

std(pw) are, respectively, the instant value of the cutting power and standard deviation of 

the cutting power in the pass, and std(AE) is the standard deviation of the RMS AE in  the 

pass. 

2.9. Artificial neural network (ANN) 

According to Kwak & Song [19], neural networks are composed of many non-linear 

computational elements operating in parallel. Because of their massive nature and their 

adaptive nature in using the learning process, neural networks can perform computations at 

a higher rate and adapt to changes in data learning the characteristics of input signals. The 

usefulness of an artificial neural network comes from the ability to respond to an input 

pattern in a desirable fashion, after the learning phase. 

The artificial neural network efficiency has proved in previous investigations in the 

prediction of faults at machining processes. Thus, this technique is very promising and can 

also be applied successfully to industrial automation in a flexible and integrated fashion. 

2.9.1. Multi layer perceptron (MLP) 

Nathan et al. [20] state that there are three structural layers in a network, namely the input 

layer (which receives input from the outside world), the hidden layer (between the input 

and the output layers) and the output layer (the response given to the outside world). The 

neurons of different layers are interconnected through weights. Thus, processing elements 

at different layers, interconnections between them, and the learning rules that define the 

way in which inputs are mapped on to the outputs constitutes a neural network. The 

usefulness of an ANN comes from its ability to respond to an input pattern in a desirable 
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fashion, after the learning phase. As such, the processing units receive inputs and perform a 

weighted sum of its input values using the connection weights given initially by user. This 

weighted sum is termed the activation value of the neuron, given by: 

 
i iu w x    (11) 

where wij is the weight interconnecting two nodes i and j; xi is the input variable; and u is the 

threshold value. During the forward pass through the network, each neuron evaluates an 

equation that expresses the output as a function of the inputs. Using the right kind of 

transfer function is therefore essential. A sigmoidal function can be used for this purpose, 

and is given by: 
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Depending on the mismatch of the predicted output with the desired output, the weights 

are adjusted by back-propagation of error, so that the current mean square error (MSE) 

given by the following equation is reduced: 
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where N is the number of patterns in the training data, K is the number of nodes in the network, 

bnk is the target output for the nth pattern and snk is the actual output for the nth pattern. 

Still, according to Hykin apud Nathan et al. [20], it should be noted that the MSE itself is a 

function of the weights, as the computation of the output uses them. During this learnig phase 

of the network the weights and the threshold values are adapted in order to develop the 

knowledge stored in the network. The weights are adjusted so as to obtain the desired output. 

The problem of finding the best set of weights in order to minimize the discrepancy between 

the desired and the actual response of the network is considered as a non-linear optimization 

problem. The most popularly used learning algorithm, namely the back-propagation 

algorithm, uses an interactive gradient-descent heuristic approach to solve this problem. Once 

the learning process is completed, the final set of weight values is stored, this constituting the 

long term memory of the network, which is used later during the prediction process. 

2.9.2. The radial basis neural network 

According to Musavi et al. [21] Radial Basis Function (RBF) technique provides an 

alternative tool to learning in neural networks. The main idea is to design a network with 

good generalization ability and a minimum number of nodes to avoid unnecessarily lengthy 

calculations as opposed to multilayer perceptron networks. The RBF classifiers which 

belong to the group of kernel classifiers utilize overlapping localized regions formed by 

simple kernel functions to create complex decision regions. 
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The structure of the radial basis ANN is like a MLP with three layers, an input layer, the 

radial basis function layer, and one linear layer output neuron [22]. This structure is shown 

in Figure (1). 

 

Figure 1. A generic radial basis network. Adapted from Jang [23]. 

The radial basis function (RBFs), which have been widely advocated [21], are 

approximations of the form 

  /j j j
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for centers xj, where G(r) = exp(-r2/2), σ is the covariance matrix. Using RBFs as the basis 

functions, one output can be represented by 

  2
2

1 1

2 2 exp 1 1
j i

n n

j j ji i
j i

y b w b w x
 

 
    
 
 

   (15) 

where x is the input vector with size ni, ni and nj are separately the numbers of neurons used 

in input and the radial basis layer, w1 and b1 are the weight matrix and the bias vector with 

dimension nj for the radial basis layer, w2 and b2 are the corresponding weight matrix and 

bias scale for the linear layer. 

