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1. Introduction 

Composite materials (composites) are inherently heterogeneous and represent a defined 

combination of chemically and structurally different constituent materials, ensuring the 

required properties such as mechanical strength, stiffness, low density, or other specific 

characteristics depending on their purpose. Therefore, composite material is a system 

composed of two or more physically distinct phases whose combination produces a 

synergistic effect and aggregate properties that are different from those of its constituents. 

Favorable characteristics of composite materials were known to the people even in the 

period BC (before Christ-Century) and were used in order to improve the quality of human 

daily life. For example, it is known that in the ancient period, people made bricks that were 

reinforced with straw, and thus secured greater longevity and durability of their buildings. 

The incorporation of the straw improves the strength, toughness and thermal insulation 

properties of these composites. In principle, the degree of reinforcement (volume fraction of 

straw) and the level of alignment of the straw stalks (and their lengths) may be adjusted so 

that not only the properties but their anisotropy may be optimised differently in various 

parts of the structure [1]. Significant development and application of composites began in 

the second half of the 20th century, wherein their diversity and areas of application are 

constantly increasing. Development of composite materials is resulted mainly from the 

increasing need for materials with better mechanical characteristics that would be used as 

components in various constructions. For this purpose, such composites should have an 

adequate strength, stiffness, good oxidation resistance and low weight. Intensive study of 

composite materials and their processing methods has caused that these materials replace 

metals and alloys and become indispensable in the manufacture of parts for automobiles, 

spacecrafts, sports equipment etc. In terms of exploiting modern engineering composites 
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this remains a central principle. Modern composites can be said to have "designed micro- 

and nanostructures" which means that the constituents of composites have much more 

finely divided structures and tend to have sizes in the micrometre or nanometre range. Basic 

factors affecting properties of composites are as follows:  

 Properties of phases; 

 Amount of phases; 

 Bonding and the interface between the phases; 

 Size, distribution and shape (particles, flakes, fibers, laminates) of the dispersed phase - 

reinforcement; 

 Orientation of the dispersed phase - reinforcement (random or preferred). 

Good bonding (adhesion) between matrix and dispersed phase provides a high level of 

mechanical properties of the composite via the interface. In addition, interfaces are 

responsible for numerous processes of electron transfers and play crucial role in redox 

processes, heterogeneous catalysis, adsorption etc. Usually, there are three forms of interface 

between the two phases within the composite:  

1. Direct bonding with no intermediate layer. In this case adhesion (”wetting”) is 

provided by either covalent bonding or van der Waals force; 

2. Intermediate layer in form of solid solution of the matrix and dispersed phases 

constituents; 

3. Intermediate layer (interphase) in form of a third bonding phase (adhesive). 

Current challenges in the field of composite materials are associated with the extension of 

their application area from structural composites to functional and multifunctional 

composites. In this respect, a great improvement of composite materials through processing 

has been made enabling the development of composite materials for electrical, thermal and 

other functional applications that are relevant to current technological needs. Examples of 

functions are joining, repair, sensing, actuation, deicing (as needed for aircraft and bridges), 

energy conversion (as needed to generate clean energy), electrochemical electrodes, 

electrical connection, thermal contact improvement and heat dissipation (i.e., cooling, as 

needed for microelectronics and aircrafts) [2]. Modern processing includes the use of 

additives (which may be introduced as liquids or solids), the combined use of fillers at the 

micrometer and nanometer scales, the formation of hybrids, the modification of the 

interfaces in a composite and control over the microstructure. Therefore, it can be said that 

the development of composite materials for current technological needs must be application 

driven and process oriented. The conventional composites engineering approach, which is 

focused on mechanics and purely structural applications, is in contrast to mentioned 

modern practice. 

On the contemporary level of science development it is known that materials of certain 

characteristics can be obtained only by strictly defined procedures of processing and depend 

on their chemical composition and structure. Since composites are heterogeneous systems, 

as already has been noted, the matrix is of great importance whose structure and chemical 
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composition determine the most dominant features of the composite as a unit. However, it 

should be noted here that the composite does not possess properties of a single component 

but exhibits qualitatively new features, because of which it is considered as a new material. 

In addition to the dominant use of composites as structural elements, important application 

of composite materials is in the water purification technologies. In this field of application, 

composites usually have the role of adsorbent, electrochemically active materials, catalysts, 

photocatalysts etc. Bearing in mind that the material efficiency in the removal of harmful 

substances from water is higher if greater is its surface area, there are tends of scientists to 

develop these materials with required and defined nanostructures. In addition to the 

specific surface area increasing, nanostructured materials exhibit a qualitatively new 

properties compared to the related structure at the micro or macro scale. In this manner, it is 

developed specific procedure for certain metal hydroxides and natural organic matter 

layering onto alumosilicate matrix as well as procedures of microalloying which both lead to 

significant changes of the surface acido-basic and electrical properties of the alumosilicate 

matrix. The nano-scale composites provide an opportunity to study the phase boundaries 

and phenomena occurring at the surface, interface boundaries and within intergranular area 

during composites synthesis or during their interaction with aqueous solutions. 

2. An overview and trends in use of composites in industrial plants 

Nanocomposites based on polymers represent an area of significant scientific interest and 

developing industrial practice. Despite the proven benefits of polymer based nano-

composites in the scope of their mechanical properties, and some distinctive 

combination/synergism of improved structural features, the real application remains still 

relatively isolated and not well discussed. 

An insight in the historical (re)view on polymer nano-composites showed on the first type 

used based on the combination of natural fillers and polymers in the 90s [3-6] up to 

estimated 145 million USD spent at huge market of polymer based nano-composites in 2013 

[7]. 

3. The concepts of interphase boundaries modification, microalloying 

and coating/layering in the composite synthesis 

Methods and techniques for managing properties of composite materials include the 

selection and modification of constituent materials as well as changing the interface 

boundaries within the composite. Some composites are most commonly fabricated by 

impregnation (infiltration) of the matrix or matrix precursor in the liquid state into the 

appropriate filler preform. The connection between the constituents depends on the 

microstructure and chemistry of the interface boundary. The matrix and filler are connected 

by chemical bonds, interdiffusion, van der Waals forces and mechanical interlocking [2]. The 

first three interactions require very close filler-matrix contact that can be achieved if the 

matrix or matrix precursor wetting the surface of filler during the infiltration of matrix or 

matrix precursors in the filler preform. Effective wetting means that the liquid is evenly 
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distributed over the surface of filler, while a poor wetting means that the liquid drops 

formed on the surface. Wettability can be increased by applying the coatings, adding 

wetting agents or by chemical surface functionalization (the introduction of functional 

groups on the surface that increase wettability) thereby changing the surface energy. If the 

filler is carbon fiber, surface treatments involve oxidation treatments and the use of coupling 

agents, wetting agents, and/or coatings. Often, metals or ceramics are used as coatings for 

carbon fillers. Metallic coatings are usually formed by coating carbon fiber reinforcements 

with metals i.e. Ni, Cu and Ag. Examples of ceramic coatings are TiC, SiC, B4C, TiB2, TiN 

which are distributed by using Chemical Vapor Deposition (CVD) technique or by solution 

coating methods starting from organometalic compounds. Therefore, these are examples of 

application of coatings on carbon materials to illustrate the method of modification of 

surface properties. 

