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1. Introduction

Relation extraction refers to the method of efficient detection and identification of prede‐
fined semantic relationships within a set of entities in text documents (Zelenco, Aone, & Ri‐
chardella, 2003; Zhang, Zhou, and Aiti, 2008). The importance of this method was
recognized first at the Message Understanding Conference (MUC, 2001) that had been held
from 1987 to 1997 under the supervision of DARPA1. After that, the Automatic Content Ex‐
traction (ACE, 2009) Workshop facilitated numerous researches that from 1999 to 2008 had
been promoted by NIST2 as a new project. Currently, the workshop is held every year being
the greatest world forum for comparison and evaluation of new technology in the field of
information extraction such as named entity recognition, relation extraction, event extrac‐
tion, and temporal information extraction. This workshop is conducted as a sub-field of Text
Analytics Conference (TAC, 2012) which is currently under the supervision of NIST.

According to ACE, an entity in the text is a representation for naming a real object. Exempla‐
ry entities include the names of persons, locations, facilities and organizations. A sentence
including these entities can express the semantic relationships in between them. For exam‐
ple, in the sentence “President Clinton was in Washington today,” there is the “Located” relation
between “Clinton” and “Washington”. In the sentence “Steve Balmer, CEO of Microsoft, said…”
the relation of “Role (CEO, Microsoft)” can be extracted.

Many relation extraction techniques have been developed in the framework of various tech‐
nological workshops mentioned above. Most relation extraction methods developed so far
are based on supervised learning that requires learning collections. These methods are clas‐

1 Defense Advanced Research Projects Agency of the U.S.
2 National Institute of Standards and Technology of the U.S.
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sified into feature-based methods, semi-supervised learning methods, bootstrapping meth‐
ods, and kernel-based methods (Bach & Badaskar, 2007; Choi, Jeong, Choi, and Myaeng,
2009). Feature-based methods rely on classification models for automatically specifying the
category where a relevant feature vector belongs. At that, surrounding contextual features
are used to identify semantic relations between the two entities in a specific sentence and
represent them as a feature vector. The major drawback of the supervised learning-based
methods, however, is that they require learning collections. Semi-supervised learning and
bootstrapping methods, on the other hand, use a large corpora or web documents, based on
reduced learning collections that are progressively expanded to overcome the above disad‐
vantage. Kernel-based methods (Collins & Duffy, 2001), in turn, devise kernel functions that
are most appropriate for relation extraction and apply them for learning in the form of a ker‐
nel set optimized for syntactic analysis and part-of-speech tagging. The kernel function itself
is used for measuring the similarity between two instances, which are the main objects of
machine learning. General kernel-based models will be discussed in detail in Section 3.

As one representative approach of the feature-based methods, (Kambhatla, 2004) combines
various types of lexical, syntactic, and semantic features required for relation extraction by
using maximum entropy model. Although it is based on the same type of composite features
as that proposed by Kambhatla (2004), Zhou, Su, Zhang, and Zhang (2005) make the use of
support vector machines for relation extraction that allows flexible kernel combination.
Zhao and Grishman (2005) have classified all features available by that point in time in or‐
der to create individual linear kernels, and attempted relation extraction by using composite
kernels made of individual linear kernels. Most feature-based methods aim at applying fea‐
ture engineering algorithms for selecting optimal features for relation extraction, and appli‐
cation of syntactic structures was very limited.

Exemplary semi-supervised learning and bootstrapping methods are Snowball (Agichtein &
Gravano, 2000) and DIPRE (Brin, 1999). They rely on a few learning collections for making the
use of bootstrapping methods similar to the Yarowsky algorithm (Yarowsky, 1995) for gather‐
ing various syntactic patterns that denote relations between the two entities in a large web-
based  text  corpus.  Recent  developments  include  KnowItAll  (Etzioni,  et  al.,  2005)  and
TextRunner (Yates, et al., 2007) methods for automatically collecting lexical patterns of target
relations and entity pairs based on ample web resources. Although this approach does not re‐
quire large learning collections, its disadvantage is that many incorrect patterns are detected
through expanding pattern collections, and that only one relation can be handled at a time.

Kernel-based relation extraction methods were first attempted by Zelenco, et al. (2003). Ze‐
lenco, et al., devised contiguous subtree kernels and sparse subtree kernels for recursively
measuring similarity of two parse trees in order to apply them to binary relation extraction
that demonstrated relatively high performance. After that, a variety of kernel functions for
relation extraction have been suggested, e.g., dependency parse trees (Culotta and Sorensen,
2004), convolution parse tree kernels (Zhang, Zhang and Su, 2006), and composite kernels
(Choi et al., 2009; Zhang, Zhang, Su and Zhou, 2006), which show even better performance.

In this chapter, case analysis was carried out for kernel-based relation extraction methods,
which are considered to be the most successful approach so far. Of course, some previous
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survey papers based on the importance and effect of the methodology have been published
(Bach and Badaskar, 2007; Moncecchi, Minel and Wonsever, 2010). However, they fail to
fully analyze particular functional principles or characteristics of the kernel-based relation
extraction models announced so far, and just cite the contents of individual articles or de‐
scribe limited analysis. Although the performance of most kernel-based relation extraction
methods has been demonstrated on the basis of ACE evaluation collections, comparison and
analysis of the overall performance has not been made so far.

This chapter, unlike existing case studies, makes a close analysis of operation principles and
individual characteristics of five kernel-based relation extraction methods starting from Ze‐
lenco, et al. (2003) which is the source of kernel-based relation extraction studies, to the com‐
posite kernel, which is considered the most advanced kernel-based relation method (Choi, et
al., 2009; Zhang, Zhang, Su, et al., 2006). The focus will be laid on the ACE collection to com‐
pare the overall performance of each method. We hope this study will contribute to further
research of kernel-based relation extraction of even higher performance and to high-level
general kernel studies for linguistic processing and text mining.

Section 2 outlines supervised learning-based relation extraction methods and in section 3 we
discuss kernel-based machine learning. Section 4 closely analyzes five exemplary kernel-
based relation extraction methods. As mentioned above, Section 5 also compares the per‐
formance of these methods to analyze advantages and disadvantages of each method.
Section 6 draws a conclusion.

2. Supervised learning-based relation extraction

As discussed above,  relation extraction methods are  classified into three categories.  The
difference  between  feature-based  and  kernel-based  methods  is  shown  in  the  following
Figure 1. With respect to machine learning procedure, these two are different from semi-
supervised learning methods.

On the left of Figure 1, individual sentences that make up a learning collection have at least
two entities (black square) of which the relation is manually extracted and predefined. Since
most relation extraction methods studied so far work with binary relations, learning exam‐
ples are modified for convenient relation extraction from the pair of entities by preprocess‐
ing the original learning collection. These modified learning examples are referred to as
relation instance. The relation instance is defined as an element of the learning collection
modified so that it can be efficiently applied to the relevant relation extraction methods on
the basis of specific sentence that contains at least two entities.

The aforementioned modification is closely related to feature information used in relation
extraction.  Since  most  supervised learning-based methods use  both the  entity  itself  and
the contextual information about the entity, it is important to collect contextual informa‐
tion efficiently for improving performance. Linguistic processing (part-of-speech tagging,
base  phrase recognition,  syntactic  analysis,  etc.)  for  individual  learning sentences  in  the
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pre-processing step contributes to making a base for effective feature selection and extrac‐
tion. For example, when one sentence shown in the above Figure 1 goes through syntactic
analysis, one relation instance is composed of a parse tree and the locations of entities in‐
dicated  in  the  parse  tree  (Fundel,  Küffner,  &  Zimmer,  2007;  Zhang,  et  al.,  2008;  Zhou,
Zhang, Ji,  and Zhu, 2007).  A single sentence can be represented as a feature vector or a
syntactic  graph  (Jiang  and  Zhai,  2007;  W.  Li,  Zhang,  Wei,  Hou,  and  Lu,  2008;  Zhang,
Zhang, and Su, 2006). The type of such relation instances depends on the relation extrac‐
tion methods, and can involve various preprocessing tasks as well (D. P. T. Nguyen, Mat‐
suo, and Ishizuka, 2007; Zhang, Zhang, and Su, 2006).

Figure 1. Learning process for supervised learning-based relation extraction.

