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1. Introduction

The piezoresistive1 carbon fibre sensor (CFS) consists of a single carbon fibre roving with

electrical connected endings embedded in a sensor carrier (patch) for electrical insulation.

Depending on the requirements of the application different patch types (e.g. glass fibre

reinforced plastic (GFRP), polyester film, neat epoxy resin) are used. In terms of the

mechanical properties GFRP is a particularly suitable patch material. CFSs with a GFRP patch

exhibits an improved linearity of the signal due to the supportive effect of the glass fibres

to the carbon sensor fibre especially in the case of compression loading. In [6] the ex-PAN

fibre T300B was identified as one suitable carbon fibre for CFSs because of the excellent linear

piezoresistive behaviour, the high specific resistivity and a high breaking elongation of the

fibre. Figure 1 shows a CFS with a single layer GFRP patch (UD prepreg EG/913).

sensor fibre (T300B 1K) 

 

 

 

 

 

GFRP patch (EG/913) 

galvanized ending with soldered pin 

Figure 1. Carbon fibre sensor with an ex-Pan sensor fibre and a GFRP patch

1 Piezoresitivity describes the change in electrical resistance of a conductor due to an applied strain.

©2012 Last names of author(s), licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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The manufacturing process of a CFS includes three basic steps: Pre-curing of the carbon fibre,

preparation of the electrical connection and embedding of the sensor fibre into the sensor

carrier.

The pre-curing process is used to stabilize the carbon fibre roving and to align the filaments

of the roving. For this purpose the twisted carbon fibre roving is impregnated by a resin with

low viscosity and cured by using a special tooling. Good results for the impregnation of the

carbon fibre roving T300B 1K were obtained by using the epoxy resin EP301 S (HBM) and

a twist of 20 turns per meter. Spring elements provided a constant tension force along the

roving during the curing process at 180 ◦C for 1.5 hours.

For preparation of electrical connections a galvanic process is applied based on a nickel

electrolyte. In order to attain a homogeneous nickel coating of the filaments the resin must

be removed at the fibre endings2. An applied current of 40 mA for 30 seconds leads to an

excellent nickel coating. Depending on the application of the CFS (surface application or

structural integration) the ends of the sensor fibre can be provided with soldered pins.

The embedding process of the sensor fibre depends on the used patch type and patch material.

Figure 2 shows a micro section of a carbon fibre sensor in longitudinal and transverse

direction.

(a) Longitudinal direction (b) Transverse direction

Figure 2. Microsection of a carbon fibre sensor in longitudinal and transverse direction
Sensorfibre: 1K roving of the carbon fibre T300B
Patch: single layer UD prepreg EG/913

2. Electromechanical properties of carbon fibres

Referring to Chung [2] and Dresselhaus [3] crystalline carbon fibres have the same crystal

structure as graphite. The layered and planar structure of crystalline carbon fibres is shown

in Figure 3. In each layer the sp2 hybridized carbon atoms are arranged in a hexagonal lattice.

Within a layer (x-y plane) the carbon atoms are bonded by three covalent bonds (overlapping

sp2 orbitals), and a metallic bonding is provided by the delocalization of the pz orbitals.

2 For example, the epoxy resin EP 310 S can be burned off or removed using acid.
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This delocalization of the fourth valence electron leads to a good electrical conductivity of

the carbon fibre. The individual layers are held together by weak van der Waals forces

(z-direction). These different types of bonds within and between the layers result in the

anisotropy of the mechanical, thermal and electrical material properties of carbon fibres.
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z-direction:

- high modulus of elasticity
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- lower thermal conductivity 

Figure 3. Graphite structure of crystalline carbon fibres

2.1. Specific resistivity

The degree of crystallinity and the micro structure of carbon fibres are controlled by

the carbonisation process and determine the mechanical and electromechanical properties.