In the case of metal-ceramic composites, certain liquid metals react with ceramic preform 

during infiltration. For instances, composites based on the Al–Al2O3 system can be obtained 

by Reactive Metal Penetration (RMP) method which is based on infiltration of ceramic 

preforms by a liquid metal, generally aluminium or aluminium alloys [8,9]. During the 

process, a liquid metal simultaneously reacts and penetrates the ceramic preform, usually 

silica or a silicate, resulting in a metal-ceramic composite characterized by two phases that 

are interpenetrated. Another example is the reaction between SiC and Al during the 

infiltration of molten aluminum in a preheated preform: 

 4Al + 3SiC → Al4C3 + 3Si (1) 

From the equation it can be seen that Si is generated during the reaction which is then 

dissolved in molten aluminum, while Al4C3 occurs at the SiC-Al interfacial boundary. The 

degree of reaction increases with increasing temperature. On the contrary, there are metals 

that in liquid state difficult wet the surface of the ceramic resulting in metal infiltration 

hindering. The difficulty of wetting and bonding of liquid metals to ceramic surfaces is 

related to atomic bonding in the ceramic lattice and can be improved by application of 

coatings. Coated particles (composite particles) are composed of solid phase covered with 

thinner or thicker layer of another material [10.11]. These coatings - layers on the surface are 

important for several reasons. In such way, the surface characteristics of the initial solid 

phase are modified and sintering conditions as well as molten metal infiltration can be 

better controlled.  

As can be seen from examples, the processing of composite materials often involves high 

temperature and pressure to cause the joining of constituent materials forming a cohesive 

material. Generally, the matrix dictates the required temperature, pressure and processing 

time during composite synthesis. Sintering is an important factor in achieving the desired 

microstructure of ceramic based composites and includes very complex processes. In 

addition to surface coatings, an important influence on sintering has been exhibited by an 

addition of microalloying components, which significantly determine a microstructure and 

properties of ceramics [12]. The presence of small amounts of impurities in the starting 

material can vastly influence their mechanical, optical, electrical, color, diffusivity, electrical 
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conductivity, and dielectric properties of matrix. Microalloying, as a known modern 

procedure for changing the intrinsic semiconductor properties, by authors’ original works 

(Purenovic et al.), get more and more important role in the control of some structurally 

sensitive properties of metals, alloys, ceramics, composites and other materials. It is known 

that the nature of matter is determined by its composition and structure. There are many 

structurally sensitive properties of materials, but among the most sensitive are the 

conductivity, electrode potential, magnetic, catalytic and mechanical properties. 

Microalloying means adding certain elements in small (ppm) quantities, thereby modified 

structure results in a significant change in the value of conductivity and the electrode 

potential. Conducted own investigation and the results obtained showed an excellent 

rational electrochemical behavior of composites such as microalloyed aluminum, 

microalloyed magnesium, as well as composite ceramics and quartz sand microalloyed with 

aluminum and magnesium, in contact with aqueous solutions of electrolytes or water which 

contain harmful ingredients in ionic, molecular and colloidal state. Microalloyed and 

structurally modified composite ceramics have high porosity (30%), with the macro-, meso-, 

micro- and submicropores. There is direct relationship between porosity and structure of 

these composite materials, especially when it comes to nanostructured fragmented crystals. 

It is worth to emphasize the domination of amorphous phases with crystalline substructure, 

which is impossible to be removed, and it would be inappropriate to be removed, because 

the contact of crystals with amorphous layer is responsible for numerous processes of 

electrons exchange. By certain processes and reactions in the solid phase, the amorphous 

microalloyed aluminum, microalloyed amorphous magnesium, amorphous-crystalline 

structure of composite microalloyed ceramics and amorphous-crystalline structure of 

microalloyed quartz sand could be obtained. Many metals, alloys and composite electrode 

materials manifested significant differences in the reversible thermodynamic potential and 

the steady corrosion potential. 

The manufacturing processes used to make composite ceramics can cause the development 

of liquid phases during sintering, and their retention as remnant glass at triple junctions and 

along grain boundaries and interphase boundaries after cooling to room temperature. 

Formed thin intergranular films are relevant to creep behavior at high temperatures, and 

also responsible for the strength of the bonding at interfaces. However, the heat treatment at 

elevated temperatures which is used for joining constituent materials and establishing the 

cohesive forces shows a disadvantage because cooling can lead to disturbance of established 

bonds between phases. Namely, during the cooling, differences in coefficients of thermal 

expansion could result in unequal contraction by which established bonds are broken. This 

problem is particularly evident in metal-ceramic composites, where high temperatures are 

usually applied during synthesis. 

4. Preparation of modern nano-composites 

Processing of nanocomposites based on layered silicates is rather challenging activity to 

achieve the full technical and engineering potential, which is the field with the largest 

growth forecast [13-16]. The modification of silicates by use of organic components is 
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needed to allow intercalation, and also in order to improve compatibility/nano-distribution 

some additional ingredients have to be applied. The thermal treatment as step in processing 

sequence helps proper stabilisation of nanocomposites that has to take into consideration 

the oxidative stability of the polymer substrate, the influence of the nano-filler and the 

impact of modifiers and compatibilisers. 

Montmorillonite of natural origin is among the most used nano-fillers. Traditional nano-fillers 

contain metal ions and other contaminants that may influence the thermooxidative stability 

and features of the nanocomposites. Organic modification of the (natural/traditional) clay is 

usually realized by cation exchange with a long-chain amines or quaternary ammonium salts. 

Content of such involved organic material content within the clay may be up to 40 mas.%. 

Therefore, the total thermal resistance of the composite material highly depends on the 

thermal stability of the organic ingredient. The thermal stability of the ammonium salts is 

limited at the processing temperatures applied (ex. extrusion, injection molding, etc.). Namely, 

thermal degradation of ammonium salts starts at 180°C and may be even tentatively reduced 

by catalytically active sites on the alumosilicate layer [17]. 

The compatibiliser applied as organically modified filler is often polypropylene-g-maleic 

anhydride in amount from 5 to 25% in the final composite formulation. The inferior stability 

of such low molecular weight filler comparing to the parent polymer affects the total 

stability of the final polymer based nanocomposites. 