Just as any statistical analysis, an implied requirement for developing robust neural network 

models is that the training sets cover as many of the possible variations in the input and 

output vector as possible. 
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2.9.3. Adaptive neuro-fuzzy inference system (ANFIS) 

The ANFIS system is based on the functional equivalence, under certain constraints, of RBF 

networks and Takagi-Sugeno-Kang (TSK) fuzzy systems [24-25]. A single existing output is 

calculated directly by weighting the inputs according to fuzzy rules, which are the 

knowledge base determined by a computational algorithm based on neural networks. 

To produce an ANFIS model that performs well requires taking into account the initial 

number of parameters and the number of inputs and rules of the system [26]. These 

parameters are determined empirically and an initial model with equally spaced 

membership functions is usually created. However, this method is not always efficient 

because it does not show how many relevant input groups there are. 

The subtractive clustering algorithm [27-28] is used to identify data distribution centers, 

which contain the membership curves with membership values equal to 1. The algorithm 

uses the cluster number or the size of the neighborhood radius and the number of iteration 

times. In each pass through the algorithm, the latter looks for a point that minimizes the 

sum of the potential with the neighboring points. 

According to Lee et al. [29], ANFIS is a fuzzy inference system introduced in the work 

structure of an adaptive neuro-fuzzy network. Using a hybrid learning procedure, the 

ANFIS system is able to build an input-output map based on human knowledge and on 

input/output data pairs. The ANFIS method is superior to other modeling methods such as 

the autoregressive model, cascade correlation neural networks, back-propagation neural 

networks, sixth-order polynomials, and linear prediction methods [23]. 

3. Case study 

3.1. In-process grinding monitoring by acoustic emission 

This case aims to investigate the efficiency of digital signal processing tools of acoustic 

emission signals in order to detect thermal damages in grinding process. To accomplish 

such goal, an experimental work was carried out for 15 runs in a surface grinding machine 

operating with an aluminum oxide grinding wheel and ABNT 1045. A high sampling rate 

data acquisition system at 2.5 MHz was used to collect the raw acoustic emission. Many 

statistics have shown effective to detect burn, such as the RMS, correlation of the AE, CFAR, 

ROP and MVD. However, the CFAR, ROP, Kurtosis and correlation of the AE have been 

presented more sensitive than the RMS. 

3.1.1. Experimental setup 

The experimental tests were carried out upon a surface grinding machine where raw 

acoustic emission signals were collected for fifteen different runs at 2.5 million of samples 

per second rate. Data was collected from a fixed acoustic emission sensor of the Sensis 

manufacturer; model PAC U80D-87, which was mounted on the part holder. The major 
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grinding parameters were kept constant during the runs, and can be seen in Table (1). 

However, the depth of cut was varied from light and aggressive cutting. All the parts were 

essayed post-mortem and the burn marks were identified. 

 

Items Specifications and conditions 

Grinding wheel Type: 38A80-PVS-Norton, size: 296.50 x 40.21 mm 

Wheel speed 27.94 m/s (1800 rpm) 

Coolant Type: water-based fluid 4% 

Workpiece Material: ABNT 1045 steel, size: 98.58 x 8.74 mm 

Workpiece speed 0.044 m/s 

Table 1. Experimental specifications and conditions. 

The Table (2) shows details of tests carried out for the ABNT 1045 steel. Besides the visual 

analysis, roughness and microhardness test were performed on the parts. 

 

Test Depth of cut (m) Cutting Profile Comments 

1 10  No burn 

2 30  Slight burn 

3 20  Severe burn 

4 90 10 Severe burn 

5 20 2.5 Severe burn 

6 40 5 Severe burn 

7 15  Burn at middle 

Table 2. Tests with ABNT 1045 steel. 

3.1.2. Results 

Digital processing of the acoustic emission signals was accomplished for many statistical 

correlations such as kurtosis, skewness, autocorrelation, RMS, CFAR, ROP and MVD. These 

statistics were obtained by digitally processing the raw acoustic emission in blocks of 2048 

samples. As a result, each statistics were computed along the 6 second-related test, which 

was composed of the grinding pass itself and some noise period before and after the 

grinding pass. The graphs for each workpiece obtained for these statistics are presented in 

Figure (2) for tests 1, 5 and 7 respectively. 

From the results it can be observed that the RMS statistic had a stable level for the non-

burning workpiece during all over the grinding pass while significant variations can be 

observed when severe burn occurred, as can be seen in Figure (2a) for non-burning and 

Figure (2b) for severe burning. Skewness and kurtosis presented variation when burn took 

place but positive amplitudes dos some tests and negative ones for others were observed, 

which are not useful for an indicator parameter to burn. The ROP turned out to be a good 

indicative to burn, since its behavior has shown quite sensitive to the studied phenomenon. 