In general, feature-based relation extraction methods follow the procedures shown in the
upper part of Figure 1. That is, feature collections that “can express individual learning ex‐
amples the best” are extracted (feature extraction.)  The learning examples are feature-vec‐
torized, and inductive learning is carried out using selected machine learning models. On
the contrary, kernel-based relation extraction shown in the lower part of Figure 1 devises
a kernel function that “can calculate similarity of any two learning examples the most effective‐
ly” to replace feature extraction process. Here, the measurement of similarity between the
learning examples is  not general  similarity measurement in a general sense.  That is,  the
function for enhancing similarity between the two sentences or instances that express the
same relation is the most effective kernel function from the viewpoint of relation extrac‐
tion. For example, two sentences “Washington is in the U.S.” and “Seoul is located in Korea”
use different object entities but feature the same relation (“located.”) Therefore, an efficient
kernel function would detect a high similarity between these two sentences. On the other
hand, since the sentences “Washington is the capital of the United States” and “Washington is
located in the United States” express the same object entities but different relations, the sim‐
ilarity between them should be determined as very low. As such, in kernel-based relation
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extraction methods, the selection and creation of kernel functions are the most fundamen‐
tal part that affects the overall performance.

As shown in the Figure 1, kernel functions (linear, polynomial, and sigmoid) can be used in
feature-based methods as well. They are, however, functions applied only to instances ex‐
pressed with vectors. On the other hand, kernel-based methods are not limited in terms of
the type of the instance, and thus can contain various kernel functions.

3. Overview of kernel-based machine learning methods

Most machine learning methods are carried out on a feature basis. That is, each instance to
which an answer (label) is attached, is modified into a feature sequence or N-dimensional
vector f1, f2, …, fN to be used in the learning process. For example, important features for
identifying the relation between two entities in a single sentence are entity type, contextual
information between, before and after entities’ occurrence, part-of-speech information for
contextual words, and dependency relation path information for the two entities (Choi et al.,
2009; Kambhatla, 2004; W. Li, Zhang, et al., 2008; Zhang, Zhang, and Su, 2006). These data
are selected as a single feature, respectively, to be represented with a vector for automatic
classification of the relation between the entities.

In section 2, we discussed that the essence of feature-based methods is to create a feature
vector that can best express individual learning examples. However, in many cases, it  is
not possible to express the feature vector reasonably. For example, a feature space is re‐
quired for expressing syntactic information3 of a specific sentence as a feature vector, and
it is almost impossible to express it  as a feature vector in a limited space in some cases
(Cristianini and Shawe-Taylor,  2000).  Kernel-based methods are for learning by calculat‐
ing kernel functions between two examples while keeping the original learning example
without  additional  feature  expression  (Cristianini  and  Shawe-Taylor,  2000).  The  kernel
function is defined as the mapping K :Χ ×Χ→ 0, ∞) from the input space Χ  to the simi‐

larity score ϕ(x)⋅ϕ(y)=∑
i

ϕi(x)ϕi(y).  Here,  ϕ(x)  is  the mapping function from learning

examples in the input space υ to the multidimensional feature space. The kernel function
is symmetric,  and exhibits  positive semi-definite features.  With the kernel  function,  it  is
not necessary to calculate all features one by one, and machine learning can thus be car‐
ried  out  based  only  on  similarity  between  two  learning  examples.  Exemplary  models
where learning is carried out on the basis of all similarity matrices between learning ex‐
amples  include  Perceptron  (Rosenblatt,  1958),  Voted  Perceptron  (Freund  and  Schapire,
1999),  and Support Vector Machines (Cortes and Vapnik, 1995) (Moncecchi,  et al.,  2010).
Recently, kernel-based matching learning methods draw increasingly more attention, and
are widely used for pattern recognition, data and text mining, and web mining. The per‐

3 Dependency grammar relation, parse tree, etc. between words in a sentence.
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formance of kernel methods, however, depends to a great extent on kernel function selec‐
tion or configuration (J. Li, Zhang, Li, and Chen, 2008).

Kernel-based learning methods are used also for natural language processing. Linear, poly‐
nomial and Gaussian kernels are typical in simple feature vector-based machine learning.
Convolutional kernel (Collins & Duffy, 2001) is used for efficient learning of structural data
such as trees or graphs. The convolution kernel is a type of kernel function featuring the
idea of sequence kernels (Lodhi, Saunders, Shawe-Taylor, Cristianini, & Watkins, 2002), tree
kernels (Culotta & Sorensen, 2004; Reichartz, Korte, & Paass, 2009; Zelenco, et al., 2003;
Zhang, Zhang, & Su, 2006; Zhang, et al., 2008), and graph kernels (Gartner, Flach, & Wrobel,
2003). The convolutional kernel can measure the overall similarity by defining “sub-kernels”
for measuring similarity between the components of an individual entity and calculating
similarity convolution among the components. For example, the sequence kernel divides the
relevant sequence into subsequences for measuring similarity of two sequences to calculate
overall similarity by means of similarity measurement between the subsequences. Likewise,
the tree kernel divides a tree into its sub-trees to calculate similarity between them and then
it calculates the convolution of these similarities.

As described above, another advantage of the kernel methods is that learning is possible
as  a  single  kernel  function for  input  instance collections of  different  type.  For  example,
(Choi et al.,  2009; Zhang, Zhang, Su, et al.,  2006) have demonstrated a composite kernel
for which the convolutional parse tree kernel is combined with the entity kernel for high-
performance relation extraction.

4. Kernel-based relation extraction

The most prominent characteristic of the relation extraction models derived so far is that lin‐
guistic analysis is used to carefully identify relation expressions and syntactic structures di‐
rectly and indirectly expressed in specific sentences. In this section, five important research
results are discussed and analyzed. Of course, there are many other important studies that
have drawn much attention due to their high performance. Most of approaches, however,
just modify or supplement the five basic methods discussed below. Therefore, this study can
be an important reference for supplementing existing research results in the future or study‐
ing new mechanisms for relation extraction, by intuitively explaining the details of major
studies. Firstly, tree kernel methods originally proposed by Zelenco, et al. (2003) are covered
in detail. Then, the method proposed by Culotta & Sorensen (2004) is covered where the de‐
pendency tree kernel was used for the first time. Also, kernel-based relation extraction (Bu‐
nescu & Mooney, 2005) using dependency path between two entities in a specific sentence
on the basis of similar dependency trees is discussed. Additionally, the subsequence kernel-
based relation extraction method proposed by (Bunescu & Mooney (2006) is explained. Fi‐
nally, the relation extraction models (Zhang, Zhang, Su, et al., 2006) based on the composite
kernel for which various kernels are combined on the basis of the convolution parse tree
kernel proposed by Collins & Duffy (2001) are covered in detail.
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4.1. Tree kernel-based method (Zelenco, et al., 2003)

This study is known as the first application of kernel method to relation extraction. The
parse trees derived from shallow parsing are used for measuring similarity between the sen‐
tences containing entities. In their study, the REES (Relation and Event Extraction System) is
used to analyze part-of-speeches and types of individual words in a sentence, as well as the
syntactic structure of the sentence in question. Here, the REES is a relation and event extrac‐
tion system developed by Aone & Ramos-Santacruz (2000). The Figure 2 below shows exam‐
ple result from the REES.

Figure 2. Exemplary shallow parsing result for relation extraction.

As shown in Figure 2, when the syntactic analysis of the input sentence is completed, partic‐
ular information for words of the sentence is analyzed and extracted. Four types of attribute
information are attached to all words or entities other than articles and stop words. Type
represents the part-of-speech or entity type of the current word. While “John Smith” is the
“Person” type, “scientist” is specified as “PNP” representing a personal noun. Head repre‐
sents the presence of key words of composite nouns or preposition phrases. Role represents
the relation between the two entities. In Figure 2, “John Smith” is the “member” of “Hardcom
C.” In its turn, “Hardcom C.” is an “affiliation” of “John Smith”.

As one can see, it is possible to identify and extract the relation between the two entities in a
specific sentence at a given level if the REES is used. Since the system, however, was developed
on the basis of rules, it has some limitations in terms of scalability and generality (Zelenco et al.,
2003). Zelenco et al. (2003) have constructed tree kernels on the basis of the REES analysis re‐
sult with a view of better relation extraction so as to overcome the limitations of machine learn‐
ing  and low performance.  The  kernel  function  defined in  this  study for  measuring  the
similarity of a pair of shallow parsing trees consists of the following chain of equations. The
comparison function for each individual configuration node in the trees is as follows.