5. An improvement of composites stability 

Nanocomposites may show higher stability due to increased barrier to oxygen, or lower 

stability because of undergone to hydrolysis through entrapped water [18,19]. In 

conventional practice stabilizer systems based on phenolic antioxidants and phosphites are 

applied, and in recent investigations new found components of filler degradation 

deactivators has been tested [20]. 

A traditional state-of-art polypropylene (PP) nanocomposite consisting of maleated PP and 

nano-clay is traditionally stabilized by a proven combination of phenolic antioxidant and 

phosphites. The polymer degradation may be completely prevented even after 5 extrusion 

cycles by using the patented stabilizer system AO-2 (based on oxazoline, oxazolone, oxirane, 

oxazine and isocyanate groups) [20], additionally improving mechanical properties of the 

resulting nano-composites and discoloration during processing and application.  

The underlined thermal instability of the usual ammonium organic modifiers can be 

diminished by using the phosphonium, imidazolium, pyridinium, tropylium ions [21]. An 

alternative way to produce thermally stable nano-composites is the use of unmodified clays 

in combination with selected copolymers playing role of dispersants, intercalants, exfoliants 

and compatibilisers for PP nano-composites. In current processing of nano-composites 

different structures are identified such as polyethyleneoxide based nonionic surfactants  

[22] and amphiphilic copolymers based on long-chain acrylates [23]. Recently, more 

specifically poly(octadecylacrylate-co-maleic anhydride) and poly(octadecylacrylate-co-N-
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vinylpyrrolidone) in the form of gradient copolymers are applied with unmodified 

montmorillonite for processing PP nano-composites. Such obtained nano-composites show 

partial exfoliation, the final visual appearance is similar to the classical ammonium modified 

systems, however better thermal and thermo-oxidative stability is proven [23]. The most 

important improvement is achieved in the mechanical vales comparing to the conventional 

polymer system. 

6. Nanocomposites use in a competitive environment of the materials 

Nanocomposites materials are very attractive from the scientific and practical point of view, 

although some other materials are also interesting, such as plastics, fillers, blends, and 

different additives fulfilling the specified product profile. In such competence, the lowest 

cost solution comprising acceptable material structure and properties/resistances would 

dominate. Even more, competitive (nano)composite materials would benefit from 

nanocomposites developments and keep their application fields with improved features. 

Most of nanocomposites materials applications are intended for long-term and outdoor use. 

This is important aspect on the need for relevant nanocomposites stability. Namely, it is 

known that inorganic fillers often show a negative effect on the oxidative stability to a 

varying extent. The interactions of the filler and the stabilizers over adsorption/desorption 

mechanisms are mainly responsible for the impact. The specific surface area of the filler and 

pore volumes, surface functionality, hydrophilicity, thermal and photo-sensation properties 

of the filler and transition metal content (ex. manganese, titanium, iron) have been found to 

be potential factors/elements of the interaction [24]. 

Polypropylene/montmorillonite nanocomposites, additionally stabilized with antioxidant, 

degrade much faster under photo-oxidative conditions than pure polypropylene [25,26].This 

phenomenon is attributed to active species/sites in the clay generated by photolysis or 

photo-oxidation, and by consequence interaction between antioxidant, montmorillonite and 

maleic anhydride modified polypropylene. In natural clay present iron may additionally 

play an active role in the dramatic modification of material oxidation conditions [27], and 

nanoparticles also catalyze the decomposition process [28]. The use of so-called filler 

deactivators or coupling agents is potential solution for diminishing the negative influence 

of fillers on the (photo)oxidative stability by blocking active sites on the filler surface. 

Amphiphilic modifiers with reactive chemical groups in the form of polymers, olygomers or 

low molecular weight molecules such as bisstearylamide or dodecenylsuccinic anhydride 

have been proposed [29].Thus, stabilizer systems containing filler deactivators should have 

an affirmative effect in nano-composites for long-term stability. 

7. Nano-composites materials for water treatments: State-of-the-art and 

perspectives 

Clean drinking water is essential to human health, and also so-called technical water is a 

critical feedstock in a variety of key industries including electronics, pharmaceuticals and 
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food processing industries. Taking into consideration that available supplies of fresh 

water are limited (due to population growth, extended deficiency, stringent health 

regulations, and competing demands from a variety of users/consumers) the world is 

facing with challenges to satisfy demands on high water quality standards and quantities 

(volumes). Benefits and trends in nano-scale science, chemistry and engineering impose 

that many of the current problems regarding green chemistry may be resolved using 

nano-sorbents, nano-catalysts, nanoparticles and nanostructured catalytic membranes.  

Nano-materials are characterized by a number of key physicochemical properties being 

particularly attractive for water purification treatments. Nanomaterials have much large 

specific surface area than bulk respect particles (mass to volume ratio), also they can be 

functionalized with reactive chemical groups specific in affinity to a given model 

compound. These materials may possess redox features and take part in shape- and 

structural-dependent catalyzed reactions of water purification. In aqueous solutions, they 

can serve as sorbents/catalysts for toxic metal ions, radionuclides, organic and inorganic 

solutes/anions [30]. Moreover, nano-materials can be used in selective targeting of 

biochemically constituents of aquatic bacteria and viruses. The nano-materials seems to be 

key components in future environmental friendly and cost-effective functional materials 

to desalinate public and polluted waters world-wide, for purification of water 

contaminated by pesticides, pharmaceuticals, phenol and other aromatics. The presence of 

heavy metals in water exhibits a variety of harmful effects on the living organisms in 

polluted ecosystems. The removal of heavy metals from water includes the following 

procedures: chemical precipitation, coagulation/flocculation, membrane processes, ion 

exchange, adsorption, electrochemical precipitation, etc. [31,32]. However, the application 

of composite materials in the controlling of pollutants in the environment and drinking 

water is significant [33,34], as described in further text. 

The use of zeolites, natural or synthetic ones in waste water treatments is highly limited 

due to low adsorption capacity in the case of former and relatively small grain size in 

latter. Modification of natural or synthetic zeolites toward composite material which 

would satisfy both essential properties is a challenging task. Tailoring synthetic zeolite 

resulted in a composite porous host supporting microcrystalline active phase of 

vermiculite matrix [35]. The vermiculite-based composite showed the same hydraulic 

properties as natural clinoptilolite with similar grain size (2-5 mm), while the rate of 

adsorption and maximal adsorption capacity was improved four times. In other words, 

cation exchange capacity is increased when compared to natural zeolite with a 

comparative grain size, ion-exchange kinetics are substantially improved in comparison to 

natural zeolite, and hydraulic conductivity is considerably higher that synthetic 

powdered zeolite [35]. 