Concerning ex-PAN fibres the Young’s modulus ranges from 200 GPa (HT fibres) to 600 GPa

(HM fibres). Ex-pitch fibres have a higher modulus up to 900 GPa. Figure 4 shows the

correlation between the Young’s modulus and the specific resistivity of different carbon fibre

types. The specific resistivity of HT fibres (high tenacity) is in the range of 15 µΩm up to

18 µΩm. Higher orientated fibres (IM fibres and HM fibres) show a specific resistivity below

14 µΩm.

The specific resistance of carbon fibres is strongly temperature dependent [15]. In

consequence, temperature effects have a high influence on the signals of CFSs and must be

considered by an appropriate temperature compensation (see section 3).

2.2. Piezoresistivity

The electrical resistance R of a carbon fibre is given by:

R = ρ
L

r2π
(1)
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Figure 4. Correlation between the specific resistance ρ and the Young’s modulus E of different ex-PAN
and ex-pitch carbon fibres

where ρ is the specific resistivity, L the length and r the radius of the fibre. The total differential

of R = f (ρ, L, r) is then yielded by the following Equation (2).

dR =
∂R

∂ρ
dρ +

∂R

∂L
dL +

∂R

∂r
dr =

L

r2π
dρ + ρ

1

r2π
dL − 2ρ

L

r3π
dr (2)

Using Equation (1) and Equation (2) the relative change in resistance of a carbon fibre (dR/R0)
can be expressed as: (

dR

R0

)
=

dρ

ρ
+ ε(1 + 2ν) = kε (3)

with ε =
dL

L
and ν = −

dr/r

dL/L

The term dρ/ρ denotes the piezoresistive effect (material effect) and the term ε(1 + 2ν)
represents the geometric effects. The strain sensitivity k covers both effects. It should be

noted that the strain sensitivity k depends on the effective Poisson ratio ν 3. Therefore, the

strain sensitivity k must be defined for a corresponding Poisson ratio4.

3 The effective Poisson ratio ν depends on the Poisson ratio of the sensor fibre ν f , the Poisson ratio of the sensor patch
νp and the strain ratio −εy/εx of the structure.

4 Conventional strain gauges exhibits the same behaviour. The strain sensitivity of strain gauges is usually defined for
a corresponding Poisson ratio ν = 0.285 (steel).
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For some applications of CFSs it can be useful to split the strain sensitivity k into the

longitudinal strain sensitivity kl and the transverse strain sensitivity kt. The relative change

in resistance is then given by: (
dR

R

)
= klε l + ktεt (4)

The strain sensitivity k of a T300B 1K fibre was determined as k = 1.71 for a corresponding

Poisson ratio ν of 0.28. The sensor fibre exhibits a longitudinal strain sensitivity kl in the

range of 1.72 to 1.78 and a transverse strain sensitivity kt in the range of 0.37 to 0.41. The

piezoresistivity of the ex-PAN fibre is linear up to a strain level of approximately 6000 µm/m

[1, 6]. Problems may occur at the metallized fibre endings. In order to avoid any influence

of the electrical connections the strain level at the fibre endings should not exceed a level of

2500 µm/m.

This can be realized by using special tabs which exhibit a higher stiffness in the regions of the

metallic connections. An example of such load relieving tabs is given in Figure 5. The lay-up

of the tabs ensures a four times smaller strain level in the region of the electrical connections

compared to the strain level which occurs in the testing area.

Figure 5. CFS patch with load relieving tabs
Lay-up in the testing area: [0◦]
Lay-up in the regions of the metallized fibre endings: [0◦5 ]

Figure 6 shows the excellent linear piezoresistive behaviour of the ex-PAN fibre T300B 1K up

to a strain level of 6000 µm/m (loading and unloading). Bending tests were performed to

investigate the compression behaviour of CFSs. These investigations are not completed. First

results show that the linearity of the signal depends significant on the carrier material.
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Ex-pitch fibres show a nonlinear piezoresistive behaviour.
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Figure 6. Characterization of the linear piezoresistivity up to a strain level of 6000 µm/m (loading and
unloading) by means of a CFS patch with load relieving tabs at the endings
Sensor fibre: T300B 1K (ex-PAN fibre)
Lay-up in the testing area: [0◦8 ]
Lay-up of the load relieving tabs: [±45◦, 0◦3 ]sym