Survey on Kernel-Based Relation Extraction
http://dx.doi.org/10.5772/51005

7



t(P1.p, P2.p)= {1, if P1.Type = P2.Type and P1.Role = P2.Role
0, otherwise

(1)

In this equation, P i.p represents a specific parent node in the parsing tree; P i.Type represents
word and entity type information; and P i.Role represents relation information between the
two entities. Equation 1 is called matching function, and is used for comparing between the
part-of-speeches, entity type and relation type information for each node. If both type and
role are the same as in binary comparison, 1 is returned and otherwise 0.

k (P1.p, P2.p)= {1, if P1.Text = P2.Text
0, otherwise

(2)

Equation 2 represents the function for deciding whether two nodes comprise the same words
or entities. (Zelenco et al., 2003) named this similarity function. The recursive kernel function K c
for the child node of a specific parent node, is defined as follows on the basis of the two func‐
tions. Although all the functions above do not use “Head” field in each node for simplicity in
(Zelenco et al., 2003), it would be valuable to use the field for better performance.

Kc(P1.c, P2.c)= ∑
i, j,l(i)=l( j)

SSK (P1.c, P2.c, i, j)

 SSK (P1.c, P2.c, i, j)=λ d (i)λ d (i)K (P1 i , P2 j ) ∏
s=1,...,l(i)

t(P1 is , P2 js )

K (P1 i , P2 j )=∑s=1,...,l (i) K (P1 is , P2 js )
 i = {i1, i2, ..., in | i1≤ i2≤ ...≤ in}
 d (i)= in − i1 + 1
 l(i)=n

(3)

In Equation 3, P i.c represents the child nodes of the specific node (P i .p). SSK(P 1.c, P 2.c, i, j)
is the function for calculating subsequence similarity between child nodes (P i.c) of P 1.p and
P 2.p. Here, i is the index representing all the subsequences of the child nodes of P i.p.

�d
(i), 0< �<1 is the weight factor depending on the length of the child node subsequences. This

variable determines how many subsequences of the specific child node are contained in the
entire child nodes in order to lower the similarity in case of multiple matching subsequen‐
ces. d(i) represents the distance between the first and last nodes of the currently processing
subsequence i, and l(i) represents the number of the nodes of i. The kernel function between
the two trees is defined as follows.

K (P1, P2)= {0, if t(P1.p, P2.p)=0
k (P1.p, P2.p) + Kc(P1.c, P2.c), otherwise

(4)
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Pi represents the tree to be compared. The similarity between the two trees is calculated by
adding up the similarity function k (Equation 2) for the current node (parent node) and the
similarity calculation function K c (Equation 3) between the child nodes. The kernel calcula‐
tion process for the following parse trees will be described in detail later for intuitive under‐
standing of the kernel function.

Figure 3. Two sample parse trees for illustrating kernel calculation process.

The original sentence of the parse tree on the left side is “John Smith is a chief scientist of Hard‐
com C.”, and the original sentence of the tree on the right side is “James Brown is a scientist at
the University of Illinois.” For convenience, the left-side tree is referred to as P 1, and the right-
side tree as P 2. For easy explanation, “chief” and “University of Illinois” are removed or ab‐
breviated. The kernel function for the two trees is primarily expressed as in the following.

K (P1, P2)=k (P1.Sentence.p, P2.Sentence.p)

+ Kc( P1.Person, P1.Verb, P1.PNP , P2.Person, P2.Verb, P2.PNP )
=k (P1.Sentence.p, P2.Sentence.p)

+ ∑
i, j,l(i)=l( j)

SSK ( P1.Person, P1.Verb, P1.PNP , P2.Person, P2.Verb, P2.PNP , i, j)

(5)

Equation 4 is used to calculate the tree kernel between the two trees P 1 and P 2, Here P
i.Sentence.p represents the root node of i-th tree. Equation 3 is used to calculate K c for each
child node of the root node to expand it into the sum of the SSK function. The Figure 4 be‐
low shows the process of calculating the kernel of the SSK function.

Figure 4 shows the process of calculating the kernel function between the second-level child
nodes of the two trees. Since all nodes at this level have unexpectedly the matching node
type as shown in Figure 3, kernel similarity between the subsequences of each matching
node as shown in the equations on the right side of Figure 3. Since matching only between
subsequences of the same length is implemented as in Equation 3, non-matching subsequen‐
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ces are excluded from kernel calculation through conformity check among subsequences of
which the length is 1, 2 and 3 respectively. The result of kernel calculation is as follows.

{ }

1 2 1 2

1 1 1 2 2 2

2
1 2 1 2 1 2

( , ) ( . . , . . )
                ([ . , . , . ],[ . , . , . ])

               ( . , . ) ( . , . ) ( . , . )  ( ( ) 1,
c

K P P k P Sentence p P Sentence p
K P Person P Verb P PNP P Person P Verb P PNP
K P Person P Person K P Verb P Verb K P PNP P PNP l dl

=
+

= + + ® =i

{ }
{ }

4
1 2 1 2 1 2

6
1 2 1 2

( ) 1)

                 ( . , . ) 2 ( . , . ) ( . , . )  ( ( ) 2, ( ) 2)

                 ( . , . ) ( . , . )                                        

K P Person P Person K P Verb P Verb K P PNP P PNP l d

K P Person P Person K P PNP P PNP

l

l

=

+ + + ® = =

+ +

i

i i

{ }
{ } { }

6
1 2 1 2 1 2

2 4
1 2 1 2

6
1

( ( ) 2, ( ) 3)

                 ( . , . ) ( . , . ) ( . , . )     ( ( ) 3, ( ) 3)

               0 1 ( . , . ) 0 2 ( . , . )

                  (

l d

K P Person P Person K P Verb P Verb K P PNP P PNP l d

K P PNP P PNP K P PNP P PNP

K P

l

l l

l

® = =

+ + + ® = =

= + + + + +

+

i i

i i

{ }
{ }

6
2 1 2

2 4 6 2 4 6
1 2

. , . ) 1 ( . , . )

               2 2 ( . , . )

PNP P PNP K P PNP P PNP

K P PNP P PNP

l

l l l l l l

+ +

= + + + + +

(6)

Figure 4. Executing Subsequence Similarity Kernel (SSK) function.

As Equation 6 shows, only the Equation expressed on the basis of � is left, other than K(P
1.PNP, P 2.PNP). The kernel function recursively compares child node subsequences at the
third level to calculate resulting kernel similarity.

Figure 5. Process and method of calculating the tree kernel.
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Figure 5 shows the process and method of calculating the kernel function. Basically, for the
tree kernel, Breadth First Search is carried out. In calculating similarity between the two trees,
trees to be compared are primarily those with the same node type and role. Since the kernel
value is 0 when the text is different, nodes with the same text are substantially compared. In
Figure 5, these are “be” and “scientist” nodes.

Zelenco, et al., (2003) divides tree kernel calculation into two types. One is the sparse subtree
kernel described above, and the other one is the continuous subtree kernel, which is discussed
below. First, the sparse subtree kernel includes two node subsequences for comparison, al‐
though two node subsequences are not continuously connected. For example, “Person, PNP”
on the left side and “Person, PNP” on the right side in the middle of Figure 4 are node se‐
quences, separated in the parse tree. The sparse subtree kernel includes such subsequences
for comparison. On the contrary, the continuous subtree kernel does not approve such sub‐
sequences and excludes them from comparison. The Figure 6 below shows additional exem‐
plary sentence for comparison and describing the effect of two tree kernels.

Figure 6. Additional sample sentence and parsing result.

Figure 6 shows the parsing result for “John White, a well-known scientist at the University of
Illinois, led the discussion.” Unlike the sentences discussed above, this one has an independent
inserted phrase in apposition, and comprises the same contents as the second sentence of
Figure 3 “James Brown is a scientist at the University of Illinois.” If these two sentences are com‐
pared by means of the continuous subtree kernel, a very low kernel similarity will be de‐
rived because there is almost no continuous node on the parse tree although they include
similar contents. The sparse subtree kernel is used overcome this deficiency. Figure 7 shows
a part of the process of calculating kernel values for two sentences.

Figure 7 shows the process of calculating K([Person, Verb, PNP], [Person, Punc, PNP, Verb, BNP])
by means of sparse subtree kernel. When continuous subtree kernel is used, the similarity be‐
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tween the two sentences is very low. A better similarity value is revealed by two pairs of
matching subsequences in the subsequence of which the length is 2, as shown in Figure 7.