The development of new composite material based on use of inorganic polymeric 

flocculants as a combination of anionic and cationic poly-aluminium chloride (PACl) in 

one unique polyelectrolyte is proposed [36]. The incorporation of the anionic 

polyelectrolyte into PACl structure noticeably affects its initial properties (i.e. turbidity, Al 

species distribution, pH and conductivity). Interactions are taking place between Al 
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species and polyelectrolytes molecules over hydrogen bonding (amino/amidic groups of 

the polyelectrolyte, and the –OH and –H groups of Al species are involved) and 

electrostatic forces/interactions. This resulted in new composite material. The main 

advantage of composite coagulants is lower residual aluminium concentration that 

remains in the treated sample, and more efficient treatments of waters (organic matter 

removal) can be realized [36]. Additional benefit is in cost effective process in the absence 

of specific equipment for handling the polyelectrolyte (ex. pumping system, etc.). Taking 

into account faster flocculation, increased efficiency and cost effectiveness, such new 

composite material seems to be promising one. 

Porous ceramic composites can be prepared by silver nanoparticles-decoration using a 

silver nanoparticle colloidal solution and an aminosilane coupling agent [37]. The 

interaction between the nanoparticles and the ceramics comprises the coordination bonds 

between the –NH2 group and the silver atoms on the surface of the nanoparticles. The 

composite can be stored for long periods without losing of nanoparticles, also being 

highly resistance to ultrasonic irradiation and washing. Such composite has shown high 

sterilization property as an antibacterial water filter [37]. This low cost composite, bearing 

in mind commonly available synthesis, simple preparation, the use of cheap and non-toxic 

reagents in the procedure, may be imposed as a potential solution for widespread use in 

water treatments. 

Ultrafine AgO particles-decorated porous ceramic composites are prepared based on the 

main ingredient, cristoballite. The results on composite structure show that silver(II)oxide 

decorated diatomite-based porous ceramic composites possess crystal structure, and are 

composed of tetragonal cristoballite, monoclinic silver(II)oxide and cubic silver(I)oxide [38]. 

Such AgO-decorated porous ceramic composites show a strong antimicrobial activity and an 

algal-inhibition capacity. As the extension time is longer, the antibacterial effects are 

enhanced up to 99.9% [38]. 

Actual nanostructured composite materials based on multi-walled carbon nanotubes 

(MWCNT) and titania exhibited strong interphase structure between MWCNT and titania. 

This contact and interaction facilitated a homogeneous deposition/coverage of titania over 

MWCNT [39]. The photo-catalytic activity of the prepared composite materials was tested in 

the conversion of phenol from model watery solution under UV or visible light. The results 

showed higher photo-catalytic activity of the composite MWCNT and titania than over 

mechanical mixture proving an assumption on the existence of the interphase structure 

effect [39]. 

Nanocomposite membranes based on silica/titania nanotubes over porous alumina supports 

membranes were prepared [40]. An inserting of amorphous silica into nanophase titania 

caused the surpressed of phase transformation from anatase to rutile, and decreased the 

titania particle size. Good photo-catalytic activity of organic contaminants degradation, and 

wettability of composite membrane under UV-irradiation, helped to obtain high permeate 

flux across the composite membrane [40].  
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8. New alumosilicate based composites chemically modified by 

coatings/thin layers – Tested in the removal of colloidal and ionic forms 

of harmful heavy metals from water  

Without new materials, there are no new technologies. Having in mind this fact, 

electrochemically active and structurally modified composites were obtained through 

microalloying and certain metals hydroxides layering, starting from bentonite as 

alumosilicate precursor. The composites have prognosed electrochemical, ion-exchanging 

and adsorption properties, as very sensitive structural and surface properties of materials. 

After the series of experiments, including composites interaction with synthetic waters, the 

obtained results are presented, analyzed and then systematized in the form of appropriate 

models of interactions. 

8.1. Alumosilicate composite ceramic microalloyed by Sn for the removal of 

ionic and colloidal forms of Mn 

Usually, manganese does not present a health hazard in the household water supply. 

However, it can affect the flavor and color of water because it typically causes brownish-

black staining of laundry, dishes and glassware [32]. Although manganese is one of the 

elements that are at least toxic, concentrations of manganese much higher than the 

maximum allowed concentration during long-term exposure can cause health damage. A 

number of known procedures for the manganese removal are not suitable for an elimination 

of its all chemical species due to reversible release of manganese into water systems. 

Therefore, some of these used procedures are at the edge of techno-economical viability. In 

order to remove ionic and colloidal forms of manganese, a new aluminosilicate-based 

ceramic composite with defined electrochemical activity was synthesized [41]. Synthesis 

procedure of the composite material consists of two phases. Firstly, composite particles were 

synthesized by applying Al/Sn oxide coating on the bentonite particles in an aqueous 

suspension. In the second phase, aluminium powder was added to the previously obtained 

plastic mass and after shaping in the form of spheres 1 cm in diameter and drying, sintering 

was performed at 900°C. Fig. 1 a), b) and c) presents the microstructure of composite by 

using different magnifications.  

 

Figure 1. SEM images of the composite recorded at: a) low, b) medium and b) high magnifications. 
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During sintering a microalloying of composite by Sn occurred causing crystal grain surface layer 

amorphization and a creation of non-stoichiometric phases of Al2O3 with a metal excess [42,43]. 

In this way, microalloying causes electrochemical activity, which manifests itself in contact with 

the aqueous solutions of electrolytes and harmful substances in water. Therefore, the ceramics is 

unstable in contact with water and susceptible to corrosion because surface electrochemical 

processes taking place. The composite influence redox properties of water and electrochemically 

interacts with ionic and colloidal forms of manganese in synthetic water systems. 

Alumosilicate matrix, whose particles are coated with Al/Sn oxides, was filled with a metal 

phase which is mostly aluminum with a small quantity of tin as a microalloying component. 