3. The Wheatstone bridge

The change in resistance of a CFS due to an applied strain is usually small. The Wheatstone

bridge is an electrical circuit which allows the determination of very small changes in electrical

resistance with great accuracy. Furthermore, the Wheatstone bridge minimizes the high

influence of temperature changes on the CFS signal. The measurement circuit, illustrated

in Figure 7, consists of four resistances, a supply voltage and the output voltage of the bridge.

The relative change in resistance can be determined by the ratio of output voltage to input

voltage Vout/Vs. There are two configurations of the Wheatstone bridge which are of special

importance for the use of CFSs. These configurations of the Wheatstone bridge are known as

"half bridge" configuration and "full bridge" configuration.

In the case of a half bridge circuit (Figure 8(a)), the bridge is formed by two CFSs (R1 and R2)

and two completion resistors (R3 and R4). The full bridge configuration (Figure 8(b)) is formed

by four CFSs and needs no additional resistors. Both circuits will enable a compensation of
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R1 … R4: resistances, bridge arms 

Vs: bridge supply voltage

Vout: bridge output voltage
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Figure 7. General Wheatstone bridge circuit

temperature effects (thermal dependency of the specific resistance and thermal expansion) if

the thermal conditions of the connected CFSs are identical. In the case of a half bridge circuit

with one active CFS (R1) the output voltage Vout is given by:

Vout =
Vs

4

(
∆R1,mech + ∆R1,therm

R1
−

∆R2,therm

R2

)
(5)

Equation (5) shows that the thermal effect is compensated by the mechanically unloaded

carbon fibre sensor (R2). Detailed information about the principle and use of the Wheatstone

bridge can be found in classical textbooks on strain gauge techniques (e.g. [5, 13])

R1 R4

R2 R3

V
sVout

(a) Half bridge circuit

R1 R4

R2 R3

V
sVout

(b) Full bridge circuit

Figure 8. Half bridge and full bridge configuration of the Wheatstone bridge

4. Integral strain measurement of the carbon fibre sensor

Equation (3) describes the relative change in electrical resistance (∆R/R0) of a carbon fibre

sensor due to an applied elastic strain ε. It is important to understand that a CFS measures the

strain integrally along its whole fibre length. Thus, Equation (3) can be written as:

(
∆R

R0

)
= k

1

L

∫ L

0
ε(x)dx (6)
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Equation (6) shows that a CFS measures the displacement between the terminal points of the

sensor fibre. (
∆R

R0

)
L

k
=

∫ L

0
ε(x)dx = [u(x = L)− u(x = 0)] (7)

This integral strain measurement of CFSs in accordance to Equation (7) can be used to create

carbon fibre sensor meshes (CFS meshes). Such a CFS mesh allows the determination of the

two dimensional (2D) state of strain and state of deformation of a whole structure or larger

areas of a structure.

5. Carbon fibre sensor meshes

The strain and deformation analysis by means of CFS meshes are based on linear or higher

order displacement approximations. The displacement functions depend on the used element

type such as 3-node triangle elements, 6-node triangle elements or quadrilateral elements. The

basic theory of strain analysis with CFS meshes using 3-node triangle elements with a linear

displacement approximation is presented below.

A triangular CFS element defined by its vertices 1, 2, 3 and its local coordinate system is given

in Figure 9.

x

y

c c´

a

a´

b

b´

11´ 2´2

3´

3

u3

v3

u2

P

P

´

u

v

(a) Definition local coordinate system (b) CFS element applied on aluminium

Figure 9. Triangle CFS element with 3 nodes

The displacement u(x, y) and v(x, y) of an inner point P can be determined by the

displacements of the vertex in using a displacement function.