Figure 7. Process of calculating K([Person, Verb, PNP], [Person, Punc, PNP, Verb, BNP]).

For measuring the performance of the proposed two tree kernels, (Zelenco et al., 2003) used
60% of data manually constituted as a learning collection, and carried out 10-fold cross valida‐
tion. Only two relations, that is, “Person-Affiliation” and “Organization-Location”, were tested.
The test revealed that the kernel-based method offers better performance than the feature-
based method, and the continuous subtree kernel excels the sparse subtree kernel. In particu‐
lar, the tree kernel proposed in their study inspired many new tree kernel researchers.

Their study is generally recognized as an important contribution for devising kernels for ef‐
ficient measuring of similarity between very complex tree-type structure entities to be used
later for relation extraction. Since various information other than the syntactic information is
still required, the method highly depends on the performance of the REES system for creat‐
ing parse trees. Because the quantity of data was not enough for the test and the binary clas‐
sification test for only two types of relation was carried out, scalability or generality of the
proposed kernel was not analyzed in detail.

4.2. Dependency tree kernel-based method (Culotta & Sorensen, 2004)

As the ACE collection was constituted and distributed from 2004, relation extraction has
been fully studied. Culotta and Sorensen (2004) proposed a kernel-based relation extraction
method, which uses the dependency parse tree structure on the basis of the tree kernel pro‐
posed by Zelenco, et al., (2003) described in section 4.1. This special parse tree, called an
Augmented Dependency Tree, uses MXPOST (Ratnaparkhi, 1996) to carry out parsing, and
then modifies some syntactic rules on the basis of the result. Exemplary rules include “sub‐
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jects are dependent on verbs”, “adjectives” are dependent on nouns they describe, etc. In order
to improve analysis result, however, this study uses even more complex node features than
(Zelenco et al., 2003). The hypernym extracted from WordNet (Fellbaum, 1998) is applied to
expand the matching function between nodes. The composite kernel is constructed to apply
it to relation extraction for the first time.

Figure 8. Sample augmented dependency tree (“Troops advanced near Tikrit”).

Figure 8 shows a sample augmented dependency tree used in this study. The root of the tree is
the verb “advanced”, and the resultant subject and the preposition are the child nodes of the
root. The object of the preposition “Tikrit” is the child node of the preposition “near”. Each node
has 8 types of node feature information. The Table below outlines each node feature.

Feature Example

Words troops, Tikrit

Detailed POS (24) NN, NNP

General POS (5) Noun, Verb, Adjective

Chunking Information NP, VP, ADJP

Entity Type person, geo-political-entity

Entity Level name, nominal, pronoun

WordNet hypernyms social group, city

Relation Argument ARG_A, ARG_B

Table 1. Node features in the augmented dependency tree.
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In Table 1, the first four features (words, part-of-speech information, and phrase informa‐
tion) are the information obtained from parsing, and the rest are named entity features from
the ACE collection. Among them, the WordNet hypernym is the result of extracting the
highest node for corresponding word from the WordNet database.

As discussed above, the tree kernel defined by (Zelenco et al., 2003) is used in this method.
Since the features of each node are added, the matching function (Equaiton 1) and the simi‐
larity function (Equation 2) defined by Zelenco, et al., (2003) are accordingly modified into
and applied. In detail, the features to be applied to the matching function and the features to
be applied to the similarity function from among 8 features were dynamically divided to de‐
vise the following models to be applied.

ti : feature vector representing the node i.
tj : feature vector representing the node j.

ti
m : subset of ti used in matching function

ti
s : subset of ti used in similarity function

m(ti, tj)= {1 if ti
m = tj

m

0 otherwise
s(ti, tj)= ∑

vq∈ti
s

∑
vr∈tj

s

C(vq, vr)

(7)

Where, m is the matching function; s is the similarity function; and t i is a feature collection
showing the node i. C(฀,฀) is a function for comparing two feature values on the basis of
approximate matching, not simple perfect matching. For example, recognition of “NN” and
“NP” in the particular part-of-speech information of Table 1 as the same part-of-speeches is
implemented by modifying the internal rule of the function. Equations 3 and 4 in section 4.1
are applied as tree kernel functions for comparing the similarity of two augmented depend‐
ency trees on the basis of two basic functions.

For the evaluation, the initial ACE collection version (2002) released in 2003 was used. This
collection defines 5 entity types and 24 types of relations. Culotta & Sorensen (2004) tested
relation extraction only for the higher 5 types of relation collections (“AT”, “NEAR”,
“PART”, “ROLE”, “SOCIAL”). The tested kernels were the sparse subtree kernel (K 0), the
continuous subtree kernel (K 1), and the bag-of-words kernel (K 2). In addition, two compo‐
site kernels for which the tree kernel was combined with the bag-of-word kernel, that is K
3=K 0+K 2, K 4=K 1+K 2, were further constituted. The test consisting of two steps of relation
detection4 and relation classification5 revealed that all tree kernel methods, including the
composite kernel, show better performance than the bag-of-words kernel. Unlike the evalua‐
tion result by (Zelenco et al., 2003), although the performance of continuous subtree kernel

4 Binary classification for identifying possible relation between two named entities.
5 Relation extraction for all instances with relations in the result of relation identification.
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is higher, the reason for that was not clearly described, and the advantage of using the de‐
pendency tree instead of the full parse tree was not demonstrated in the experiment.

4.3. Shortest path dependency tree kernel method (Bunescu & Mooney, 2005)

In section 4.2, we have discussed relation extraction using dependency parse trees for the
tree kernel proposed by Zelenco, et al., (2003). Bunescu & Mooney (2005) have studied the
dependency path between the two named entities in the dependency parse tree with a view
to proposing the shortest possible path dependency kernel for relation extraction. There is
always a dependency path between two named entities in a sentence and Bunescu & Moon‐
ey (2005) argued that the performance of relation extraction is improved by using the syn‐
tactic paths. The Figure 9 below shows the dependency graph for a sample sentence.

Figure 9. Dependency graph and dependency syntax pair list for the sample sentence.

The red node in Figure 9 represents the named entity specified in the ACE collection. Sepa‐
ration of the entire dependency graph results in 10 dependency syntax pairs. It is possible to
select pairs, which include named entities in the syntax pairs to construct the dependency
path as shown in Figure 10.

Figure 10. Extracting dependency path including named entities from dependency syntax pair collection.
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As one can see from Figure 10, it is possible to construct the dependency path between the
named entities, “Protesters” and “stations,” and the dependency path between “workers” and
“stations”. As discussed above, the dependency path for connecting two named entities in
this sentence can be extended infinitely. Bunescu & Mooney (2005) estimated that the short‐
est path among them contributes the most to establishing the relation between two entities.
Therefore, it is possible to use kernel-based learning for estimating the relation between the
two named entities connected by means of dependency path. For example, for estimating
the relation for the path of “protesters ฀ seized ฀ stations”, the relation is estimated that the
PERSON entity (“protesters”) did a specific behavior (“seized”) for the FACILITY entity (“sta‐
tions”), through which PERSON (“protesters”) is located at FACILITY (“stations”) (“LOCAT‐
ED_AT”). At another complex path of “workers ฀ holding ฀ protesters ฀ seized ฀ stations”, it
is possible to estimate the relation that PERSON (“workers”) is located at FACILITY (“sta‐
tions”) (“LOCATED_AT”) if PERSON (“protesters”) did some behavior (“holding”) to PER‐
SON (“workers”), and PERSON (“protesters”) did some behavior (“seized”) to FACILITY
(“stations”). As such, with the dependency relation path, it is possible to identify semantic
relation between two entities more intuitively.

For learning, Bunescu & Mooney (2005) have extracted the shortest dependency paths, in‐
cluding two entities from individual training instances as shown in the Table below.

Relations Relation Instances

LOCATED_AT protesters฀ seized ฀ stations

LOCATED_AT workers฀ holding ฀ protesters ฀ seized ฀ stations

LOCATED_AT detainees฀ abusing ฀ Jelisic ฀ created ฀ at ฀ camp

Table 2. Shortest path dependency tree-based sample relation extraction instance.