Besides, its level is low to those non-burning parts and high to the burning ones. 
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Additionally, it has well characterized the contact between the wheel and piece. The MVD 

tool presented a behavior similar to the RMS statistic. The autocorrelation statistic was very 

sensitive to burn for the most tests performed but for a few it has shown useless by virtue of 

the decreasing observed when burn occurred. Similarly to the autocorrelation, the CFAR 

tool has behaved quite well to burn detection for most of the tests carried out but with no 

decreasing of signal at all, except for test 7 where a decreasing was observed during the 

grinding pass. This behavior, however, did not compromise the utility of CFAR tool, for the 

level of test 7 has kept higher than to the non-burning test. 

 

 
 

 
 

 

Figure 2. Results for Test 1, Test 5 and Test 7; Horizontal axis corresponds time in seconds and Vertical 

axis Volts multiplied by a constant; (a) Test 1 with no burn; (b) Test 5 with severe burn from close to the 

beginning to the end; (c) Test 7 with burn in the midst. 

(a) (b) (c)
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3.1.3. Case study conclusion 

For this case study, the results show that several statistics have worked quite well to burn 

detection, as is the case of RMS, CFAR, ROP and MVD. Nevertheless, skewness and kurtosis 

statistics have presented an interesting behavior regarding the waveform of the signal and 

their variation along the grinding pass, though they are not effective to detect burn. 

3.2. Classification of burn degrees in grinding by neural nets 

The aim of this case study is to attain the classification of burn degrees of the parts ground 

with the utilization of neural networks. The acoustic emission and power signal as well as 

the statistics derived from the digital signal processing of these signals are utilized as inputs 

of the neural networks. The results have shown the success of classification for most of the 

structures studied. 

3.2.1. Experimental setup 

A surface grinding machine was used in the grinding tests equipped with an aluminum 

oxide grinding wheel, model ART-FE-38A80PVH. An acoustic emission sensor was placed 

near the workpiece and an electrical power transducer for measuring the electrical power 

consumed by three-phase induction motor that drives the wheel were employed. The 

acoustic emission (AE) and cutting power (Pot) signals were measured at 2.0 millions of 

samples per second. Table (3) list the parameters adjusted to the system. 

 

Items Specifications and conditions 

Wheel speed 30 m/s (1800 rpm) 

Coolant Type: water-based fluid 4% 

Workpiece Material: SAE 1020 steel, size: 150 x 10 x 60 mm 

Workpiece speed 0.033 m/s 

Table 3. Experimental specifications and conditions. 

The power transducer consists of a Hall sensor to measure the electric current and a Hall 

voltage sensor to measure the voltage at the electric motor terminals. Both signals are 

processed internally in the power transducer module by an integrated circuit, which 

delivers a voltage signal proportional to the electrical power consumed by the electric 

motor. 

The tests were carried out for 12 different grinding conditions, and subsequently the burn 

degrees (no-burn, slight burn, medium burn, and severe burn) could be visually assessed for 

each workpiece surface. Dressing parameters, lubrication and peripheral wheel speed were 

adequately controlled in order to ensure the same grinding condition for each test. Each run 

consisted of a single grinding pass along the workpiece length at a given grinding condition 

to be analyzed. 
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3.2.2. Results 

The digital signal processing phase started after all the 12 tests were carried out. The process 

generated seven new statistics, that is, the parameters DPO and DPKS, and the statistics 

CFAR and MVD. Seven structures were used for the neural network implementation as 

shown in Table (4). It can be noted in this table that besides the signals and statistics 

aforementioned the depth of cut a was also used as input. 

In this case, the back-propagation algorithm of neural networks, which is one of the learning 

models, was used. The following parameters ware also found more suitable: downward 

gradient training algorithm; all data in the neural networks were normalized; training for 

1000 epochs; square mean error value of 10-5. Cross-validation was used to estimate the 

generalization error of the model. The outputs of the neural network was configured in a 

binary way according to the degree of burn obtained, that is, 0001 for no no-burn, 0010 for 

slight burn, 0100 for medium burn, and 1000 for severe burn. 

\ 

Structure Inputs 

I Pot, AE, a 

II DPO, a 

III DPKS, a 

IV MVD, a 

V CFAR, a 

VI AE, a 

VII Pot, a 

Table 4. Neural Network Structures. 

