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1. Introduction

Meteorological readings, hydrological parameters and many measures of air, soil and water
pollution are often collected for a certain span, regularly in time, and at different survey
stations of a monitoring network. Then, these observations can be viewed as realizations
of a random function with a spatio-temporal variability. In this context, the arrangement of
valid models for spatio-temporal prediction and environmental risk assessment is strongly
required. Spatio-temporal models might be used for different goals: optimization of sampling
design network, prediction at unsampled spatial locations or unsampled time points and
computation of maps of predicted values, assessing the uncertainty of predicted values
starting from the experimental measurements, trend detection in space and time, particularly
important to cope with risks coming from concentrations of hazardous pollutants. Hence,
more and more attention is given to spatio-temporal analysis in order to sort out these issues.

Spatio-temporal geostatistical techniques provide useful tools to analyze, interpret and
control the complex evolution of various variables observed by environmental monitoring
networks. However, in the literature there are no specialized monographs which contain a
thorough presentation of multivariate methodologies available in Geostatistics, especially in
a spatio-temporal context. Several authors have developed different multivariate models for
analyzing the spatial and spatio-temporal behavior of environmental variables, as it is clarified
in the following brief review.

In multivariate spatial analysis, direct and cross correlations for the variables under study are
quantified by estimating and modeling the matrix variogram. The difficulty in modeling this
matrix function, especially the off diagonal entries of the same matrix, has been first faced by
using the linear coregionalization model (LCM), proposed by [45].

For matrix covariance functions, [28] constructed a parametric family of symmetric covariance
models for stationary and isotropic multivariate Gaussian spatial random fields, where both
the diagonal and off diagonal entries are of the Matérn type. In the bivariate case, they
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provided necessary and sufficient conditions for the positive definiteness of the second-order
structure, whereas for the other multivariate cases they suggested a parsimonious model
which imposes restrictions on the scale and cross-covariance smoothness parameters. In the
bivariate case, where the smoothness parameter is the same for both covariance functions,
the Gneiting model is a simplified LCM. The Gneiting cross-covariance model also assumes
that the scale parameter is the same for all the covariance functions and the cross-covariance
functions. Both the LCM and Gneiting constructions for cross-covariances result in symmetric
models; however, no distributional assumptions are required for using a LCM, which can
easily incorporate components with compact support and multiple ranges and an unbounded
variogram component.

Although models for multivariate spatial data have been extensively explored [25, 54, 55],
models for multivariate spatio-temporal data have received relatively less attention. In the
literature, it is common to use classical techniques for multivariate spatial and temporal
analysis [8, 54]. Recently, canonical correlation analysis was combined with space-time
geostatistical tools for detecting possible interactions between two groups of variables,
associated with pollutants and atmospheric conditions [6]. In the dynamic modeling
framework, there are some results in studying the spatio-temporal variability of several
correlated variables: [26], for example, extended univariate spatio-temporal dynamic models

to multivariate dynamic spatial models. Moreover, [38] proposed a methodology to evaluate
the appropriateness of several common assumptions, such as symmetry, separability and
linear model of coregionalization, on multivariate covariance functions in the spatio-temporal
context, while [4] proposed a spatio-temporal LCM where the multivariate spatio-temporal
process was expressed as a linear combination of independent Gaussian processes in
space-time with mean zero and a separable spatio-temporal covariance. [1] considered some
solutions to the symmetry problem; moreover, they proposed a class of cross-covariance
functions for multivariate random fields based on the work of [27]. The maximum likelihood
estimation of heterotopic spatio-temporal models with spatial LCM components and temporal
dynamics was developed by [22]. A GSLib [19] routine for cokriging was properly modified
in [12] to incorporate the spatio-temporal LCM, previously developed using the generalized
product-sum variogram model [10]. Recently, in [15] an automatic procedure for fitting the
spatio-temporal LCM using the product-sum variogram model has been presented and some
computational aspects, analytically described by a main flow-chart, have been discussed. In
[16] simultaneous diagonalization of the sample matrix variograms has been used to isolate
the basic components of a spatio-temporal LCM and it has been illustrated how nearly

simultaneous diagonalization of the cross-variogram matrices simplifies modeling of the
matrix variogram.

In the following, after an introduction of the theoretical framework of the multivariate

spatio-temporal random function and its features (Section 2), a review of recent techniques
for building admissible models is proposed (Section 3). Successively, the spatio-temporal
LCM, its assumptions and appropriate statistical tests are presented (Section 4) and
techniques for prediction and risk assessment maps are introduced (Section 5). Some
critical aspects regarding sampling, modeling and computational problems are discussed
(Section 6). Finally, a case study concerning particle pollution (PM10) and two atmospheric
variables (Temperature and Wind Speed) in the South of Apulian region (Italy), has been
presented (Section 7). Before using the spatio-temporal LCM to describe the spatio-temporal
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multivariate correlation structure among the variables under study, its adequacy with
respect to the data has been analyzed; in particular, the assumption of symmetry of
the cross-covariance function, has been properly tested [38]. By using a recent fitting
procedure [16], based on the simultaneous diagonalization of several symmetric real-valued
matrix variograms, the basic structures of the spatio-temporal LCM which describes the
spatio-temporal correlation among the variables, have been easily detected. Predictions of the
primary variable (PM10) are obtained by using a modified GSLib program, called “COK2ST”
[12]. Then, risk maps showing the probability that the particle pollution exceeds the national
law limit have been associated to predition maps and the estimation of the probability
distributions for two sites of interest have been produced.