As shown in Table 2, each relation instance is expressed as a dependency path whose both
ends are named entities. In terms of learning, however, it is not easy to extract sufficient fea‐
tures from such instances. Therefore, as discussed in section 4.2, various supplementary in‐
formation is created, such as part-of-speech, entity type and WordNet synset. As a result,
individual nodes which make up the dependency path comprise a plurality of information
elements, and a variety of new paths are finally created as shown in Figure 11.

[ ] [ ]

protesters stations
seized

NNS NNS
VBD

Noun Noun
Verb

Person Facility

é ù é ù
é ùê ú ê ú
ê úê ú ê ú´ ® ´ ´ ¬ ´ê úê ú ê ú
ê úê ú ê úë û

ë û ë û

Figure 11. New dependency path information created in a single instance.
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As shown in Figure 11, with more information available for individual nodes, new 48 de‐
pendency paths can be created through Cartesian product of the node values. Here, rela‐
tion  extraction  is  carried  out  by  applying  the  dependency  path  kernel  for  calculating
redundancy of  the  information included in  each node rather  than comparing all  newly
created paths, as shown below.

x = x1x2⋯ xm, y = y1y2⋯ yn

K (x, y)= {0, m≠n

∏i=1
n c(xi, yi) m =n

c(xi, yi)= | xi ∩ yi |

(8)

In the above Equation 8, x and y represent extended individual instances; m and n denote the
lengths of the dependency path; K(฀,฀) presents the dependency path kernel; and c(฀,฀) is a
function for calculating the level of information element redundancy between the two nodes.
The Figure below shows the process of calculating the kernel value on the basis of Equation 8.

Figure 12. Calculating dependency path kernel.

As shown in Figure 12, the process of comparing two dependency paths is very simple. If
the length of two paths is different, the kernel function simply returns zero (0). Otherwise,
the level of information redundancy is then calculated for each node with respect to two
paths. Since all the corresponding values are identical in the first node (“his”, “PRP” and
“Person”), the output is set to 3. As one matches in the second node, 1 is returned. By expo‐
nentiating all the calculated values, the kernel value is found to be 18.

On the basis of the same test environment as the collection used by Culotta & Sorensen
(2004), two parsing systems, the CCG parser (Hockenmaier & Steedman, 2002) and the CFG
parser (Collins, 1997) have been used to construct the shortest dependency path. The test in‐
cluded K 4 (bag-of-words kernel + continuous subtree kernel ) that demonstrated the best
performance by Culotta & Sorensen (2004) for comparing performance. The test revealed
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that the CFG-based shortest dependency path kernel offers better performance by using the
CFG parser than the CCG parser for the same kernel.

With regard to relation extraction, the shortest dependency path information is considered
to be very useful, and is highly likely to be used in various fields. However, the kernel struc‐
ture is too simple. Yet another limitation is that only the paths of the same length are includ‐
ed in calculating similarity of two dependency paths.

4.4. Subsequence kernel-based method (Bunescu & Mooney, 2006)

The tree kernel presented by Zelenco, et al., (2003) is to compare two sibling nodes basically at
the same level and uses the subsequence kernel. Bunescu & Mooney (2006) introduced the sub‐
sequence kernel and attempted relation extraction only with the base phrase analysis (chunk‐
ing), without applying the syntactic structure. Since kernel input is not of a complex syntactic
structure, but base phrase sequences, the assumption was that the feature space can be divided
into 3 types to comprise maximum 4 words for each type of features as follows, by using the ad‐
vantage of easy selection of contextual information essential for relation extraction.

Figure 13. Contextual location information for feature extraction.

In Figure 13, [FB] represents the words positioned before and between the two entities; [B]
means only the word between them; and [BA], accordingly, means word collections between
and after. The 3 types of feature collections can accept individual relation expressions, respec‐
tively. Furthermore, various types of supplementary word information (part-of-speech, entity
type, WordNet synset, etc.) are used to expand them as in the methods described above.

Zelenco et al., (2003) described how to calculate the subsequence kernel, which will be de‐
scribed in detail again later. The kernel calculation function K n(s, t) is defined as shown be‐
low based on all n-length subsequences included in two sequences s, t.

Kn(s, t , λ)= ∑
i:|i|=n

∑
j:| j|=n

λ l (i)+l ( j)∏
k=1

n
c(sik

, t jk
) (9)

Where, i and j represent subsequences contained in s, t respectively; c(฀,฀) is a function for
deciding the homogeneity of the two inputs; and λ is a weight given to matching subse‐
quences. l(i) and l(j) are the values indicating how far each relevant subsequence is posi‐
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tioned from the entire sequences. In order to calculate the weighted length, equation 9
selects among s and t only n-length subsequences, which exist in both sequences. For easy
description, the following two sentences and base phrase analysis result will be used to ex‐
plain the process of calculating the kernel value.

Figure 14. Two sentences and base phrase analysis result to illustrate the process of calculating subsequence kernel.

As shown in Figure 14, each of the nodes that consist of analysis result has 8 types of lexical
information (word, part-of-speech, base phrase type, entity type, etc.) The kernel value, K
3(s, t, 0.5), of two analysis sequences is calculated according to the process shown in Figure
15, with features of the subsequence of which the length is 3.

There are three subsequence pairs which are decided that the node of all subsequence is at
least 0 by means of the homogeneity decision function c(฀,฀), among the subsequences in s
and t. Scores for each of matching subsequences are derived by calculating the cumulative
factorial of c(฀,฀) for each of them and then multiplying it by the weight. For example, the
similarity of 0.84375 is obtained for “troops advanced near” and “forces moved toward”. On the
contrary, the similarity of “troops advanced …Tikrit” and “forces moved …Bagdhad” is 0.21093.
This results from the lowered weight because the two subsequences are positioned apart. At
last, the similarities of the subsequences are introduced to Equation 8 that gives 1.477.
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Figure 15. Process of calculating K3(s, t, 0.5).

As described above, it  is possible to construct the subsequence kernel function based on
the subsequences of all  lengths by using contextual location information and Equation 8
as described above. Figure 16 shows surrounding contextual location where named enti‐
ties occur in the sentence.

Figure 16. Specifying contextual information depending on named entity location and defining variables.

K (s, t)= K fb(s, t) + Kb(s, t) + Kba(s, t)

Kb,i(s, t)= K i(sb, tb, 1)⋅ c(x1, y1)⋅c(x2, y2)⋅λ l (s ′
b)+l (t ′

b)

K fb(s, t)= ∑
i≥1, j≥1,i+ j f bmax

Kb,i(s, t)⋅K ′
j(sf , tf )

Kb(s, t)= ∑
1≤i≤bmax

Kb,i(s, t)

Kba(s, t)= ∑
i≥1, j≥1,i+ jbamax

Kb,i(s, t)⋅K ′
j(s̄ f , t̄ f )

(10)
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In Figure 16, x i and y i represent named entities; s f and t f denote the word lists before
named entities; and s a and t a presents contextual word collections after two entities. sb

'andtb
'

represent contextual information including two entities. Thus, the subsequence kernel for
two sequences s and t is defined with the following Equation 10.

The subsequence kernel K(s, t) consists of the sum of the contextual kernel before and be‐
tween entity pairs, K fb, the intermediate contextual kernel K b of the entities, and the contex‐
tual kernel between and after entity pairs K ba. fb max is the length of the target context “Fore-
Between” and b max is the length of “Between” context. Also, ba max is the target length of the
context “Between-After” as seen in the figure 13. s̄ and t̄  are the reverse versions of strings
of s and t respectively. The definition of the individual contextual kernel is described from
the third to the fifth line of Equation 10. Here, K'n is the same as Kn, with the exception that
it specifies the length of the relevant subsequence from the location where the subsequence
starts to the end of the entire sequence, and is defined as follows.

Kn
'(s, t , λ)= ∑

i:|i|=n
∑

j:| j|=n
λ |s|+|t|−i1− j1+2∏

k=1

n
c(sik

, t jk
) (11)

In Equation 11, i 1 and j 1 represent the starting positions of subsequences i and j respective‐
ly. The individual contextual kernel calculates the similarity between the two sequences for
the subsequences in the location divided on the basis of the locations specified in Figure 16,
with Equation 10, and totalizes the kernel values to calculate resulting kernel values.

The performance evaluation in the same test environment as used in Sections 4.2 and 4.3
shows increased performance, even without complicated pre-processing, such as parsing,
and without any syntactic information. In conclusion, the evaluation shows that this method
is very fast in terms of learning speed and is an approach with a variety of potentials for
improving performance.