Assuming a linear displacement function the displacement u(x, y) and v(x, y) within the

element can be calculated in accordance to Equation (8) and Equation (9).

u(x, y) = N1u1 + N2u2 + N3u3 (8)

v(x, y) = N1v1 + N2v2 + N3v3 (9)

Hereby ui and vi denote the displacements of the vertex 1, 2, 3 in the x- and y-direction

while Ni represents the shape functions of the element. The shape functions Ni of a 3-node
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triangle can be found in classical books on the theory of finite element analysis (e.g. [16]). The

engineering strains εx, εy and γxy are defined by:

εx =
δu

δx
; εy =

δv

δy
; γxy =

δu

δy
+

δv

δx
(10)

Considering the local coordinate system (u1 = 0, v1 = 0, v2 = 0) the strains within the triangle

can be calculated by:

εx =
u2

x2
; εy =

v3

y3
; γxy =

x2u3 − x3u2

x2y3
(11)

In consequence of the linear displacement approximation the strains are independent of the

coordinates (x and y) and thus constant within the element. The unknown displacements u2,

u3 and v3 of the vertex 2 and 3 can be determined by the signals of the carbon fibre sensors.

In order to verify this linear approach an experimental investigation of a CFS mesh applied on

a 1000 mm x 1000 mm x 5 mm PMMA plate was performed. The simply supported plate was

loaded with a single static force at the center. In addition to the experiment a finite element

analysis (FEA) was performed. In [9] the results of this experiment and of the corresponding

finite element simulations are presented in detail 5. Figure 10 shows the PMMA plate and the

applied CFS mesh.

1C 2C 3C

4C 5C 6C 7C 8C 9C

10C 11C
12C 13C 14C 15C C16 17C

18C C19 20C

1S 2S

3S 4S 5S

6S 7S

1000 mm

10
00

 m
m

Figure 10. Carbon fibre sensor mesh applied on a 1 m x 1 m PMMA plate. Each sensor has a length of
300mm. [9]

Figure 11 shows the determined strain εx for each element of the mesh. There was a good

correlation between the measured and the calculated strain levels. The accuracy was in the

range of ± 5%.

The results of the performed investigation show that CFS meshes are a reliable instrument to

determine the strain fields and principle strains of lightweight structures.

The principle strains (strain level and direction) are of particular interest in case of structures

made of composite materials. For example, tailored fibre placement (TFP) is an advanced

textile manufacturing process for CFRP structures in which the carbon fibre rovings are placed

5 A quadratic displacement approach for a 3-node triangle is also presented and verified in [9]. However, the quadratic
displacement approach of a 3-node triangle requires additional strain gauges at the nodes to determine the 12
unknown coefficients of the shape function.
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Figure 11. Strain εx measured by the carbon fibre sensor mesh

in accordance to the direction of principal stresses.

The finite element simulation is a powerful tool to analyse the stress fields and principle

directions of lightweight structures. At the design and optimization processes the FEA is

almost the only way to evaluate the structural load. However, there is a lack of techniques

to review the results of the FEA. CFS meshes offer a high potential to verify the results of the

finite element analysis.

6. Micro crack detection

A major failure mode of multidirectional reinforced laminates is transverse matrix cracking.

Matrix cracks will reduce the effective stiffness of the laminate and will result in local

stress concentrations at the crack tip. Furthermore, interlaminar crack growth and local

delamination can occur. Due to its integral strain measurement method the CFS has a high

potential to detect matrix crack initiation and monitor crack growth. Figure 12 shows a thin

GFRP laminate (Lay-up: [90◦2 , 0◦, 90◦2 ]) which has two embedded CFSs. Matrix cracks along

the CFS will affect the sensor signal which will give a clear indication of the crack density. A

study was performed to investigate the influence of cracks on the sensor signal [10]. The study

was performed on the GFRP laminate [0◦, 90◦5 , 0◦, 90◦5 , 0◦]. Three CFSs were embedded in the

mid-plane 0◦-layer. At a strain level higher than 3000 µm/m matrix cracks appeared in the