2. Multivariate spatio-temporal random function

Let Z(u) = [Z1(u), . . . , Zp(u)]T, be a vector of p spatio-temporal random functions (STRF)

defined on the domain D × T ⊆ R
d+1, with (d ≤ 3), then

{Z(u), u = (s, t) ∈ D × T ⊆ R
d+1},

represents a multivariate spatio-temporal random function (MSTRF), where s = (s1, . . . , sd)
are the coordinates of the spatial domain D ⊆ R

d and t the coordinate of the temporal domain
T ⊆ R.
Afterwards, the MSTRF will be denoted with Z and its components with Zi. The p STRF
Zi, i = 1, . . . , p, are the components of Z and they are associated to the spatio-temporal
variables under study; these components are called coregionalized variables [29].
The observations zi(uα), i = 1, . . . , p, α = 1, . . . , Ni, of the p variables Zi, at the points
uα ∈ D × T, are considered as a finite realization of a MSTRF Z.

2.1. Moments of a MSTRF

Given a MSTRF Z, with p components, we define, if they exist and they are finite:

• the expected value, or first-order moment of each component Zi,

E [Zi(u)] = mi(u), u ∈ D × T, i = 1, . . . , p; (1)

• the second-order moments,

1. the variance of each component Zi,

Var [Zi(u)] = E [Zi(u)− mi(u)]
2 , u ∈ D × T, i = 1, . . . , p; (2)

2. the cross-covariance for each pair of STRF (Zi, Zj), i �= j,

Cov[Zi(u), Zj(u
′)] =

= Cij(u, u′) = E
[
(Zi(u)− mi(u))(Zj(u

′)− mj(u
′))

]
, (3)

u, u′ ∈ D × T, i, j = 1, . . . , p, i �= j;
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3. the cross-variogram for each pair of STRF (Zi, Zj), i �= j,

2 γij(u, u′) = Cov
[
(Zi(u)− Zi(u

′)), (Zj(u)− Zj(u
′))

]
, (4)

u, u′ ∈ D × T, i, j = 1, . . . , p, i �= j.

Note that for i = j, we obtain:

• the covariance of the STRF Zi, called direct covariance, or simply covariance,

Cii(u, u′) = E
[
(Zi(u)− mi(u))(Zi(u

′)− mi(u
′))

]
,

with u, u′ ∈ D × T;

• the direct variogram of the STRF Zi,

2 γii(u, u′) = Var
[
(Zi(u)− Zi(u

′)
]

, u, u′ ∈ D × T.

These moments describe the basic features of a MSTRF, such as the spatio-temporal
correlation for each variable and the cross-correlation among the variables.

2.2. Admissibility conditions

In multivariate Geostatistics, admissibility conditions concern both the cross-covariances and
the cross-variograms, as described in the following.

Let Z be a MSTRF, with components Zi, i = 1, . . . , p, and let {u1, . . . , uN} a set of N points of
a spatio-temporal domain D × T; the direct and cross-covariances of the MSTRF must satisfy
the following inequality:

p

∑
i=1

p

∑
j=1

N

∑
α=1

N

∑
β=1

λαiλβj Cij(uα − uβ) ≥ 0,

for any choice of the N points uα and for any choice of the weights λαi. Using the

matrix notation, the (p × p) matrices C(uα − uβ) =
[
Cij(uα − uβ)

]
of the direct and

cross-covariances of the STRF Zi(uα) and Zj(uβ) will be admissible if they satisfy the

following condition:
N

∑
α=1

N

∑
β=1

�λT
α C(uα − uβ)�λβ ≥ 0, (5)

where�λα =
[
λα1, . . . , λαp

]T
is a (p × 1) vector of weights λαi.

As in the univariate case, the (p × p) matrices Γ(uα − uβ) =
[
γij(uα − uβ)

]
of the direct and

cross-variograms of the STRF Zi(uα) and Zj(uβ) will be admissible if, for any choice of the N
points uα, they satisfy the following condition

−
N

∑
α=1

N

∑
β=1

�λT
α Γ(uα − uβ)�λβ ≥ 0,
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Advances in Spatio-Temporal Modeling and Prediction for Environmental Risk Assessment 5

under the constraint:
N

∑
α=1

�λα = 0.

2.3. Stationarity hypotheses

Stationarity hypotheses allow to make inference on the MSTRF. In particular, second-order
stationarity and intrinsic hypotheses concern the first and second-order moments of the
MSTRF.

2.3.1. Second-order stationarity

A MSTRF Z, with p components, is second-order stationary if:

• for any STRF Zi, i, . . . , p,

E[Zi(u)] = mi, u ∈ D × T, i = 1, . . . , p; (6)

• for any pair of STRF Zi and Zj, i, j = 1, . . . , p, the cross-covariance Cij depends only on the
spatio-temporal separation vector h = (hs, ht) between the points u and u + h:

Cij(h) = E[(Zi(u + h)− mi) (Zj(u)− mj)] =

= E[Zi(u + h) Zj(u)]− mi mj, (7)

where u, u + h ∈ D × T, i, j = 1, . . . , p. For i = j, the direct covariance function of the
STRF Zi is obtained.

There exist several physical phenomena for which neither variance, nor the covariance exist,
however it is possible to assume the existence of the variogram.