Each statistic was represented by a vector of 3000 samples for each test subsequently the 

digital processing of the AE and power signals. The quantification of the grinding burn on 

every part surface was done by specific software for that purpose, which assessed the surface 

of a given part regarding the burn level through its digitalized picture. From the results of this 

characterization, input vectors ware separated and assigned to the corresponding type of burn. 

The input vectors were again divided into training, validation and test vectors. 

Then, the process of optimization for the neural network was carried out. For each structure 

were tested some parameters like the number of neurons of the hidden layer, learning rate 

and momentum. The best results for all structures were obtained and presented in Table (5). 

 

Structure Neurons Learning rate Momentum 

I 3 – 35 – 4 0.7 0.6 

II 2 – 50 – 4 0.7 0.3 

III 2 – 45 – 4 0.5 0.7 

IV 2 – 30 – 4 0.3 0.7 

V 2 – 50 – 4 0.7 0.3 

VI 2 – 40 – 4 0.7 0.7 

VII 2 – 20 – 4 0.5 0.3 

Table 5. Final configuration for the 7 neural network structures. 
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The results for each structure were generated by inputting the corresponding data along 

with the depth of cut information, and the network output was interpreted in a bar graph 

fitting the form of the ground workpiece according to each burn level obtained. The digital 

picture of the workpiece with the corresponding bar graph for each structure was put all 

together for comparisons. 

Figure (3) shows the results obtained when the signal vectors of Test 2, not used in the 

training, were inputted to the neural network. Thus, the data given to neural network are 

different from those it was used in training, testing this way its ability of classifying the burn 

levels. It can be observed that the structures were able to detecting well the changes in the 

burn levels occurred in this test. Some minor errors of classification were also observed as is 

the case of the Structure IV, Figure (3e), which has failed in classifying severe burn in the 

end of the workpiece. 

 

Figure 3. Results obtained for Test 2; (a) Workpiece picture; (b) Structure I; (c) Structure II; (d) Structure 

III; (e) Structure IV; (f) Structure V; (g) Structure VI; (h) Structure VII. 

It can be observed in Figure (4) that all structures have presented a success rate quite good, 

with the exception of Structure IV that has presented a success rate of only 52.9%. The 

structure having acoustic emission, power and depth of cut was supposed to own a better 

position in the grading since these signals are widely employed in the grinding process 

monitoring. On the other hand, Structure II composed by DPO parameter and depth of cut 

has present the best result, this can also be explained due to the parameter DPO combines 

the variations of the RMS acoustic emission and the maximum amplitude of the electric 

power during the grinding pass, resulting in an excellent tool for detection of burn degrees. 

It can be emphasized that all structures detected slight burn quite well, and the grading 

showed was based on the success rate for all degrees of burn studied. 
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Figure 4. Rate of success for each structure and the ranking obtained. 

3.2.3. Case study conclusion 

The utilization of neural network of type multi-layer perceptron using back-propagation 

algorithm guaranteed very good results. 

As all structures have detected correctly the degree of slight burn that is the first stage of 

change on thermal damage, it can be concluded that all structures worked well for 

classification of burn or non-burn occurrence. 

The differences of errors found among the Structures II, VI and VII are quite small, that is, 

less than 1% for the set of input #7, and 6.6% for the set of input #6 with respect to Structure 

II. Therefore, the acoustic emission and electric power signals can also be employed 

successfully as inputs to the artificial neural networks for classification of burn degrees in 

grinding. 

3.3. ANFIS applied to the prediction of surface roughness in grinding of 

advanced ceramics 

In this case is introduced a methodology for predicting the surface roughness of advanced 

ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). For this work, alumina 

workpieces were pressed and sintered into rectangular bars. The statistical data processed 

from the AE signal and the cutting power, were used as input data for ANFIS. The output 

values of surface roughness were implemented for training and validation of the model. The 

results indicated that an ANFIS network could predict the surface roughness of ceramic 

workpieces in the grinding process. 
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3.3.1. Experimental setup 

To evaluate the behavior and collect the signals in surface grinding process of advanced 

ceramics, a test bench was created. A surface grinding machine was used, equipped with a 

synthetic diamond grinding wheel (type: SD 126 MN 50 B2). Dressing was carried out with a 

cluster type diamond dresser. The test pieces, consisted of rectangular bars of commercial 

alumina comprising 96% of aluminum oxide and 4% of flux oxides, were produced by 

pressing and sintering. Table (6) lists the parameters adjusted to the system. 