90◦-layers. The following techniques were applied to characterize the influence of damages

on the sensor signal:

• Acoustic emission analysis in combination with pattern recognition technique

• Microscopy and micrographs

• Analytical calculations

• Finite element analysis
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Matrix crackSensor fibre

0°

90°

Figure 12. Multidirectional reinforced GFRP laminate with two embedded CFSs. Transverse matrix
cracking will affect the sensor signal.
Lay-up: [90◦2 , 0◦, 90◦2 ]

Figure 13 shows the correlation between the crack density, the CFS signals, the acoustic

emission energy (AE-energy), the strain level measured by a strain gauge and the according

stress level. It can be seen that the matrix crack initiation causes first AE-signals and a change

of the slope of the CFS signals.
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Figure 13. Acoustic emission and CFS signals measured on an GFRP laminate under uniaxial tensile
load [10]
Lay-up: [0◦, 90◦5 , 0◦, 90◦5 , 0◦]

Furthermore, a good correlation between the sensor signal (∆R/R0) and the crack density can

be observed. After having reached a crack density of 0.8 mm−1 the signals of the embedded

carbon fibre sensors increase disproportionately. The analytical approach of Garret and Bailey

[4, 11, 12] and a FEA were applied to calculate the reduction of the stiffness of the laminate.

Müller showed that the global stiffness loss of the laminate due to the matrix cracking can

be measured by means of the CFS. However, at high strain levels (> 70% of εultimate) there
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is a strong influence of high local stresses at the crack tip on the CFS signal. These stress

concentrations may result in filament breakage and in extremely high signal levels.

Based on this result CFSs can be used for damage monitoring and for the prediction of the

lifetime of damaged structures if the damage level can be characterized by stiffness loss.

Figure 14 shows the cyclic loading of a laminate to measure the stiffness loss and to determine

Ladeveze’s material parameters [8]. Based on this calibration the lifetime of a structure, e.g.

pressure vessel, can be predicted.
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Figure 14. Damage measurement and determination of damage variables like the energy release rate
Material: GFRP, EG/913
Lay-up: [0◦, 90◦5 , 0◦, 90◦5 , 0◦]

7. Impact and delamination detection

An impact loading can cause small damages inside the composite material which may not be
found by visible inspection. One major concern is delamination damages or the disbonding
of interfaces. These damages result in sublaminates having lower buckling resistance and
compression strength. Although a small delamination-damage does not necessarily constitute
failure, the damaged area may undergo a time-dependent growth and may attend a critical
size.

The principles for achieving damage tolerant primary composite structures were established
by the aircraft companies [14]. Maintenance intervals and inspection plans are determined in
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such a way that readily detectable damages will be repaired before damage growth can affect
the fatigue strength of the structure. The influence of undetectable damages is covered by the
so called barely visible impact damage (BVID) which defines the damage that establishes the
strength values to be used in analysis to demonstrate compliance with the load requirements.
One method to determine the influence of the BVID on the mechanical performance is the
compression after impact test procedure (CAI-test procedure, i.e. Boeing BSS 7260). A 4 mm
thick quasi-isotropic test specimen (150 x 100 mm) is damaged by a dropped weight impact
testing machine. An impact level of about 3 J/mm will cause the BVID. This means that only a
small remaining indentation is visible on the surface of the specimen, but delamination may be
found inside. The strength of the damaged specimen is reduced by 10 to 20% compared to the
undamaged material. This shows that in many cases the exploitation of material performance
is limited, since the skin thicknesses of a composite structure are designed to absorb an impact.

For aircraft structures health monitoring systems have an extremely high potential to improve
the efficiency of composite structures. Based on a monitoring system the material design
values can be increased and the inspection intervals can be enlarged. Both aspects can result
in a weight reduction of the structure up to 10%. A preliminary study was performed to
investigate the use of CFSs as a sensor system to detect the BVID. The CAI specimen was used
to integrate a rectangular CFS mesh (Figure 15 and Figure 16).