2.3.2. Intrinsic hypotheses

A MSTRF Z, with p components, satisfies the intrinsic hypotheses if:

• for any STRF Zi, i = 1, . . . , p,

E [Zi(u + h)− Zi(u)] = 0 , u, u + h ∈ D × T, i = 1, . . . , p; (8)

• for any pair of STRF Zi and Zj, i, j = 1, . . . , p, the cross-variogram exists and it depends
only on the spatio-temporal separation vector h:

2 γij(h) = Cov[(Zi(u + h)− Zi(u)), (Zj(u + h)− Zj(u))], (9)

where u, u + h ∈ D × T, i, j = 1, . . . , p.

Second-order stationarity implies the existence of the intrinsic hypotheses, however the
converse is not true. Intrinsic hypotheses imply that the cross-variogram can be expressed
as the expected value of the product of the increments:

γij(h) =
1

2
E{[Zi(u + h)− Zi(u)][Zj(u + h)− Zj(u)]}, (10)
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u, u + h ∈ D × T, i, j = 1, . . . , p. For i = j, the direct variogram of the STRF Zi is obtained.

2.3.3. Properties of the cross-covariance for second-order stationary MSTRF

Given a second-order stationary MSTRF, the cross-covariance satisfies the properties listed
below.

The cross-covariance is not invariant with respect to the exchange of the variables:

Cij(h) �= Cji(h), i �= j, (11)

as well as it is not invariant with respect to the sign of the vector h:

Cij(−h) �= Cij(h), i �= j. (12)

However, the cross-covariance is invariant with respect to the joint exchange of the variables
and the sign of the vector h:

Cij(h) = Cji(−h). (13)

2.3.4. Properties of the cross-variogram for intrinsic MSTRF

Afterwards, the main properties of the cross-variogram for intrinsic MSTRF are given.

1. The cross-variogram vanishes at the origin, that is:

γij(0) = 0. (14)

2. The cross-variogram is invariant with respect to the exchange of the variables:

γij(h) = γji(h). (15)

3. The cross-variogram is invariant with respect to the sign of the vector h:

γij(−h) = γij(h). (16)

From (15) and (16) follows that the cross-variogram is completely symmetric, as it will be
pointed out in the next sections.

2.3.5. Separability for a MSTRF

The cross-covariance Cij for a second-order stationary MSTRF Z is separable if:

Cij(h) = ρ(h) aij, h = (hs, ht) ∈ D × T, i, j = 1, . . . , p,

where aij are the elements of a (p × p) positive definite matrix and ρ(·) is a correlation
function. In this case, it results:

Cij(h)

Cij(h′)
=

ρ(h)

ρ(h′)
, h, h′ ∈ D × T, i, j = 1, . . . , p,

370 Air Pollution – A Comprehensive Perspective
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hence the changes of the cross-covariance functions, with respect to the changes of the vector
h, do not depend on the pair of the STRF Zi, Zj.

The cross-covariance Cij for a second-order stationary MSTRF Z is fully separable if:

Cij(hs, ht) = ρS(hs) ρT(ht)aij, (hs, ht) ∈ D × T, i, j = 1, . . . , p,

where aij are the elements of a (p × p) positive definite matrix, ρS(·) is a spatial correlation
function and ρT(·) is a temporal correlation function. In the literature, many statistical tests
for separability have been proposed and are based on parametric models [2, 32, 51], likelihood
ratio tests and subsampling [46] or spectral methods [23, 50].

2.3.6. Symmetry for a MSTRF

The cross-covariance Cij of a second-order stationary MSTRF Z, with p components, is
symmetric if:

Cij(h) = Cij(−h), h ∈ D × T, i, j = 1, . . . , p,

or, equivalently, if:
Cij(h) = Cji(h), h ∈ D × T, i, j = 1, . . . , p.

The cross-covariance Cij of a second-order stationary MSTRF Z, with p components, is fully
symmetric if:

Cij(hs, ht) = Cij(hs,−ht), (hs, ht) ∈ D × T, i, j = 1, . . . , p,

or, equivalently,

Cij(hs, ht) = Cij(−hs, ht), (hs, ht) ∈ D × T, i, j = 1, . . . , p.

Atmospheric, environmental and geophysical processes are often under the influence of
prevailing air or water flows, resulting in a lack of full symmetry [18, 27, 52].

Fig. 1 summarizes the relationships between separability, symmetry, stationarity and the LCM
in the general class of the cross-covariance functions of a MSTRF Z. If a cross-covariance is
separable, then it is symmetric, however, in general, the converse is not true. Moreover, the
hypothesis of full separability is a special case of full symmetry.

Several tests to check symmetry and separability of cross-covariance functions can be found
in the literature [38–40, 50].

Figure 1. Relationships among different classes of spatio-temporal covariance functions

371Advances in Spatio-Temporal Modeling and Prediction for Environmental Risk Assessment
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3. Techniques for building admissible models

In the following, a brief review of the most utilized techniques to construct admissible

cross-covariance models is presented.

1. For the intrinsic correlation model, the matrices C are described by separable
cross-covariances Cij, i, j = 1, . . . , p [44], that is:

Cij(uα, uβ) = ρ(uα, uβ)aij,

where the coefficients aij are the elements of a (p × p) positive definite matrix, and
ρ(·, ·) is a correlation function. However, this model is not flexible enough to handle
complex relationships between processes, because the cross-covariance function between
components measured at each location always has the same shape regardless of the relative
displacement of the locations. As it will be discussed in the next section, the LCM is a
straightforward extension of the intrinsic correlation model.

2. In the kernel convolution method [55] the cross-covariance functions is represented as
follows:

Cij(uα, uβ) =
∫

Rd+1

∫

Rd+1
ki(uα − u)kj(uβ − u′)ρ(u − u′)dudu′,

where the ki are square integrable kernel functions and ρ is a valid stationary correlation
function. This approach assumes that all the variables Zi, i = 1, . . . , p, are generated
by the same underlying process, which is very restrictive. Moreover, this model and its
parameters lack interpretability and, except for some special cases, it requires Monte Carlo
integration.