During the thermal treatment, liquid aluminium simultaneously reacts and penetrates the 

ceramics preform, resulting in metal/ceramic composite, where the all phases are 

interpenetrated forming a porous structure. In fact, the reduction of tin(II) occurred 

according to the following reaction: 

 2Al + 3SnO → Al2O3 + 3Sn (2) 

The first reaction step is the reduction of Sn(II) to elemental Sn and its dispersion from the 

ceramics into the melt. Therefore, during the reaction, Sn is liberated into the liquid metal 

and diffuses towards the Al source. Moreover, oxygen partial pressure within the 

composite, at the Al-Al2O3 interface, can be estimated on the basis of thermodynamic 

parameters and calculated using the following equation [44]: 

 ΔG° = RTlnPO2 (3) 

The standard free energy of the reaction: 

 4/3Al + O2→ 2/3Al2O3 (4) 

at 900°C, given by Ellingham diagram [44] is -869 KJ/mol, and corresponding oxygen partial 

pressure: PO2 = 2.02 ∙ 10-39 Pa. Therefore, this low oxygen partial pressure during sintering 

provides reducing environment and the formation of nonstoichiometric oxide phases, with 

the metal excess, or with vacancies in oxygen sublattice. Nevertheless, Al2O3 belongs to the 

oxides of stoichiometric composition or with a negligible deviation from stoichiometry, it 

can occur as an amorphous and nonstoichiometric oxide with a metal excess during 

oxidation of aluminium. Common nonstoichiometric reactions occur at low oxygen partial 

pressures when one of the components (oxygen in this case) leaves the crystal [45,42]. A 

corresponding defect reaction is [45]:  

(oxygen in this case) leaves the crystal [45,42]. A corresponding defect reaction is [45]:  

 '
2 O

1
( )  V 2

2
x
OO O g e    (5) 

As the oxygen atom escapes, an oxygen vacancy ( OV ) is created. Taking in mind that the 

oxygen is to be presented in neutral form, two resulting electrons would be easily excited 

into the conduction band. 
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Al–Sn alloys show a great activity compared to the thermodynamic Al3+/Al potential of 

−1.66V vs. NHE, which stands for a pure aluminium. The activation is manifested by a 

shifting of the pitting potential in the negative direction and significant reducing of the 

passive potential region [43,46]. The addition of microalloying Sn to aluminium 

produced a considerable shift of the open circuit potential (OCP) in the negative 

direction [46]. 

During the process of composite ceramics sintering, significant changes in the structure of 

alumosilicate matrix were occurred. Namely, the polycrystaline alumosilicate matrix with 

amorphised grain and sub-grain boundary were obtained, where a main role possesses 

metallic aluminum itself, then a microalloyed tin and nonstoichiometric excess of these 

elements in ceramics, creating macro-, meso- and micro- pores with the reduced mobility 

of grain boundaries and termination of grain growth [47]. Aluminum and tin in 

conjunction with other admixtures present in composite ceramics cause drastic changes in 

the structure-sensitive properties and electrochemical activity. An active composite 

ceramics in contact with synthetic water containing manganese reduce and deposit the 

manganese in the macro-, meso- and micro- pores (eq. 6). Electrochemical activity is 

provided by electrochemical potential of Al atoms and free electrons that participate in 

redox processes. 

 2Al + 3Mn2+  2Al3+ + 3Mn (6) 

The deposited manganese on microcathode parts of the structure can further form separate 

clusters and the adsorption layer [48,49]. Reduction processes take place until the Al3+ ions 

continue to solvate themselves in water. A part of Al3+ ions reacts with OH- ions giving 

insoluble Al(OH)3. 

8.1.1. Interaction of composite material with ionic and colloidal forms of Mn in synthetic 

water 

Interaction of the composite material with water manifests itself as decreasing in the redox 

potential of water, as shown in Fig. 2. This confirms the fact that the composite is 

electrochemically active in contact with water. During the interaction with water, 

aluminium from the composite is electrochemically dissolved into water providing electrons 

which can participate in the number of redox reactions of water yielding reduced species 

(molecules, ions and radicals) such as H2, OH  , etc. [47]. 

TDS value of distilled water immediately after contact with ceramics increases. It seems that 

increasing the TDS value is due to dissolution of Al3+, Mg2+, Na+, SiO32- from the bentonite 

based composite. Al3+ and SiO32- ions are subjected to hydrolysis and polymerization 

reactions which are followed by spontaneous coagulation-flocculation processes and 

appearance of sludge after a prolonged period of time. 

A reduction of manganese concentration in synthetic waters is shown in Fig. 3.  
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Figure 2. Redox potential of water dependence on pH during interaction of the composite with distilled 

water. 

 

Figure 3. Percentage removal of Mn2+ (A) and colloidal MnO2 (B) from synthetic waters (the composite 

dosage, 2 g/dm3; contacting time, 20 min; initial Mn concentrations in range 0.25 – 10 mg/dm3; initial pH 

5.75 ± 0.1; temperature, 20 ± 0.5°C). 

Average initial pH of the synthetic waters was 5.75. After 20 min of contact with the 

composite material average pH was 6.70. 

During the interactions of composite with synthetic waters, the colloidal MnO2 was 

removed to a lesser degree than Mn2+. The authors imposed that colloidal manganese 

possesses the following structure of micelles: 

 {m[MnO2]nSO42- 2(n-x)K+}2xK+ (7) 
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Potential-determining ions in the structure of micelles are SO42-. They are primarily adsorbed 

on MnO2 and responsible for the stability of colloids. Therefore, it is clear that the reduction 

of manganese is more difficult and there is an electrostatic repulsion between colloidal 

particles and a composite with dominantly negatively charged surface sites. Thus, the 

removal efficiency of colloidal manganese is significantly lower compared with the ionic 

form of Mn+2. During the electrochemical interactions of synthetic water containing Mn2+ 

and colloidal MnO2 with the composite material, transferring of Al3+ ions in a solution 

increases the TDS value, as shown in Table 1. 

 

C0(Mn) 

mg/dm3 
TDS (mg/dm3) pH C(Mn) mg/dm3 TDS (mg/dm3) pH 

Before Mn2+ synthetic water treatment After Mn2+ synthetic water treatment 

0.25 3 5.75 0.0223 17 6.65 

0.50 7 5.73 0.0318 21 6.71 

1.0 10 5.71 0.0363 25 6.72 

5.0 14 5.70 0.9271 29 6.70 

10.0 28 5.76 3.9773 39 6.58 

Before colloidal MnO2 synthetic water 

treatment 

After colloidal MnO2 synthetic water 

treatment 

0.25 3 5.82 0.2108 18 6.73 

0.50 6 5.75 0.3928 22 6.71 

1.0 11 5.71 0.7366 25 6.72 

5.0 14 5.72 3.768 29 6.75 

10.0 28 5.75 7.549 39 6.67 

Table 1. The results of synthetic waters analysis before and after treatment with composite material. 

The initial dissolution of the Al based alloys introduces both aluminium and alloying ions 

into the solution, and then the reposition of microalloying tin onto active sites at surface 

occurs [46], so it was not detected by ICP-OES analysis.  