Figure 15. Compression after impact (CAI)-specimen with integrated CFS mesh to detect damages
below the barely visible impact damage level (BVID)

The distance between the CFSs varied from 30 to 100 mm. Three methods were investigated
to detect the impact damage:

• Online measurements of the resistivity during the impact test

• Offline measurements, comparison of the resistivity before and after the impact

• Active thermography, CFSs used as heating element

It has been shown that all three procedures are suitable to detect impact damages. A
distance of 50 mm between the CFSs is necessary to detect even small damages below the
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BVID. In a second step the use of CFSs will be investigated to detect debonding of skin
and stringer. A health monitoring system for a complex aircraft structure will be based on
several technologies like ultrasonic inspection sensors and strain sensors. The CFS technology
will complement the established sensors due to its specific and simple integral measurement
principle.

Figure 16. Compression after impact (CAI)-specimen with integrated CFS mesh. The CFSs are used as
heating element for active thermography. A small delamination damage is visible (BVID)

8. Application

CFSs offer a high potential to be used as a sensor element for composite materials for stress
analysis, damage detection and the monitoring of manufacturing processes. Two industrial
applications have been selected to demonstrate this.

8.1. Tabletop of a CT-Scanner

Carbon fibre reinforced plastics (CFRP) are used for tabletops of computer tomography (CT)
scanners, since CFRP fulfills the X-Ray transparency which is necessary to get the picture
quality sufficient for medical diagnosis.

CFSs can be embedded in the tabletop of a CT scanner to measure its deflection. Based on
the measured deflection the CT images can be readjusted to result in an improved medical
attendance [7]. Figure 17 shows the tabletop of a CT scanner with ten u-shaped CFSs applied.
For this application u-shaped CFSs are used to avoid that any metal wiring is part of the scan
plane for all operation positions. The lengths of the u-shaped CFSs vary from 250 to 1250 mm.
The determination of the beam deflection is based on the integral strain measurement of CFSs
(Equation (6)). Considering small deformations the relation between the elastic strain of the
outer fibre ε̂ and the beam deflection v is given by:

v =
∫∫

v′′dxdx =
∫∫

ε̂

ey
dxdx (12)
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Figure 17. CT tabletop with u-shaped CFSs to measure the deflection. The metallic wiring is attached to
the clamping support.

where ey denotes the distance from the neutral axis. Assuming a cantilever beam (see
Figure 18) the slope v′ of the beam can be determined directly by the signals of the CFSs.
Assuming that the CFS starts at the clamping support (x = 0) the slope v′ at the end of the
applied CFS (x = li) becomes:

v′(x = li) =
li

key

(
∆R

R

)

i

(13)

The deflection y of the beam can be calculated by numerical integration.

v(x = li) =
i

∑
n=1

[
v′(xn)−

v′(xn)− v′(xn−1)

2

]
(ln − ln−1) (14)

x

y
l1 l2 l3 l4 l5

F

y1 y2 y3 y4 y5

carbon fibre sensors
(CFS)

x
z

Figure 18. Side and top view of a cantilever beam with five u-shaped CFS
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The index i denotes the number of CFSs applied. The quality of the approximation in
accordance to Equation (14) depends on the complexity of the loading, the number of applied
CFSs and the used sensor configuration.