3. In the covariance convolution for stationary processes [24, 43] the cross-covariance
functions is represented as follows:

Cij(h) =
∫

Rd+1
Ci(h − h′)Cj(h

′)dh′,

where Ci are second-order stationary covariances. The motivation and interpretation of
the resulting cross-dependency structure is rather unclear. Although some closed-form
expressions exist, this method usually requires Monte Carlo integration.

4. Recently, an approach based on latent dimensions and existing covariance models for
univariate random fields, has been proposed; the idea is to develop flexible, interpretable
and computationally feasible classes of cross-covariance functions in closed form [1].

4. Linear coregionalization model

LCM is based on the hypothesis that each direct or cross-variogram (covariogram) can be

represented as a linear combination of some basic models and each direct or cross-variogram

(covariogram) must be built using the same basic models [33].

LCM is utilized in several applications because of its flexibility, moreover it encouraged the

development of algorithms able to estimate quickly the parameters of the selected model,

assuring the admissibility conditions, even in presence of several variables [29–31].
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Let Z be a second-order stationary MSTRF with p components, Zi, i = 1, . . . , p, the direct and

cross-covariances for the spatio-temporal LCM are defined as follows:

Cij(h) = Cov
[

Zi(u), Zj(u + h)
]
=

L

∑
l=1

bl
ij cl(h), i, j = 1, . . . , p, (17)

where cl are covariances, called basic structures, and the non-negative coefficients bl
ij satisfy

the following property:

bl
ij = bl

ji, i, j = 1, . . . , p;

hence, in the LCM, it is assumed that:

Cij(h) = Cij(−h),

Cij(h) = Cji(h),

with i, j = 1, . . . , p, i �= j.

The matrix C for the second-order stationary Z is built as follows:

C(h) =
L

∑
l=1

Bl cl(h). (18)

Analogously, it is also possible to introduce the LCM for a MSTRF which satisfies the intrinsic

hypotheses. In such a case, the direct and cross-variograms are built as follows:

γij(h) =
L

∑
l=1

bl
ij gl(h) , i, j = 1, . . . , p, (19)

where each basic structure gl is a variogram and the L matrices Bl of the coefficients bl
ij,

corresponding to the sill values of the basic models gl , are positive definite.

Then, for a MSTRF which satisfies the intrinsic hypotheses the matrix Γ of the direct and

cross-variograms is:

Γ(h) =
L

∑
l=1

Bl gl(h). (20)

The necessary and sufficient conditions because the model defined in (17) and (20) are

admissible are:

1. cl(gl) must be covariances (variograms),

2. the matrices Bl =
[
bl

ij

]
, called coregionalization matrices, must be positive definite.

The necessary, but not sufficient conditions, for the coefficients bl
ij are the following:

a) bl
ii ≥ 0 i = 1, . . . , p, l = 1, . . . , L;

b) |bl
ij| ≤

√
bl

ii bl
jj i, j = 1, . . . , p, l = 1, . . . , L.

373Advances in Spatio-Temporal Modeling and Prediction for Environmental Risk Assessment
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The basic structures gl(h) = gl(hs, ht) of the spatio-temporal LCM (20) can be modelled by

using several spatio-temporal variogram models known in the literature, such as the metric

model [20], Cressie-Huang models [5], Gneiting models [27] and many others [9, 35, 41, 42, 49, 52].

As discussed in [10], each basic spatio-temporal structure, gl(hs, ht), l = 1, . . . , L, can be

modelled as a generalized product-sum variogram [7], that is

gl(hs, ht) = γl(hs, 0) + γl(0, ht)− kl γl(hs, 0) γl(0, ht), l = 1, . . . , L, (21)

where

• γl(hs, 0) and γl(0, ht) are, respectively, the marginal spatial and temporal variograms at

lth scale of variability;

• kl , defined as follows

kl =
sill[γl(hs, 0)] + sill[γl(0, ht)]− sill[gl(hs, ht)]

sill[γl(hs, 0)] sill[γl(0, ht)]
, (22)

is the parameter of generalized product-sum variogram model and it is such that

0 < kl ≤
1

max{sill[γl(hs, 0)]; sill[γl(0, ht)]}
. (23)

The inequality (23) represents a necessary and sufficient condition in order that each basic

structure gl(hs, ht), with l = 1, . . . , L, is admissible. Recently, it was shown that strict

conditional negative definiteness of both marginals is a necessary as well as a sufficient

condition for the generalized product-sum (21) to be strictly conditionally negative definite

[13, 14].

Substituting (21) in (20), the spatio-temporal LCM can be defined through two marginals: one

in space and one in time, i.e.:

Γ(hs, 0) =
L

∑
l=1

Bl γl(hs, 0), Γ(0, ht) =
L

∑
l=1

Bl γl(0, ht). (24)

Using the generalized product-sum variogram model it is possible:

1. to identify the different scales of variability and build the matrices Bl , l = 1, . . . , L, by

means of the direct and cross marginal variograms;

2. to describe the correlation structure of processes characterized by a different spatial and

temporal variability.