Aluminium ions generated during electrochemical processes of manganese removal may 

form monomeric species such as Al(OH)2+, Al(OH)2+ and Al(OH)4-. During the time, these 

monomers have tendency to polymerize in the pH range 4–7 which results in 

oversaturation and formation of amorphous hydroxide precipitate according to complex 

precipitation kinetics. Many polymeric species such as Al6(OH)15+3, Al7(OH)17+4, 

Al8(OH)20+4, Al13O4(OH)24+7, Al13(OH)34+5 have been reported [50]. Average concentration of 

aluminium, immediately after 20 min of composite interaction with Mn2+ synthetic waters, 

was 0.2131 mg/dm3 and included all mentioned monomeric and polymeric species which 

were not coagulated. After a prolonged period of time concentration of aluminum has a 

tendency to decrease reaching values that are below 0.1 mg/dm3, due to precipitation of 

Al(OH)3 sludge. 

The increase in the pH during the experiments can be explained in terms of the 

electrochemical and the chemical reactions that take place in the system composite-synthetic 
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water. Water reduction at cathodic parts of composite (eq. 8), the electrochemical dissolution 

of aluminum (eq. 9) and protolytic reactions (eq. 10-14) increase the pH value [51]. 

 H2O +  e-  1/2H2 + OH-  (8) 

 2Al + 6H2O  2Al3+ + 3H2 + 6 OH-  (9) 

 Al(OH)4- + H+  Al(OH)3 + H2O (10) 

 Al(OH)3 + H+   Al(OH)2+ + H2O (11) 

 Al(OH)2+ + H+   Al(OH)2++ H2O (12) 

 Al(OH)2+ + H+   Al3+ + H2O  (13) 

 Al(OH)3(s)   Al3+ + 3OH-  (14) 

8.2. Bentonite modified by mixed Fe, Mg (hydr)oxides coatings for the removal 

of ionic and colloidal forms of Pb(II) 

Lead (Pb) is heavy metal which presents one of the major environmental pollutants due to 

its hazardous nature. It diffuses into water and the environment through effluents from lead 

smelters as well as from battery, paper, pulp and ammunition industries. Scientists 

established that lead is nonessential for plants and animals, while for humans it is a 

cumulative poison which can cause damage to the brain, red blood cells and kidneys [52]. 

In this subchapter, a cheap and effective composite material as a potentially attractive 

adsorbent for the treatment of Pb(II) contaminated water sources has been described. The 

procedure for obtaining a bentonite based composite involves the application of mixed Fe 

and Mg hydroxides coatings onto bentonite particles (0.375 mmol Fe and 0.125 mmol Mg 

per gram of bentonite) in aqueous suspension and subsequent thermal treatment of the solid 

phase at 498 K [53]. Bearing in mind layered structure of montmorillonite, the quite limited 

extent of isomorphous substitution of Mg for Fe in iron (hidr)oxides and significant 

differences in acid-base surface properties between these two (hydr)oxides, formation of 

heterogeneous coatings onto bentonite and specific structure of obtained composite have 

been achieved [54]. Different adsorption sites on such heterogeneous surface provide 

efficient removal of numerous chemical species of Pb(II) over a wide pH range. 

The structural changes of montmorillonite during composite synthesis are mainly reflected in 

the reduction of d001 diffraction peak intensity in X-ray diffractograms and its shifting towards 

the higher values of 2θ. Moreover, it can be observed that the peak is broadened suggesting 

that the distance between the layers is non-uniform with disordered and partially delaminated 

structure. The crystallographic spacing d001 of montmorillonite in the native bentonite and the 

composite, computed by using Bragg’s equation (nλ = 2d sin θ), is 1.54 nm and 1.28 nm, 

respectively. These changes in the structure took place because the d-spacing is very sensitive 

to the type of interlamellar cations, and the degree of their hydration [55].  
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The XRD patterns of the composite and starting (native) bentonite are presented in Fig. 4a 

and b, respectively.  

 

Figure 4. X-ray diffractograms of (a) composite and (b) native bentonite  

SEM micrographs (Fig. 5 a, b and c) show that bentonite and composite are composed of 

laminar particles arranged in layered manner, forming the aggregates with diameters up to 

50 µm. 

 

Figure 5. (a) SEM of synthesized composite, (b) SEM of composite after interaction with Pb(II) solution 

and (c) surface morphology of the native bentonite 

No significant changes in the microstructure of composite occurred during the interaction 

with the aqueous solution of Pb(II). 

Despite a thorough washing process, a large amount of NO3- is retained in the composite. A 

vibration mode at ca. 1389 cm-1 in FTIR spectrum confirms the NO3- stretching which 

indicates that some positive charged sites exist on the surface of composite and that they are 

counterbalanced by the NO3- which can be exchanged by other anions [53]. In addition, the 

formation of poorly crystallized magnesium hydroxonitrate in pH range 9-11 [56,57], where 

Fe/Mg coprecipitation was performed over bentonite particles, is very likely.  

8.2.1. Specific surface area determined by N2 adsorption/desorption using BET equation 

The Fig. 6. shows the comparative nitrogen adsorption-desorption isotherms of native 

bentonite and composite.  
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Figure 6. Nitrogen adsorption-desorption isotherms of native bentonite and composite. 

The isotherms can be assigned to Type II isotherms, corresponding to non-porous or 

macroporous adsorbents. The hysteresis loops of Type H3 in the IUPAC classification occur 

at p/p0 > 0.5, which is not inside the typical BET range. Furthermore, hysteresis loops of 

these isotherms indicate that they were given by either slit-shaped pores or, as in the present 

case, assemblages of platy particles of montmorillonite. Porous structure parameters are 

summarized in Table 2. 

 

Sample SBET (m2/g) 

Median 

mesopore 

diameter (nm)

Cumulative 

mesopore area 

(m2/g) 

Cumulative 

mesopore 

volume 

(cm3/g) 

Micropore 

volume 

(cm3/g) 

Bentonite 37.865 13.629 53.329 0.1202 0.0153 

Composite 80.385 11.021 82.675 0.1716 0.0316 

Table 2. Specific surface area and porosity of native bentonite and composite, determined by applying 

BET, BJH and D-R equation to N2 adsorption at 77 K 

Compared to native bentonite, during the composite synthesis additional meso- and 

micropores were generated. Pore volumes (Gurvich) at p/p0 0.999 for bentonite and 

composite are 0.180 cm3/g and 0.243 cm3/g, respectively. It was found that isotherms gave 

linear BET plots from p/p0 0.03 to 0.21 for bentonite and from 0.03 to 0.19 for composite. 