4.5. Composite kernel-based method (Zhang, Zhang, Su, et al., 2006)

The release of ACE 2003 and 2004 versions contributed to full-scale study on relation extrac‐
tion. In particular, the collection is characterized by even richer information for tagged enti‐
ties. For example, ACE 2003 provides various entity features, e.g., entity headwords, entity
type, and entity subtype for a specific named entity, and the features have been used as an
important clue for determining the relation between two entities in a specific sentence. In
this context, Zhang, Zhang, Su, et al., (2006) have built a composite kernel for which the con‐
volution parse tree kernel proposed by Collins & Duffy, (2001) is combined with the entity
feature kernel. Equation 11 gives the entity kernel definition.

KL (R1, R2)=∑i=1,2 KE (R1.Ei, R2.Ei)

KE (E1, E2)=∑i C(E1. f i, E2. f i)

C( f 1, f 2)= {1, if f 1 = f 2

0, otherwise

(12)
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In Equation 12, R i represents the relation instance; and R i.E j are the j-th entity of Ri. Ei.fj

represents the j-th entity feature of entity Ei; and C(฀,฀) is a homogeneity function for the
two entities. It is possible to calculate the entity kernel KL by summation on the basis of fea‐
ture redundancy decision kernel KE for a pair of entities.

Second, the convolution parse tree kernel expresses one parse tree as an occurrence frequen‐
cy vector of a subtree as follows so as to measure the similarity between the two parse trees.

ϕ(T )= (# subtree1(T ), ..., # subtreei(T ), ..., # subtreen(T )) (13)

In Equation 13, #subtreei(T) represents the occurrence frequency of the i-th subtree. All parse
trees are expressed with the vector as described above, and the kernel function is calculated
as the inner product of two vectors as follows.

K (T1, T2)= ϕ(T1), ϕ(T2) (14)

Figure 17. Parsing tree and its subtree collection.

Figure 17 shows all subtrees of a specific parse tree. There are nine subtrees in the figure al‐
together, and each subtree is an axis of the vector, which expresses the left side parse tree. If
the number of all unified parse trees that can be extracted for N parse trees is M, each of
extracted subtrees can be expressed as an M-dimension vector.

As shown in Figure 17, there are two constraints for a subtree of a specific parse tree. First,
the number of nodes of the subtree must be at least 2, and the subtree should comply with
production rules used by syntactic parser to generate parse trees of sentences (Collins &
Duffy, 2001). For example, [VP ฀ VBD ฀ “got”] cannot become a subtree.

It is necessary to investigate all subtrees in the tree T, and calculate their frequency so as to
build the vector for each of parse trees. This process is quite inefficient, however. Since we
need only to compute the similarity of two parse trees in the kernel-based method, we can
come up with indirect kernel functions without building the subtree vector for each parse
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tree as with Equation 13. The following Equation 15, proposed by Collins & Duffy (2001), is
used to calculate efficiently the similarity of two parse trees

K (T1, T2)= ϕ(T1), ϕ(T2)

=∑i # subtreei(T1)⋅ # subtreei(T2)

=∑i (∑n1∈N 1
Isubtreei

(n1))⋅ (∑n2∈N 2
Isubtreei

(n2))
=∑n1∈N 1

∑n2∈N 2
Δ(n1, n2)

N1, N2 →the set of nodes in trees T1 and T2.

Isubtreei
(n)= {1 if RΟΟΤ(subtreei)=n

0 otherwise
Δ(n1, n2)=∑i Isubtreei

(n1)⋅ Isubtreei
(n2)

(15)

In Equation 15, Ti represents a specific parse tree, and Ni represents all node collections of
the parse tree. Ist(n) is the function for checking whether the node n is the root node of the
specific subtree st. The most time-consuming calculation in Equation 15 falls on calculating
∅ (n1, n2).To enhance this, Collins & Duffy (2001) came up with the following algorithm.

Figure 18. Algorithm for calculating ∅ (n1, n2)

The function ∅ (n1, n2) defined in (3) of Figure 18 compares the child nodes of the input
node to calculate the frequency of subtrees contained in both parse trees and the product
thereof, until the end conditions defined in (1) and (2) are satisfied. In this case, the decay
factor �, which is a variable for limiting large subtrees so as to address the issue that larger
subtrees among the subtrees of the parse tree comprise another subtrees therein, can be ap‐
plied repeatedly for calculating the inner product of the subtree vector.
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Two kernels built as described above, that is, the entity kernel and the convolution parse
tree kernel, are combined in the following two manners.

K1(R1, R2)=α ⋅
KL (R1, R2)

KL (R1, R1)⋅KL (R2, R2)
+ (1−α)

K (T1, T2)

K (T1, T1)⋅K (T2, T2)
(16-1)

K2(R1, R2)=α ⋅ ( KL (R1, R2)

KL (R1, R1)⋅KL (R2, R2)
+ 1)2

+ (1−α)
K (T1, T2)

K (T1, T1)⋅K (T2, T2)
(16-2)

In the above equations 16-1 and 16-2, KL represents the entity kernel and K stands for the
convolution parse tree kernel. Equation 16-1 shows the composite kernel being a linear com‐
bination of the two kernels, and Equation 16-2 defines the composite kernel constructed us‐
ing quadratic polynomial combination.

Furthermore,  Zhang, Zhang, Su,  et  al.,  (2006) proposed the method for pruning relation
instance by leaving a part of the parse tree and removing the rest, so as to improve simi‐
larity measurement performance of the kernel function, and to exclude unnecessary con‐
textual information in learning.

Tree Pruning Methods Details

Minimum Complete Tree (MCT) Minimum complete sub-tree encompassing two entities

Path-enclosed Tree (PT) Sub-tree belong to the shortest path in between two entities

Chunking Tree(CT)
Sub-tree generated by discarding all the internal nodes excpet

nodes for base phrases and POS from PT

Context-sensitive PT(CPT)
Sub-tree generated by adding two additional terminal nodes

outside PT

Context-sensitive CT(CCT)
Sub-tree generated by adding two additional terminal nodes

outside CT

Flattened PT(FPT)
Sub-tree generated by discarding all the nodes having only one

paraent and child node from PT

Flattened CPT(FCPT)
Sub-tree generated by discarding all the nodes having only one

paraent and child node from CT

Table 3. Relation instance pruning (Zhang, Zhang, Su, et al., 2006; Zhang et al., 2008).

For the evaluation, Zhang, Zhang, Su, et al., (2006) used both ACE 2003 and ACE 2004. They
parsed all available relation instances with Charniak’s Parser (Charniak, 2001), and on the
basis of the parsing result carried out instance conversion using the method described in
Table 3. To this end, Moschitti (2004) has developed a kernel tool, while SVMLight (Joa‐
chims, 1998) was used for learning and classification.
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The test shows that the composite kernel features better performance than a single syntactic
kernel. The combination of quadratic polynomial type shows performance between the two
kernels. This means that flat feature (entity type feature) and structural feature (syntactic
feature) can be organically combined as a single kernel function. In consideration that the
Path-enclosed Tree method shows the best performance among all relation instance pruning
methods, it is possible to achieve the effect only with core related syntactic information, so
as to estimate the relation of two entities in a specific sentence.

4.6. Other recent studies

Choi, et al., (2009) have constructed and tested a composite kernel where various lexical and
contextual features are added by expanding the existing composite kernel. In addition to the
syntactic feature, called flat feature, they extended the combination range of lexical feature
from the entity feature to the contextual feature in order to achieve high performance. Mintz,
Bills, Snow, and Jurafsky (2009) proposed a new method of using Freebase, which is a semantic
database for thousands relation collections, to gather exemplary sentences for a specific rela‐
tion and making relation extraction on the basis of the obtained exemplary sentences. In the
test, the collection of 10,000 instances corresponding to 102 types of relations has shown the ac‐
curacy of 67.6%. In addition, T.-V. T. Nguyen, Moschitti, and Riccardi (2009) have designed a
new kernel, which extends the existing convolution parse tree kernel, and Reichartz, et al.,
(2009) proposed a method, which extends the dependency tree kernel. As described above,
most studies published so far are based on the kernels described in Sections 4.1to 4.5.