4.1. Assumptions in the spatio-temporal LCM

Fitting a spatio-temporal LCM to the data requires the identification of the spatio-temporal

basic variograms and the corresponding positive definite coregionalization matrices, however

this is often a hard step to tackle. A recent approach [16], based on the simultaneous

374 Air Pollution – A Comprehensive Perspective
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diagonalization of a set of matrix variograms computed for several spatio-temporal lags,

allows to determine the spatio-temporal LCM parameters in a very simple way.

In several environmental applications [54], the cross-covariance function is not symmetric,
as for example, in time series in presence of a delay effect, as well as in hydrology, for the
cross-correlation between a variable and its derivative, such as water head and transmissivity
[53]. Hence, this assumption should be tested before fitting a spatio-temporal LCM.

A useful hint to verify the symmetry of the cross-covariance can be given by estimating
all the pseudo cross-variograms [47] of the standardized variables Z̃i, i = 1, . . . , p, i.e.,
γ̃ij(h) = 0.5 Var[Z̃i(u) − Z̃j(u + h)], i, j = 1, . . . , p, i �= j. If the differences between the
estimated pseudo cross-variograms γ̃ij(h) and γ̃ji(h), i, j = 1, . . . , p, are zero or close to zero,
then it could be assumed that the cross-covariances are symmetric.

The appropriateness of the assumption of symmetry of a spatio-temporal LCM can be tested
by using the methodology proposed by [38], based on the asymptotic joint normality of
the sample spatio-temporal cross-covariances estimators. Given a set Λ of user-chosen
spatio-temporal lags and the cardinality c of Λ, let Gn = {Cji(hs, ht) : (hs, ht) ∈ Λ, i, j =

1, . . . , p} be a vector of cp2 cross-covariances at spatio-temporal lags k = (hs, ht) in Λ.
Moreover, let Ĉji(hs, ht) be the estimator of Cji(hs, ht) based on the sample data in the
spatio-temporal domain D × Tn, where D represents the spatial domain and Tn = {1, . . . , n}
the temporal one, and define {Ĉji(hs, ht) : (hs, ht) ∈ Λ, i, j = 1, . . . , p}. Under the

assumptions given in the above paper, |Tn|1/2(Ĝn − G)
d
→ Ncp2(0, Σ), where |Tn|Σ converges

to Cov(Ĝn, Ĝn). Then the tests for symmetry properties can be based on the following
statistics

TS = |Tn|(AĜn)
T(AΣAT)−1(AĜn)

d
→ χ2

a, (25)

where a is the row rank of the matrix A, which is such that AG = 0 under the null hypothesis.
Moreover, the choice of modeling the MSTRF Z by a spatio-temporal LCM is based on the

prior assumption that the multivariate correlation structure of the variables under study is
characterized by L (L ≥ 2) scales of spatio-temporal variability. On the other hand, if the
multivariate correlation of a set of variables does not present different scales of variability
(L = 1), then the cross-covariance functions are separable, i.e.,

Cij(h) = ρ(h) bij, i, j = 1, . . . , p, (26)

where bij are the entries of a (p × p) positive definite matrix B and ρ(·) is a spatio-temporal
correlation function. Hence, as in the spatial context [54], a spatio-temporal intrinsic
coregionalization model can be considered.

Obviously, this last model is just a particular case (L = 1) of the spatio-temporal LCM defined
in (17) and it is much more restrictive than the linear model of coregionalization since it
requires that all the variables have the same correlation function, with possible changes in
the sill values. Note that, if a cross-covariance is separable, then it is symmetric.

Remarks

• In the spatio-temporal LCM, each component is represented as a linear combination of
latent, independent univariate spatio-temporal processes. However, the smoothness of
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any component defaults to that of the roughest latent process, and thus the standard
approach does not admit individually distinct smoothness properties, unless structural
zeros are imposed on the latent process coefficients [28].

• In most applications, the wide use of the spatio-temporal LCM is justified by practical
aspects concerning the admissibility condition for the matrix variograms (covariances).
Indeed, it is enough to verify the positive definiteness of the coregionalization matrices,
Bl , at all scales of variability.

• The spatio-temporal LCM allows unbounded variogram components to be used [54].

5. Prediction and risk assessment in space-time

For prediction purposes, various cokriging algorithms can be found in the literature [3, 33].
As a natural extension of spatial ordinary cokriging to the spatio-temporal context, the linear
spatio-temporal predictor can be written as

Ẑ(u) =
N

∑
α=1

Λα(u)Z(uα), (27)

where u = (s, t) ∈ D × T is a point in the spatio-temporal domain, uα = (s, t)α ∈ D × T,
α = 1, . . . , N, are the data points in the same domain and Λα(u), α = 1, . . . , N, are (p × p)

matrices of weights whose elements λ
ij
α (u) are the weights assigned to the value of the jth

variable, j = 1, . . . , p, at the αth data point, to predict the ith variable, i = 1, . . . , p, at the point
u ∈ D × T.
The predicted spatio-temporal random vector Ẑ(u) at u ∈ D × T, is such that

each component Ẑi(u), i = 1, . . . , p, is obtained by using all information at the data points
uα = (s, t)α ∈ D × T, α = 1, . . . , N.

The matrices of weights Λα(u), α = 1, . . . , N, are determined by ensuring the unbiased

condition for the predictor Ẑ(u) and the efficiency condition, obtained by minimizing the
error variance [29].

The new GSLib routine “COK2ST” [12] produces multivariate predictions in space-time,

for one or all the variables under study, using the spatio-temporal LCM (20) where the
basic spatio-temporal variograms are modelled as generalized product-sum variograms. An
application is also given in [11].