The composite has the specific surface area that is twice the size compared to the surface 

area of the native bentonite. This can be explained by the structural changes that occurred 

during the chemical and thermal modification of the native bentonite. The structural 

changes include delamination as well as the decrease of the distance between the layers of 

montmorillonite particles, because the interlayer water was lost under heating. The higher 

surface area of composite mainly results from the interparticle spaces generated by the 
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three-dimensional co-aggregation of magnesium polyoxocations, iron oxide clusters and 

plate particles of montmorillonite. Macro- and mesopores arose from particle-to-particle 

interactions, while micropores were generated in the interlayer spaces of clay minerals due 

to irregular stacking of layers of different lateral dimensions [58].It is apparent that the 

changes of montmorillonite structure are responsible for the creation of new pore structure 

in the composite, which is then stabilized by the thermal treatment with the removal of H2O 

molecules. The changes that involve partial dehydroxylation and cationic dehydration are 

brought about by thermal activation and they lead to various forms of cross-linking between 

oxides and smectite framework. As a result, composite does not swell and can be easily 

separated from water by filtration or centrifugation. There is a wide pore size distribution 

which supports disordered structure consisting of the delaminated parts with mesoporosity 

and the layered parts with microporosity. 

The pH of the Pb(II) solution plays an important role in the adsorption process, influencing 

not only the surface charge of the adsorbent and the dissociation of functional groups on the 

active sites of the adsorbent but also the solution Pb(II) chemistry. The adsorption of Pb(II) 

on the composite decreased when pH decreased as shown in Fig. 7. 

 

Figure 7. Effect of pH on adsorption of Pb(II) onto composite 

The adsorptive decrease at pH below 5 was caused by the competition between H+ and Pb2+ 

for the negatively charged surface sites. Maximum retention is in the pH range 5-10. The 

main Pb(II) species in the pH range 6.5-10 are Pb(OH)+ and Pb(OH)2 which can easily form 

colloidal micelles characterized with the following imposed structure: 

 {m[Pb(OH)2]nPb(OH)+∙(n-x)NO3-}xNO3- (15) 
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The potential – determining ion is Pb(OH)+ and that is the reason for the positive ZP of 

colloidal Pb(II) at the pH below 10 [59,60]. Therefore, colloidal micelles were easily attracted 

by the negatively charged composite surface. Particle size of colloidal Pb(II) at pH 7±0.1 was 

determined to be 268.7 ± 16.7 nm. At the pH range of 10-12 the predominant Pb(II) species 

are Pb(OH)2 and Pb(OH)3- which give rise to the formation of negatively charged colloidal 

micelles with the following structure: 

 {m[Pb(OH)2]nPb(OH)3-∙(n-x)Na+}xNa+ (16) 

ZP values for Pb(II) colloidal solutions at pH 11.8 were - 50.7±3.6 mV with particle size of 

252.7±28.2 nm. Having in mind surface heterogeneity of the composite and high point of 

zero charge value of Mg(OH)2 (between pH 12 and pH 13) [61], negative ions and particles 

can be adsorbed on the positively charged surface sites at pH 10-12. Removal efficiency of 

Pb(OH)3- was higher than negatively charged colloids, probably because the ionic species 

were involved in the process of ion exchange and chemisorption, while colloidal micelles 

could be bound to the surface dominantly by electrostatic forces. 

8.3. Bentonite based composite coated with immobilized thin layer of organic 

matter 

Synthesis of bentonite based composite material, described in this section, was carried out 

by applying thin coatings of natural organic matter, obtained by alkaline extraction from 

peat, mostly comprised of humic acids [62]. Humic acids have high complexing ability with 

various heavy metal ions, but it is difficult to use them as the sorbent because of their high 

solubility in water. However, they form stabile complexes with the inorganic ingredients of 

bentonite (montmorillonite, quartz, oxides, etc.) and can be additionally insolubilized and 

immobilized by heating at 350°C. After immobilization, humic acids represent an important 

sorbent for heavy metals, pesticides and other harmful ingredients from water. Humic acid 

are insolubilized by condensation of carboxylic and phenolic hydroxyl groups. Therefore, 

the aim was to remove manganese from aqueous solutions by treating it with synthesized 

composite as well as to study and explain the mechanism of composite interaction with 

manganese aqueous solutions. The composite does not release significant quantity of 

organic matter in water because it is tightly bonded to bentonite surface [63-65]. The degree 

of manganese removal was more than 94% at a range of initial manganese concentrations 

from 0.250 to 10 mg/l. 

The result of conductometric titration is given in Fig. 8. Equivalence point was located at the 

intercept of the first and second linear part of the titration curve. The value of the total acidic 

group content is calculated to be 215.18 µmol/g. 

The experimental data of manganese adsorption onto composite are very well fitted by the 

Freundlich isotherm model (Fig. 9.) with a very high correlation coefficient value of 0.9948. 

The good agreement of experimental data with the Freundlich model indicates that there are 

several types of adsorption sites on the surface of the composite. The amount of adsorbed 

Mn(II) increases rapidly in the first region of adsorption isotherm and then the slope of 
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isotherm gradually decreases in the second region. The adsorption capacity of composite is 

11.86 mg/g, at an equilibrium manganese concentration of 16.28 mg/l. 

 

Figure 8. The conductometric titration of composite suspension (1 g in 250 ml of 1mM NaCl solution as 

background electrolyte) with 0.053 M NaOH.  

After the treatment of model water with composite for the period of 20 min, the following 

results were obtained (Table 3). 

 

Before water treatment After water treatment 

C0(Mn)m

g/l 
pH 

Conductivity

µS/cm 
pH 

Conductivity 

µS/cm 
C(Mn) mg/l

%Mn 

Adsorption 

0 6.43 8.01 6.67 11.43 0 0 

0.250 6.37 9.57 7.11 13.76 0.0030 98.8 

0.490 6.32 10.67 7.15 15.31 0.0039 99.2 

1.0 6.30 14.67 7.12 31.10 0.0090 99.1 

2.5 6.20 20.70 6.96 37.20 0.0187 99.25 

5.0 6.19 32.80 6.83 49.40 0.0646 98.71 

10.0 6.16 55.30 6.70 68.90 0.5314 94.69 

Table 3. The results of water analysis before and after treatment with composite 
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Figure 9. Freundlich adsorption isotherm for manganese adsorption onto composite. 

During the thermal treatment in nitrogen atmosphere at 350 °C, the condensation of 

carboxyl and adjacent alcohol and phenol groups occurs. In this way the solubility of 

organic matter immobilized on bentonite matrix surface decreases [65]. Moreover, a part of 

carboxyl groups is decomposed by decarboxylation reaction, releasing CO2 and CO. 

However, despite of this, a part of oxygen functional groups remains on the surface, and 

these groups act as sites that bind bivalent manganese forming inner-sphere complexes.  

Besides organic functional groups, there are also Si-OH and Al-OH groups on the sites of 

crystal grain breaks, as well as permanent negative charge due to isomorphic substitution in 

clay minerals. They all contribute to the reduction of manganese concentration in the 

aqueous solution. Manganese retention by the formation of outer-sphere complexes, 

including ion exchange, can be showed by an Eq. (17) [66]. 