5. Comparison and analysis

In the previous section, five types of kernel-based relation extraction have been analyzed in
detail. Here, we discuss the results of comparison and analysis of these methods. Section 5.1
will briefly describe the criteria for comparison and analysis of the methods. Section 5.2
compares characteristics of the methods. Section 5.3 covers performance results in detail.
Section 5.4 sums up the advantages and disadvantages of each of the method.

5.1. Criteria for comparison and analysis

Generally, a large variety of criteria can be used for comparing kernel-based relation extrac‐
tion methods. The following 6 criteria, however, have been selected and used in this study.
First, (1) linguistic analysis and pre-processing method means the pre-processing analysis
methods and types for individual instances which are composed of learning collections and
evaluation collections, e.g., the type of parsing method or the parsing system used. (2) The
level of linguistic analysis, which is the criterion related to the method (1), is a reference to
what level the linguistic analysis will be carried out in pre-processing and analyzing instan‐
ces. Exemplary levels include part-of-speech tagging, base phrase analysis, dependency
parsing or full parsing. In addition, (3) the method of selecting a feature space is a reference
for deciding if the substantial input of the kernel function is an entire sentence or a part

Survey on Kernel-Based Relation Extraction
http://dx.doi.org/10.5772/51005

25



thereof. Also, (4) the applied lexical and supplementary feature information means various
supplementary feature information used for addressing the issue of sparse data. (5) The re‐
lation extraction method is a practical relation extraction method based on learning models
already constituted. Exemplary relation extraction methods include multi-class classification
at a time and a single mode method of separating instances with relations from those with‐
out relations by means of processing multiple classifications at a time or binary classifica‐
tion, then to carry out relation classification only for the instances with relations. (6) The
manual work requirement is a reference to decide if the entire process is fully automatically
carried out or manual work is required only at some step. The aforementioned 6 criteria
were used to analyze the kernel-based relation extraction methods and the result of the anal‐
ysis is shown in the following Table 6.

In addition, for the purpose of describing the characteristics of the kernel function, the de‐
scription in section 4 will be summarized, and each structure of factors to be input of the
kernel function will be described. Modification of the kernel function for optimized speed
will be included in the analysis criteria and described. For performance comparison of the
individual methods, types and scale of the tested collections and tested relations will be ana‐
lyzed and described in detail. The following Table 4 describes the ACE collection generally
used among the tested collections for relation extraction developed so far.

Items ACE-2002 ACE-2003 ACE-2004

# training documents 422 674 451

# training relation instances 6,156 9,683 5,702

# test documents 97 97 N/A

# test relation instances 1,490 1,386 N/A

# entity types 5 5 7

# major relation types 5 5 7

# relation sub-types 24 24 23

Table 4. Description of ACE Collection.

As shown in Table 4, the ACE collection is generally used and can be divided into 3 types.
ACE-2002, however, is not widely used because of consistency and quality problems. There
are 5 to 7 types of entities, e.g., Person, Organization, Facility, Location, Geo-Political Entity,
etc. For relations, all collections are structured to be at two levels, consisting of 23 to 24 types of
particular relations corresponding to 5 types of Role, Part, Located, Near, and Social. As the
method of constructing those collections is advanced and the quality thereof is improved, the
tendency is that the scale of training instances is reduced. Although subsequent collections
have already been constituted, they are not publicized according to the principle of non-disclo‐
sure, which is the policy of ACE Workshop. This should be improved for active studies.
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5.2. Comparison of characteristics

Table 5 summarizes each of kernel functions with respect to the concept, before analyzing
the kernel-based relation extraction method, in conformity to 6 types of comparison and
analysis criteria described in 5.1.

Kernel types Description of concept

Tree Kernel (TK) Compares each node which consists of two trees to be compared.

Based on BFS, applies subsequence kernel to the child nodes located at the

same level.

The decay factor is adjusted and applied to the similarity depending on the

length of subsequences at the same level or on the level itself.

Dependency

Tree Kernel (DTK)

Shortest Path Dependency

Kernel (SPDK)

Compares each element of the two paths to cumulatively calculate the common

values for the elements in order to compute the similarity by multiplying all

values.

Similarity is 0 if the length of two paths is different.

Subsequence

Kernel (SK)

For the example of measuring similarity of two words, extracts only the

subsequences which exist in both words, and expresses the two words with a

vector (Φ(x)) by using the subsequences, among all of the subsequences which

belong to two words and of which the length is n.

Afterwards, obtains the inner product of the two vectors to calculate the

similarity.

Generalizes and uses SSK to compare planar information of the tree kernel

(sibling node).

Composite Kernel (CK)

Finds all subtrees in the typical CFG-type syntactic tree, and establishes them as

a coordinate axis to represent the parse tree as a vector (Φ(x)).

In this case, the following constraints hold true: (1) the number of nodes must

be at least 2, and (2) the subtree should comply with the CFG creation rule.

Since there can be multiple subtrees, each coordinate value can be at least 1,

and similarity is calculated by obtaining the inner product of the two vectors

created as such.

Table 5. Summary of kernel-based relation extraction methods.

Table 6 shows comparison and analysis of the kernel-based relation extraction methods. As
it is closer to the right side, the method is more recent one. The characteristic found in all of
the above methods is that various feature information in addition to the syntactic informa‐
tion is used as well. Such heterogeneous information was first combined and used in a sin‐
gle kernel function, but is separated from the composite kernel and applied.

With respect to selecting the feature space, most of sentences or a part of the parse tree are
applied other than the tree kernel. Manual work was initially required for extracting relation
instances and building the parse tree. The recently developed methods, however, offer full
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automation. In the relation extraction methods, multi-class classification is used, in which
the case with no relation is included as one relation.

TK DTK SPDK SK CK

Language

Processor

Shallow

Parserx (REES)

Statistical

Parserx

(MXPOST)

Statistical

Parser

(Collins’

Parser)

Chunker

(OpenNLP)

Statistical Parser

(Charniak’s Parser)

Level of Language

Processing

PLO Tagging

Parsing
Parsing Parsing Chunking Parsing

Feature Selection

Methods

Extracts

features from

parse trees

manually

Selects small

sub-tree

including two

entities

from the entire

dependency

tree

Selects the

shortest

dependency

path which

starts with

one entity

and ends with

the other one

Before Entities

After Entities

Between

Entities

MCT

PT

CPT

FPT

FCPT

Features used in

Kernel

Computation

Entity

Headword

Entity Role

Entity Text

Word

POS

Chunking Info.

Entity Type

Entity Level

WordNet

Hypernym

Relation

Parameter

Word

POS

Chunking

Info.

Entity Type

Word

POS

Chunking Info.

Entity Type

Chunk

Headword

Entity Headword

Entity Type

Mention Type

LDC mention Type

Chunking Info.

Relation Extraction

Methods

Single Phase

(Multiclass

SVM)

Cascade Phase

(Relation

Detection and

Classification)

Single Phase

Cascade

Phase

Single Phase

(Multiclass

SVM)

Single Phase

(Multiclass SVM)

Manual Process

Necessary

(Instance

Extraction)

Necessary

(Dependency

Tree)

Necessary

(Dependency

Path)

N/A N/A

Table 6. Comparison of characteristics of kernel-based relation extraction.

5.3. Comparison of performance

Table 7 shows the parameter type of each kernel function and computation complexity in
calculating the similarity of two inputs. Most of them show complexity of O(N2), but SPDK
exceptionally demonstrates the complexity of the order of O(N) and can be considered as
the most efficient kernel.
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Kernels Parameter Structure Time Complexity

TK Shallow parse trees CSTK : O(|Ni,1|*|Ni,2|)

SSTK : O(|Ni,1|*|Ni,2|3)

|N1| : #(1st input’s nodes in level i)

|N2| : #(2nd input’s nodes in level i)

DTK Dependency trees

SPDK Dependency paths O(|N1|)

|N1| : #(1st input’s nodes)

SK Chunking results O(n*|N1|*|N2|)

n : subsequence length

|N1| : #(1st input’s nodes)

|N2| : #(2nd input’s nodes)

CK Full parse trees O(|N1| *|N2|)

|N1| : #(1st input’s nodes)

|N2| : #(2nd input’s nodes)

Table 7. Parameter structure and calculation complexity of each kernel.

It should be noted that the complexity shown in Table 7 is just kernel calculation complexi‐
ty. The overall complexity of relation extraction can be much higher when processing time
for parsing and learning is also considered.