Similarly, for environmental risk assessment, the formalism of multivariate spatio-temporal
indicator random function (MSTIRF) and corresponding predictor, have to be introduced.
Let

I(u, z) = [I1(u, z1), . . . , Ip(u, zp)]
T,

be a vector of p spatio-temporal indicator random functions (STIRF) defined on the domain
D × T ⊆ R

d+1, with (d ≤ 3), as follows

Ii(u, zi) =

{
1 if Zi is not greater (or not less) than the threshold zi,
0 otherwise
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where z = [z1, . . . , zp]
T. Then

{I(u, z), u = (s, t) ∈ D × T ⊆ R
d+1},

represents a MSTIRF. In other words, for each coregionalized variable Zi, with i = 1, . . . , p, a
STIRF Ii can be appropriately defined. Then the linear spatio-temporal predictor (27) can be
easily written in terms of the indicator random variables Ii, i = 1, . . . , p. If the spatio-temporal
correlation structure of a MSTIRF is modelled by using the spatio-temporal LCM, based
on the product-sum, the new GSLib routine “COK2ST” [12] can be used to produce risk

assessment maps, for one or all the variables under study. If p = 1, the dependence
of the indicator variable is characterized by the corresponding indicator variogram of I:
2γST (h) = Var[I(s + hs, t + ht)− I(s, t)], which depends solely on the lag vector h = (hs, ht),
(s, s + hs) ∈ D2 and (t, t + ht) ∈ T2. After fitting a model for γST , which must be
conditionally negative definite, ordinary kriging can be applied to generate the environmental
risk assessment maps. In this case, the GSLib routine “K2ST” [17] can be used for prediction
purposes in space and time.

6. Some critical aspects

Multivariate geostatistical analysis for spatio-temporal data is rather complex because of
several problems concerning:

a) sampling,

b) the choice of admissible direct and cross-correlation models,

c) the definition of automatic procedures for estimation and modeling.

Sampling problems

There exist several sampling techniques for multivariate spatio-temporal data, as specified
herein. Let

Ui = {uα ∈ D × T, α = 1, . . . , Ni}, i = 1, . . . , p,

be the sets of sampled points in the spatio-temporal domain for the p variables under study.
It is possible to distinguish the following situations:

1. total heterotopy, where the sets of the sampled points are pairwise disjoint, that is

∀ i, j = 1, . . . , p, Ui ∩ Uj = ∅, i �= j; (28)

2. partial heterotopy, where the sets of the sampled points are not pairwise disjoint, that is

∃ i �= j | Ui ∩ Uj �= ∅, i, j = 1, . . . , p; (29)

3. isotopy, where the sets of the sampled points coincide, that is

∀ i, j = 1, . . . , p, Ui ≡ Uj. (30)
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A special case of partial heterotopy is the so-called undersampling: in such a case, the points
where a variable, called primary or principal, has been sampled, constitute a subset of the
points where the remaining variables, called auxiliary or secondary, have been observed. The
secondary variables provide additional information useful to improve the prediction of the
primary variable.

Modeling problems

In Geostatistics, the main modeling problems concern the choice of an admissible parametric
model to be fitted to the empirical correlation function (covariance or variogram). In
particular, in multivariate analysis for spatio-temporal data it is important to identify an
admissible model able to describe the correlation among several variables which describe the
spatio-temporal process. In this context, it is suitable to underline that

• it is not enough to select an admissible direct variogram to model a cross-variogram;

• the direct variograms are positive functions, on the other hand cross-variograms could be
negative functions;

• only some necessary conditions of admissibility are known to model a cross-variogram,
as the Cauchy-Schwartz inequality, however sufficient conditions cannot be easily applied
[54].

The use of multivariate correlation models well-known in the literature, such as the LCM
[54], the class of non-separable and asymmetric cross-covariances, proposed by [1], or the
parametric family of cross-covariances, where each component is a Matérn process [28],
requires the identification of several parameters, especially in presence of many variables.

Moreover, estimation and modeling the direct and cross-correlation functions could be
compromised by the sampling plan.

Computational problems

For spatial multivariate data different algorithms for fitting the LCM have been implemented
in software packages. [30] and [31] described an iterative procedure to fit a LCM using a
weighted least-squares like technique: this requires first fitting the diagonal entries, i.e. the
basic variogram structures must be determined first. In contrast, [56] and [57] developed
an alternative method for modeling the matrix-valued variogram by near simultaneously
diagonalizing the sample variogram matrices, without assuming any model for the variogram
matrix; [36] proposed estimating the range parameters of a LCM using a non-linear
regression method to fit the range parameters; [37] used simulated annealing to minimize a
weighted sum of squares of differences between the empirical and the modelled variograms;
[48] modified the Goulard and Voltz algorithm to make it more general and usable for
generalized least-squares or any other least-squares estimation procedure, such as ordinary
least-squares; [58] developed an algorithm for the maximum-likelihood estimation for the
purely spatial LCM and proved that the EM algorithm gives an iterative procedure based on
quasi-closed-form formulas, at least in the isotopic case. Significant contributions concerning

estimation and computational aspects of a LCM can be found in [21]. Unfortunately, for
multivariate spatio-temporal data there does not exist software packages which perform in
an unified way a) the structural analysis, b) a convenient graphical representation of the
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covariance (variogram) models fitted to the empirical ones and c) predictions. One of the
solutions could be to extend the above mentioned techniques to space-time. Indeed, some
routines already implemented in the GSLib software [19] or in the module gstat of R, can only
be applied in a multivariate spatial context.