In the case of the CT table (Figure 17) the deflection of the table can be determined with

an accuracy of ±0.3 mm for different operation positions. Figure 19 shows a typical

measurement. The operating position of the CT tabletop varies stepwise from 0 mm to

2000 mm and back to 0 mm. The weight of the used dummy is 100 kg and electrical half

bridges are used for temperature compensation.
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Figure 19. CFS signals of the CT table for a weight of 100 kg and different operation positions, ranging
from 0 to 2000 mm

8.2. Pressure vessels

For thin walled assumptions the longitudinal stress σl and hoop stress σr in the cylindrical

portion of a pressure vessel, away from the ends, are given by:

σl =
pr

2t
(15)

σr =
pr

t
(16)

where t is the thickness and r is the radius of the vessel. The relation σr/σl shows that the

efficiency of pressure vessels can be increased if hoop wrapped vessels are used. A metal

cylinder is reinforced by carbon fibres having a radial orientation (type II vessels). The

strength of the vessel is increased remarkably.
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There are two aspects for the use of CFSs for pressure vessels which can be easily integrated

by means of the winding process:

• Determination of the pressure level of the vessel

• Monitoring of degradation processes due to fatigue or overloading of the radial fibre

reinforcement

For such an application a sensor patch with four CFSs connected in full-bridge configuration

is particularly suitable, since the full-bridge circuit minimizes the influences of thermal effects

and shows an improved long term stability of the signal. Figure 20 shows such a hoop

wrapped vessel with an embedded CFS patch.

Figure 20. Hoop wrapped pressure vessel (type II vessel) with embedded CFSs

Experimental studies showed that the pressure of the vessel can be determined by using a CFS

patch with a resolution of about 1 bar. A representative measurement of the performed test is

shown in Figure 21. The pressure load of the vessel was increased stepwise up to a maximum

pressure level of 100 bar. The subsequent pressure relief was performed in the same manner.

Micro cracks in the CFRP layers of the pressure vessel may occur as a result of mechanical

or thermal overloading. The failure of the matrix causes a loss of stiffness of the CFRP layers

and reduces the global stiffness of the vessel. Depending on the crack density and the crack

growth the lifetime of the structure will decrease. Based on the damage master curve of the

structure, an estimation of the remaining lifetime can be performed (see Figure 14).
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Figure 21. Strain signals of a CFS patch applied near the surface of a type II pressure vessel subjected to
a pressure test

9. Conclusion

There are three main aspects which made carbon fibre sensors (CFSs) very interesting to be

used for composite materials:

• Material-conformity

• Linear piezoresistivity up to high strain levels

• Integral strain measurement method

CFSs based on a T300B 1K ex-Pan fibre exhibit an excellent linear piezoresistivity up to a strain

level of 6000 µm/m. The according strain sensitivity was determined as k = 1.71 (related to

a Possion ratio of ν = 0.28). The longitudinal strain sensitivity kl of the CFS is in the range

of 1.72 - 1.78. Transverse to the fibre direction CFSs exhibit a transverse strain sensitivity kt of

approximately 0.4. This significant transverse strain sensitivity must be considered in praxis.

Tension load was applied for all tests, the characterization of the compression behaviour is

under examination.

A disadvantage of CFSs is the high influence of temperature on the signal which will be an

aspect for future research. At the moment a long term stability of ±2 µm/m (T = const.) can

be achieved for a half or full bridge circuit.
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CFSs can be used for strain analysis, damage monitoring and the control of manufacturing

processes. Concerning strain and stress analysis an approach for CFS meshes was developed

based on triangular elements with linear displacement approximation. A good correlation

was found between the measurement and the finite element calculation. The use of CFS

meshes can be a new approach to complement finite element analysis from the experimental

side.

Concerning monitoring aspects the influence of material damages on the sensor signal were

studied. It has been demonstrated that based on the integral strain measurement method

the CFS is an excellent sensor to detect delaminations and matrix cracks in multidirectional

reinforced laminates. Therefore, the CFS offers unique features for fracture mechanics:

Measurement of strain levels and detection of matrix cracks. By means of two examples the

CFS technologies could be demonstrated successfully:

• Determination of the deflection of a tabletop of a CT-Scanner

• Determination of the strain level and the crack density of a pressure vessel

Strain measurement and matrix crack detection are in the focus of safe and damage tolerant

composite structures making the CFS technology a complement of established sensors.
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