 (≡S-O-)2...Cn+3-n + Mn2+ ⇌ (≡S-O-)2...Mn2+ + (3-n) Cn+ (17) 

in which C represents the cation that is exchanged. 

The formation of inner-sphere complexes is represented by the Eqs. (18) and (19) and 

involves the release of hydrogen ions and the change of solution pH. 

 ≡S-OH + Mn2+ ⇌ ≡S-O-Mn+ + H+ (18) 

 ≡2S-OH + Mn2+ ⇌ (≡S-O)2-Mn + 2H+ (19) 

According to these equations, it can be concluded that the pH value of the solutions 

decrease after the treatment. However, an opposite phenomenon can be experimentally 

observed (Table 3). The explanation for it is that hydrogen ions which are released during 

manganese retention participate in the protonation of surface groups: 
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 ≡S-OH + H+ ⇌ ≡S-OH2+ (20) 

 ≡S-O- + H+ ⇌ ≡S-OH (21) 

Therefore, the pH value of the Mn2+ aqueous solutions after treatment with composite had a 

higher value than the initial pH. This indicates that more hydrogen ions are bound to the 

surface than released by manganese binding. Namely, the composite exhibits amphoteric 

character due to the surface sites that act either as proton acceptors or as proton donors.  

Organic matter decreases the PZC value of bentonite and neutralizes positive electric charge 

that comes from interlaminated cations, thus increasing composite affinity to manganese, 

even at lower pH values (67). Fig. 10. presents the pH dependence of residual Mn 

concentration, for the initial Mn concentration of 5 mg/l. The residual concentration of Mn 

decreases gradually with pH increasing in the range of 3.5-7 and then increases in the range 

of 7-10, with the apparent minimum at pH 7. 

 

Figure 10. Residual concentration of Mn(II) as a function of model water pH. 

The increase of pH value has dual effect on the removal of manganese. The increase of the 

pH value favours manganese removal due to increase of the number of deprotonated sites 

that are available for the binding of manganese. However, there is an increase in the 

solubility of organic matter which has been applied on the bentonite particles. The dissolved 

organic matter (humic acids) reacts with manganese forming complexes which bear a 

negative charge and have a weaker binding affinity for the composite surface than Mn2+. Fig 

10. indicates two opposite effects of the pH on manganese removal. The pH dependence of 

released organic matter (expressed as permanganate number) and turbidity (NTU) of 

solutions are shown in Fig. 11. 
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Figure 11. Premanganate number and turbidity of filtrate as function of pH (0.2 g of composite and 100 

ml of 1mM Na2SO4 as background electrolyte). 

The released organic matter contributes to the increased turbidity at higher pH values. 

9. Summary 

The widespread industrial areas where nanocomposites can be applied are primary and 

conversion industry, modern coating technologies, constructional regions, and 

environmental (water, air) purification. In addition to the dominant use of composites as 

structural elements, important application of composite materials is in the water purification 

technologies. In this field of application, composites usually have the role of adsorbent, 

electrochemically active materials, catalysts, photocatalysts etc. 

Bentonite is a natural and colloidal alumosilicate with particle size less than 10 µm, which is 

effectively used as sorbent for heavy metals and other inorganic and organic pollutants from 

water. Due to its positive textural properties and high specific surface area it can be used as 

low-cost matrix for synthesis of adsorbents or electrochemically active composite materials for 

the removal of pollutants in ionic and colloidal form from water. In this respect, three 

new/modified bentonite based composite materials have been synthetised and characterized.  

Coated or composite particles are composed of solid phase covered with thinner or thicker 

layer of another material. These coatings - layers covering the surface of matrix are 

important for several reasons. In such way, the surface and textural characteristics of the 

initial solid phase are modified and sintering conditions can be better controlled. An 

important factor in achieving the desired microstructure of ceramics is sintering procedure 

that includes rather complex processes. A considerable influence on sintering has been 

exhibited by an addition of microalloying components, which significantly determined a 
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microstructure and resulted properties of ceramics. The presence of small amounts of 

impurities in the starting material can vastly influence their mechanical, optical, electrical, 

color, diffusive, and dielectric properties of alumosilicate matrix. In summary, the process of 

diffusion mass transport in ceramic crystal regions are affected by temperature, oxygen 

partial pressure and concentration of impurities. A procedure for the removal of manganese 

in ionic (Mn2+) and colloidal (MnO2) forms from synthetic waters, by reduction and 

adsorption processes on electrochemically active alumosilicate ceramics based composite 

material has been described. Synthesis procedure of the composite material consists of two 

phases. Firstly, composite particles were synthesized by applying Al/Sn oxide coating onto 

the bentonite particles in an aqueous suspension. In the second phase, aluminium powder is 

added to the previously obtained plastic mass and after shaping in the form of spheres 1 cm 

in diameter and drying, sintering was performed at 900°C. Elemental tin, resulting from the 

reduction of Sn2+-ion, comes into contact with liquid aluminum in the pores of the matrix 

performing aluminum microalloying and activation. Moreover, due to a low partial 

pressure of oxygen, nonstoichiometric oxides with metal excess are obtained, and they play 

an important role in the electrochemical activity of the composite material. In accordance 

with this, a redox potential of water is changed in contact with composite. 

Another effective composite material as a potentially attractive adsorbent for the treatment 

of Pb(II) contaminated water sources has been synthesized by coating of bentonite with 

mixed iron and magnesium (hydr)oxides. The procedure for obtaining a bentonite based 

composite involves the application of mixed Fe and Mg hydroxides coatings onto bentonite 

particles in aqueous suspension and subsequent thermal treatment of the solid phase at 

225ºC. Formation of heterogeneous coatings on bentonite results in changes of bentonite 

acid-based properties, high specific surface area and positive adsorption characteristics. 

Different adsorption sites on such heterogeneous surface provide an efficient removal of 

numerous chemical species of Pb(II) (ionic and colloidal) over a wide pH range. 

Third bentonite based composite material was obtained by applying thin coatings of natural 

organic matter, extracted from a peat, mostly based on humic acids. Humic acids are known 

due to high complexing ability to various heavy metal ions, but it is difficult to use them 

directly as the sorbent because of their high solubility in water. However, they form stabile 

complexes with the inorganic ingredients of bentonite (montmorillonite, quartz, oxides, etc.) 

and can be successfully insolubilized and immobilized by heating at 350°C. After 

immobilization, humic acids represent an important sorbent for heavy metals, pesticides 

and other harmful ingredients from water. Humic acid are insolubilized by condensation of 

carboxylic and phenolic hydroxyl groups. The composite such obtained can be effectively 

used as the sorbent for heavy metals. 
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