In the last years, a new GSLib routine, called “COK2ST”, can be used to make predictions
in the domain under study, utilizing the spatio-temporal LCM, based on the generalized
product-sum model [12]. This routine could be merged with the automatic procedure for
fitting the spatio-temporal LCM using the product-sum variogram model, presented in [15],
in order to provide a complete and helpful package for the analyst who needs to obtain
predictions in a spatio-temporal multivariate context. This is certainly the first step for other
developments and improvements in this field.

7. Case study

In the present case study, the environmental data set, with a multivariate spatio-temporal
structure, involves PM10 daily concentrations, Temperature and Wind Speed daily averages

measured at some monitored stations located in the South of Apulia region (Italy), from the
1st to the 23rd of November 2009. In particular, there are 28 PM10 survey stations, 60 and
54 atmospherical stations for monitoring Temperature and Wind Speed, respectively. As it is
highlighted in Fig. 2(a), over the domain of interest, almost all the PM10 monitoring stations
are either traffic or industrial stations, depending on the area where they are located (close
to heavy traffic area or to industrialized area). The remaining monitoring stations are called
peripheral. In Fig. 2(b), box plots of PM10 daily concentrations classified by typology of
survey stations are illustrated. Fig. 3 shows the temporal profiles of the observed values. It is

(a) Survey stations (b) Box plots of PM10 values

Figure 2. Posting map and box plots of PM10 daily concentrations classified by typology of survey
stations

evident that low (high) values of Temperature and Wind Speed are associated with high (low)
values of PM10.

Note that, during the period of interest, the PM10 threshold value fixed by National Laws
for the human health protection (i.e. 50 μg/m3 which should not be exceeded more than 35
times per year) has been overcome the 13rd, the 14th, the 15th and the 23rd of November 2009.
Indeed, as regards this last aspect, it is worth noting that the highest PM10 daily averages have
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Figure 3. Time series plots of PM10, Temperature and Wind Speed daily averages

been registered at all kinds of monitored stations, even at stations located at peripheral areas,
likely for the transport effects caused by wind. As shown in Fig. 2(b), although the maximum
PM10 values registered at stations close to heavy traffic area are greater than the threshold
value, it is evident that these values are less than the ones measured at the other stations.

Spatio-temporal modeling and prediction techniques have been applied in order to assess
PM10 risk pollution over the area of interest for the period 24-29 November 2009. In particular,
the following aspects have been considered:

(1) estimating and modeling spatio-temporal correlation among the variables; in the
fitting stage of a spatio-temporal LCM, the recent procedure [16] based on the nearly
simultaneous diagonalization of several sample matrix variograms, has been applied and
the product-sum variogram model [7] has been fitted to the basic components;

(2) spatio-temporal cokriging based on the estimated model, in order to obtain prediction
maps for PM10 pollution levels during the period 24-29 November 2009 and indicator
kriging [34] in order to construct risk maps related to the probability that predicted PM10

concentrations exceed the threshold value (50 μg/m3) fixed by National Laws;

(3) generating and comparing, for two sites of interest (one close to an industrial area and

the other one close to a heavy traffic area), the probability distributions that PM10 daily
concentrations exceed some risk levels during the period 24-29 November 2009.

7.1. Modeling spatio-temporal LCM

Modeling the spatio-temporal correlation among the variables under study by using the
spatio-temporal LCM, requires first to check the adequacy of such model. In particular, the
symmetry assumption has been checked by

a) exploring the differences between the pseudo cross-variograms of the standardized
variables (standardized by subtracting the mean value and dividing this difference by the
standard deviation),

b) using the methodology proposed by [38].

As regards point a), the largest absolute difference has been equal to 0.135 and has been
observed among the differences between the two pseudo cross-variograms concerning PM10

and Wind Speed standardized data. On the other hand, for the point b), three pairs composed
by six stations, with consecutive daily average measurements have been selected for the test.
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These pairs of monitoring stations have been picked to be approximately along the SE − NW
direction, since the prevalent wind direction over the area under study and during the
analyzed period was SE − NW. Moreover, the temporal lag has been selected in connection
with the largest empirical cross-correlations for all variable combinations; hence ht = 1 has
been considered for all testing lags. Three different variables and three pairs of stations
generate 9 testing pairs in the symmetry test, and consequently the degree of freedom a
for the symmetry test is equal to 9. The test statistic TS (25) has been equal to 0.34 with
a corresponding p-value equal to 0.99. Hence, the results from both the procedures have
highlighted that the spatio-temporal LCM is suitable for the data set under study.

By using the recent fitting procedure [16] based on the nearly simultaneous diagonalization
of several sample matrix variograms computed for a selection of spatio-temporal lags, the
basic independent components and the scales of spatio-temporal variability have been simply
identified. In particular, the spatio-temporal surfaces of the variables under study have been
computed for 7 and 5 user-chosen spatial and temporal lags, respectively (Fig. 4). Then, the
35 symmetric matrices of sample direct and cross-variograms have been nearly simultaneous
diagonalization in order to detect the independent basic components. In this way, 3 scales of
spatial and temporal variability have been identified: 10, 18 and 31.5 km in space, and 2.5, 3.5
and 6 days in time.