A piezoelectric type sensor attached to the holder that fixes the workpiece collected the 

AE signal. The system’s cutting power was recorded through an electrical power module 

connected to the power supply of the frequency converter. Surface roughness was 

measured with a Taylor Hobson Surtronic 3+ surface roughness tester. Tests were 

performed at three different cutting depths: 20μm, 70μm and 120μm to record the 

signals and surface roughness data. 

The following statistics was obtained from the cutting power and AE signals: mean of AE, 

standard deviation of AE (std of AE), mean of cutting power (mean of PW), standard 

deviation of cutting power (std of PW), DPO and DPKS. These values were evaluated as 

inputs to the ANFIS system. Based on the surface roughness values, regressions were made 

to obtain more data for training the networks. Figure (5) illustrates this process. 

 

 

 

 

Items Specifications and conditions 

Wheel speed 35 m/s (1800 rpm) 

Workpiece speed 0.038 m/s 

Coolant 
Type: Conventional water and oil emulsion  

(Rocol Ultracut 370); Concentration: 5% 

Fluid velocity 3 m/s 

Fluid outflow 27.5 l/min (0.458 l/s) 

Pressure of the fluid in the system Lower than 0.2 kgf/cm2 

 

 

 

Table 6. Experimental specifications and conditions. 
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Figure 5. Data acquisition and signal processing scheme. 

3.3.2. Results 

For this case, the ANFIS model with three inputs composed by: acoustic emission, standard 

deviation of power and the DPO statistic. This model presented the lowest error and best 

represent the behavior of the system. 

For the best model was conduced several test to find the ideal training parameters. The 

number of membership functions per input was varied, and the general error of the test set 

and the general error related to the real measurements were analyzed. 

Table (7) lists the final parameters of the definitive ANFIS model for the prediction of 

surface roughness of a ceramic body. The five rules are in the form: Rule(k) – IF (mEA is 

In1cluster(k)) and (sPot is In2cluster(k)) and (DPO is In3cluster(k)) THEN (Roughness 

Outcluster(k)), where k is the rule number and varies from 1 to 5. 

 

Parameter Value 

Number de Membership Functions per Input 5 

Type of Membership Function Gbellmf, Gaussian function 

Target Error 0.001 

Maximum Number of Iterations 100 

Maximum Learning Coefficient 1.1 

Training Method Hybrid 

Table 7. Definitive parameters of the ANFIS model. 

The newly created model was validated using values generated by the surface roughness 

curve. The result is depicted in Figure (6), which shows a good prediction with a total error 

of approximately 4%. 
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Figure 6. Inference of surface roughness by ANFIS for the test set generated by the fitted roughness 

curve. 

3.3.3. Case study conclusion 

The accuracy of the ANFIS network for predicting surface roughness demonstrates that this 

type of network is a good data prediction system, since its hybrid nature (neural and fuzzy) 

enables the correct prediction of the values of the system, which are not easily related. 

The ANFIS network tested with three inputs showed a lower RMS error than the networks 

with one and two inputs, and the best set was the one whose parameters were the mean 

acoustic emission, the standard deviation of cutting power and the DPO. 

The predicted surface roughness values showed a percent error of 7.54% for the 

measurements taken in the tests at 20μm of depth, 6.54% for the test at 120μm, and the 

lowest error of 4.73% for the test at 70μm. After building the ANFIS model and training it, it 

was possible to obtain the membership functions, with their allocated centers, the rule sets 

for predicting surface roughness, and the set of output equations of the model, enabling the 

system’s application in a control environment. 

4. Conclusions 

The characterization and detection of anomalies during the grinding process were 

successfully performed by digitally processing the raw acoustic emission signal for several 

statistics studied and presented in this chapter. The first case study has shown good results 

for burn detection with the statistics RMS, CFAR, ROP and MVD. 

Artificial neural networks (ANNs) proved to be very useful tool for pattern recognition of 

grinding burn degrees as well as estimating the wear of the grinding wheel indirectly. In 

addition, ANNs have presented good results in estimating surface roughness of advanced 

ceramics. This turns out to be a benefit towards the optimization of the grinding process, 

avoiding high reject rates, scrap, rework, and machine downtime. 

Based on the studies presented, a contribution is given to the development of a database 

needed to determine the control parameters of the grinding process. It is therefore possible 
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to determine safe regions to operate the grinding machine from mild to critical conditions, 

providing a system to the end user to start out with the optimal parameters, eliminating the 

need for trial and error, with increased productivity, reduced expenditures on consumables, 

scrap and rework reduction, and improved quality. The digital signal processing of the raw 

acoustic emission as well as the artificial neural network models applied to the grinding 

process provide valuable information necessary to optimize the process. 
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