Articles Year Methods Test Collection F1

(Zelenco et al., 2003) 2003 TK 200 News Articles (2-relations) 85.0

(Culotta & Sorensen, 2004) 2004 DTK ACE-2002 (5-major relations) 45.8

(Kambhatla, 2004) 2004 ME ACE-2003 (24-relation sub-types) 52.8

(Bunescu & Mooney, 2005) 2005 SPDK ACE-2002 (5-major relations) 52.5

(Zhou et al., 2005) 2005 SVM
ACE-2003 (5-major relations)

ACE-2003 (24-relation sub-types)

68.0

55.5

(Zhao & Grishman, 2005) 2005 CK ACE-2004 (7-major relations) 70.4

(Bunescu & Mooney, 2006) 2006 SK ACE-2002 (5-major relations) 47.7

(Zhang, Zhang, Su, et al., 2006) 2006 CK

ACE-2003 (5-major relations)

ACE-2003 (24-relation sub-types)

ACE-2004 (7-major relations)

ACE-2004 (23-relation sub-types)

70.9

57.2

72.1

63.6

(Zhou et al., 2007) 2007 CK

ACE-2003 (5-major relations)

ACE-2003 (24-relation sub-types)

ACE-2004 (7-major relations)

ACE-2004 (23-relation sub-types)

74.1

59.6

75.8

66.0

(Jiang & Zhai, 2007) 2007 ME/SVM ACE-2004 (7-major relations) 72.9

Table 8. Comparison of performance of each model of kernel-based relation extraction.

Survey on Kernel-Based Relation Extraction
http://dx.doi.org/10.5772/51005

29



Articles and Approaches
Test Collection

200 News ACE-2002 ACE-2003 ACE-2004

Relation Sets PLO-2 Main-5 Sub-24 Main-5 Sub-24 Main-7 Sub-23

Precision/Recall/F-measure P R F P R F P R F P R F P R F P R F P R F

(Zelenco et al., 2003) TK 91.6 79.5 85.0

(Culotta & Sorensen, 2004) DTK 67.1 35.0 45.8

(Kambhatla, 2004) ME 63.5 45.2 52.8

(Bunescu & Mooney, 2005) SPDK 65.5 43.8 52.5

(Zhou et al., 2005) SVM 77.2 60.7 68.0 63.1 49.5 55.5

(Zhao & Grishman, 2005) CK 69.2 70.5 70.4

(Bunescu & Mooney, 2006) SK 73.9 35.2 47.7

(Zhang, Zhang, Su, et al., 2006) CK 77.3 65.6 70.9 64.9 51.2 57.2 76.1 68.4 72.1 68.6 59.3 63.6

(Zhou et al., 2007) CK 80.8 68.4 74.1 65.2 54.9 59.6 82.2 70.2 75.8 70.3 62.2 66.0

(Jiang & Zhai, 2007)
ME/

SVM
74.6 71.3 72.9

Table 9. Comparison of performance of each kernel-based relation extraction method.
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ACE-2002, which is the first version of ACE collection, had the issue with data consistency. In
the subsequent versions this problem has been continuously addressed, and finally resolved in
version ACE-2003. Starting from 52.8% achieved by Kambhatla (2004) on the basis of the per‐
formance of ACE-2003 with respect to 24 relation collections, the performance was improved
up to 59.6% recently announced by Zhou, et al., (2007). Similarly, the maximum relation extrac‐
tion performance for 23 particular relations on the ACE-2004 collection is currently 66%.

Although each model has different performance in differently sized relation collections, the
composite kernel generally shows better results. In particular, Zhou, et al., (2007) have dem‐
onstrated high performance for all collections or relation collections based on extended
models initially proposed by Zhang, Zhang, Su, et al., (2006). As described above, it is con‐
sidered that various features for relation extraction, that is, the syntactic structure and the
vocabulary, can be efficiently combined in a composite kernel for better performance.

Although the described research results do not represent all studies on relation extraction,
there are many parts not evaluated yet although a lot of study results have been derived so
far as seen in Table 9. It is necessary to carry out evaluation on the basis of various collec‐
tions for comprehensive performance evaluation of a specific relation extraction model, but
this is a challenge that more studies should be done. In particular, the key issue is to check
whether the performance of relation extraction is achieved as high as described in the above
without the characteristics of ACE collections, in that they provide supplementary informa‐
tion (entity type information) of a considerable scale for relation extraction.

5.4. Comparison and analysis of advantages and disadvantages of each method

In Section 5.4, advantages and disadvantages of five kernel-based relation extraction meth‐
ods are discussed and outlined in Table 10.

Method Advantage Disadvantage

Feature-based

SVM/ME

Applies the typical automatic sentence

classification without modification.

Performance can be further improved by

applying various feature information.

Relatively high speed

A lot of effort is required for feature

extraction and selection.

Performance can be improved only

through feature combination.

Tree Kernel

(TK)

Calculates particular similarity between

shallow parse trees.

Uses both structural (parenthood) and

planar information (brotherhood).

Optimization for speed improvement.

Very limited use of structural information

(syntactic relations)

Slow similarity calculation speed in spite

of optimized speed

Dependency TK

(DK)

Addressed the issue of insufficient use of

structural information, which is a

disadvantage of TK.

Predicates and key words in a

dependency tree are emphasized only by

means of decay factors (low emphasis

capability)
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Method Advantage Disadvantage

Uses key words which are the core of

relation expression in the sentence, as

feature information, on the basis of the

structure that the predicate node is raised

to a higher status, which is a structural

characteristic of a dependency tree.

Slow similarity calculation speed

Shortest Path DTK

(SPTK)

Creates a path between two named

entities by means of dependency relation

to reduce noise not related to relation

expression.

Shows very fast computation speed

because the kernel input is not trees, but

paths, different from previous inputs.

Adds various types of supplementary

feature information to improve the

performance of similarity measurement,

thanks to the simple structure of paths.

Too simple structure of the kernel

function

Too strong constraints because the

similarity is 0 if the length of two input

paths is different.

Subsequence Kernel

(SK)

Very efficient because syntactic analysis

information is not used.

Adds various supplementary feature

information to improve the performance.

Can include many unnecessary features

Composite Kernel

(CK)

Makes all of constituent subtrees of a

parse tree have a feature, to perfectly

use structure information in calculating

similarity.

Optimized for improved speed

Comparison is carried out only on the

basis of sentence component information

of each node (phrase info.) (kernel

calculation is required on the basis of

composite feature information with

reference to word class, semantic info,

etc.)

Table 10. Analysis of advantages and disadvantages of kernel-based relation extraction.

As one can see in Table 10, each method has some advantages and disadvantages. A lot of ef‐
forts are required for the process of feature selection in general feature-based relation extrac‐
tion. The kernel-based method does not have this disadvantage, but has various limitations
instead. For example, although the shortest dependency path kernel includes a variety of po‐
tentials, it showed low performance due to the overly simple structure of the kernel function.
Since the composite kernel constitutes and compares subtree features only on the basis of part-
of-speech information and vocabulary information of each node, generality of similarity meas‐
urement is not high. A scheme to get over this is to use word classes or semantic information.

A scheme can be suggested for designing a new kernel in order to overcome the above short‐
comings. For example, a scheme may be used for interworking various supplementary feature
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information (WordNet Synset, thesaurus, ontology, part-of-speech tag, thematic role informa‐
tion, etc.), so as to ensure general comparison between subtrees in the composite kernel. The
performance can be improved by replacing the current simple linear kernel with the subse‐
quence or another composite kernel and applying all sorts of supplementary feature informa‐
tion in order to address the shortcomings of the shortest path dependency kernel.

6. Conclusion

In this chapter, we analyzed kernel-based relation extraction method, which is considered
the most efficient approach so far. Previous case studies did not fully covered specific opera‐
tion principles of the kernel-based relation extraction models, just cited contents of individu‐
al studies or made an analysis in a limited range. This chapter, however, closely examines
operation principles and individual characteristics of five kernel-based relation extraction
methods, starting from the original kernel-based relation extraction studies (Zelenco et al.,
2003), to composite kernel (Choi et al., 2009; Zhang, Zhang, Su, et al., 2006), which is consid‐
ered the most advanced kernel-based method. The overall performance of each method was
compared using ACE collections, and particular advantages and disadvantages of each
method were summarized. This study will contribute to researchers’ kernel study for rela‐
tion extraction of higher performance and to general kernel studies of high level for linguis‐
tic processing and text mining.
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