Thus, the following spatio-temporal LCM has been fitted to the observed data:

Γ(hs, ht) = B1 g1(hs, ht) + B2 g2(hs, ht) + B3 g3(hs, ht), (31)

where the spatio-temporal variograms gl(hs, ht), l = 1, 2, 3, are modelled as a generalized
product-sum model, i.e.

gl(hs, ht) = γl(hs, 0) + γl(0, ht)− klγl(hs, 0) γl(0, ht). (32)

The spatial and temporal marginal basic variogram models, γl(hs, 0) and γl(0, ht),
respectively, and the coefficients kl , l = 1, 2, 3, previously defined in (22), are shown below:

γ1(hs, 0) = 86 Exp(||hs||; 10), γ1(0, ht) = 165 Exp(|ht|; 2.5), k1 = 0.0057, (33)

γ2(hs, 0) = 0.95 Exp(||hs||; 18), γ2(0, ht) = 3.7 Exp(|ht|; 3.5), k2 = 0.02418, (34)

γ3(hs, 0) = 0.29 Gau(||hs||; 31.5), γ3(0, ht) = 0.83 Exp(|ht|; 6), k3 = 1.1633, (35)

where Exp(·; a) and Gau(·; a) denote the well known exponential and Gaussian variogram

models, with practical range a [19].

Finally, the matrices Bl , l = 1, 2, 3, of the spatio-temporal LCM (31), computed by the
procedure described in [15], are the following:

B1 =

⎡
⎣

0.982 −0.044 −0.024

−0.044 0.018 0.006
−0.024 0.006 0.007

⎤
 , B2 =

⎡
⎣

43.421 −2.632 −1.550

−2.632 0.395 0.118
−1.550 0.118 0.105

⎤
 , (36)

B3 =

⎡
⎣

71.429 −10.119 −4.167
−10.119 1.726 0.414
−4.167 0.414 0.357

⎤
 . (37)
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Figure 4. Spatio-temporal variogram and cross-variogram surfaces of PM10, Temperature and Wind
Speed daily averages
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Fig. 5 shows the spatio-temporal variograms and cross-variograms fitted to the surfaces of
PM10, Temperature and Wind Speed daily averages. Then, the spatio-temporal LCM (31) has
been used to produce prediction and risk assessment maps for PM10 daily concentrations, as
discussed hereafter.

7.2. Prediction maps and risk assessment

In order to obtain the prediction maps for PM10 pollution levels for the period 24-29
November 2009, spatio-temporal cokriging has been applied, using the routine “COK2ST”
[12]. Risk assessment maps have been associated to the prediction maps. Spatial indicator
kriging has been applied to assess the probability that predicted PM10 daily concentrations
exceed the PM10 threshold value fixed by National Laws for the human health protection (i.e.
50 μg/m3), during the period of interest. Fig. 6 and Fig. 7 show contour maps of the predicted
PM10 values and the corresponding risk maps, for the period 24-29 November 2009. The red
points on the maps represent the monitoring stations.

It is important to highlight that the highest PM10 values are predicted in the Eastern part of
the domain of interest: this area corresponds to the boundary between Lecce and Brindisi
districts which is strictly close to an industrial site, such as the thermoelectric power station
“Enel-Federico II”, located in Cerano (Brindisi district). Moreover, in this area the probability
that PM10 daily concentrations exceed 50 μg/m3 is high during the predicted week. It is worth
noting that on Saturday and Sunday the predicted values of PM10 daily concentrations show
lower average levels than the ones estimated during the working days, when heavy traffic
contributes to keep pollution concentrations high; consequently, the corresponding risk maps
do not show hazardous PM10 conditions.

7.3. Probability distributions for different sites

After producing predicted maps of PM10 daily concentrations, it is also interesting to estimate
the probability distribution that PM10 daily concentrations exceed some risk levels at sites
characterized by sources of pollution.

Two different sites, one close to an industrialized area, located at Brindisi district, and the
other one close to a heavy traffic area, located at Lecce district, have been considered in
order to generate and compare the probability distributions that PM10 daily concentrations
overcome several risk levels during the period 24-29 November 2009. Fig. 8 shows that, all
over the industrialized area of interest, the probability that PM10 daily concentrations exceed
the threshold fixed by National Laws (50 μg/m3) is very high (greater than 80%) during the
period 24-27 November 2009 (working days); on the other hand, during the weekend (28-29
November 2009) such a probability decreases at 40-42%.

Note that at the site close to a heavy traffic area, the probability that PM10 daily concentrations
exceed the national law limit is very low during the analyzed period, except on the 25th
of November; moreover, it drops off rapidly for values below the national threshold. This
empirical evidence highlights that there is no critical PM10 exceeding for the selected traffic
site, especially during the last 3 days of the week. As it is shown, this is a very powerful
tool since any action of environmental protection might be adopted in advance by taking into
account the actual likelihood of dangerous PM10 exceeding.
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Figure 5. Spatio-temporal variograms and cross-variograms fitted to variogram and cross-variogram
surfaces of PM10, Temperature and Wind Speed daily averages
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Figure 6. Prediction maps of PM10 daily concentrations and risk maps at the threshold fixed by National
Laws, for the 24th, 25th and 26th of November 2009
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(a) Site close to an industrialized area (b) Site close to a heavy traffic area

Figure 8. Probability distributions that PM10 daily concentrations overcome several risk levels during
the period 24-29 November 2009

8. Conclusions

In this paper, some significant theoretical and practical aspects for multivariate geostatistical
analysis have been discussed and some critical issues concerning sampling, modeling and
computational aspects, which should be faced, have been pointed out. The proposed
multivariate geostatistical techniques have been applied to a case study pertaining particle
pollution (PM10) and two atmospheric variables (Temperature and Wind Speed) in the South
of Apulian region.

Further analysis regarding the integration of land use and possible sources of pollution
through an appropriate geographical information system could be helpful to fully understand
the dynamics of PM10, which is still considered one of the most hazardous pollutant for
human health.
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