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1. Introduction 

Security of the road transport depends on the quality of basic and applied research 
concerning materials and internal construction of tires. The design shapes and material 
properties characterized by low hysteretic losses as well as a construction have an 
influence on the driving comfort, adhesion, wear resistance and fatigue resistance. Thick 
fibre reinforced composites are used extensively in rubber products such as tires and 
conveyer belts. Generally, the reinforced parts of rubber products on a sub macroscopic 
level are highly heterogeneous and anisotropic because they are composed of rubber 
compounds, and textile and steel cords. Rubber compounds consist of natural or synthetic 
rubber, carbon black, curing agents, cure accelerators, plasticizers, protective agents and 
other ingredients. 

First, the properties of the different parts of the studied tire will be outlined. A bead is a part 
of the tire, which fixes to the rim. The bead consists of a steel bead wire, a core, a bead filling 
and a carcass. They help to transmit loading and breaking. 

Particularly we will focus our attention on the influence of breaker angle on tire deformation 
and potential risks resulting from improper breaker construction. 

Experimental results of tread and side wall deformation (influenced by rubber blend as well 
as a breaker construction) measured independently by both line laser and Aramis system 
are compared with those obtained by computer simulation in Abaqus environment. The tire 
tread contributes to a good road grip and water expulsion, the multi-ply steel belt optimizes 
the directional stability and rolling resistance, the steel casing substantially determines the 
driving comfort, the inner-liner makes the tire airtight, the sidewall protects from lateral 
scuffing and the effects of the weather, the bead core ensures the tire sits firmly on the rim, 
and bead reinforcement promotes directional stability and a precise steering response. 
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The high security and long life of a tire can be assured only by its correct assignment to 
the particular type of vehicle and automobile as show Figure 1 (tires only for road operation, 
for off-road, combined operation as well as for summer or winter conditions). Tires are 
divided by type of tire-casing on radial, diagonal, bias-belted and special tire. 

 
Figure 1. Type of tire by vehicle and construction 

Radial tires can be considered as pressure vessels with a maximum pressure given by the 
particular type of tire. A tire can be generally considered as a statically and dynamically 
loaded automobile element. The structured view of a tire is apparent from the Figure 2. 

The function of wheels with tires is not only to align a car reliably. As can be seen in more 
detail from the Figure 3 there are more requirements on tires. The main operating 
requirements on car tires are that car wheels should be as light as possible and at the same 
time tough, statically and dynamically balanced. 

The main requirements on tires are, apart from other things, high wear resistance, optimal 
deformation characteristics, low rolling resistance, high operational life and safeness, etc. 
Wheels with tires must meet particular functional requirements given by parameters of tires 
which affect the running properties of the car, i.e. affect their dynamic behavior (car 
maneuverability, stability, acceleration, deceleration, driving comfort, etc.). 
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Figure 2. Definition of tire from various viewpoints 

 
Figure 3. Basic requirements of wheels with tires 

Tire safety is passive and active - see Figure 4. Passive safety depends on the quality of the 
production of a tire casing, the applied technology and used materials and in the case of 
computational modeling also on the accuracy of the performed calculations and appropriate 
choice of the computing algorithm. 
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Figure 4. Viewpoints of tire safety 

Requirements on active safeness are particularly high running safety on various types of 
road surfaces, breakdown resistance, speed resistance and high life of materials used for the 
production of tires, namely reinforcing materials. 

Tire life is affected by many factors (e.g. manufacturing way of a tire, its operation and 
handling, storage conditions of base materials for tire production etc.) while it’s assumed an 
ideal adhesive bond among the rubber elements in matrix (e.g. an interface between tire 
tread and textile overlap belt) and the cord reinforcing and rubber drift inside tire carcass, 
and belts is assumed in this cases. For long life tires must resist during operating to 
surrounding effects, to negative effects of operation and to other effects, which could lead to 
wear and degradation processes as are e.g. delaminations. The aim is to avoid fatal road 
accidents which might be caused by tire casing defects either by neglecting operating 
conditions of tires (depth of tire tread pattern, tire inflation pressure, use of inappropriate 
tires with a different structure, etc.) or by bad vulcanization during the manufacturing 
process creating delaminations. 

The tire is during the operation exposed to combined loading as from a mechanical (statical, 
dynamic) as a temperature point of view (local heating in subzones, overall heating in the 
tire-tread area permeating into the tire during breaking). Also this has to be considered in 
defining tire safety at high speeds. For this reason tires and wheels as a unit are modified 
from the structural point of view, particularly for special army vehicles where even a 
sudden drop of pressure does not put an end to the operating capability of the vehicle 
(system with a central collar providing circular indexing of the casing with respect to the 
wheel rim). 
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New features are introduced for high speeds, e.g. electronic systems which warn the drivers 
in the case a gradual drop of the tire pressure or adjusting systems for inflation based on the 
temperature load of the tire casing. Each manufacturer protects the results of his 
developments and patents considering them as private „know-how“. Consequently all new 
information is only very scarcely available. 

In the material point of view a rubber blend could be considered as a composite material 
which consists of a matrix, a filler and a mesophase.  

The dynamic – mechanical properties of such composites can also be described by an elastic, 
viscous modulus and a loss factor, (Simek 1987, Sepe 1998, Wang 1998, Schaefer 1994, 
Murayama 1978, Ferry 1980, Jančíková 2006, Jančíková & Švec 2007 and Jakubíková et al 
2007). Such properties depend, in turn, on the operating temperature and frequency of the 
external excitation. Biodegradability of polymers has been studied in (Jakubíková et al 2007). 

In a molecular scale, the mechanical properties of rubber blends are influenced mainly by 
the structure of the blend. The interaction between a matrix and filler plays the most 
important role and this role is closely connected with dependency of E and G modulus to an 
applied load or a frequency (both functions have falling tendency and this phenomenon is 
called Payne effect) (Payne 1965). The polymer in the network loses its identity, and behaves 
like a filler. The loss factor E’’ depends on the dissolution and regeneration speed of the 
network. It is reflected on the decreasing trend of complex Young’s modulus dependence 
versus increasing sample loading. The values of elastic modulus (E’) for vulcanizates 
without fillers are not changed with the increasing of dynamic deformation (Payne 1965, 
Medalia 1978 and Maier & Gand Göritz 1996). 

The blend properties are characterized by the following parameters: Tg is a glass transition 
temperature, it is influenced by the silica filler, and for not filled rubber it is approximately -
40°C. The phase shift between stress and strain is the loss angle. It is postulated that the loss 
factor, represented by tan , in the temperature span -10°C to 5°C (frequency 10000 Hz) 
characterizes the adhesion of the tire on a wet road. In the span 60°C to 80°C (at the 
frequency 100 Hz) the course of tan , characterizes the rolling resistance 
(http://ao4.ee.tut.fi/pdlri). 

The breaker angle (see below) also influences the security of a tire as well as the driving 
comfort and stiffness of a tire. The driving properties of the tire as a whole could be 
substantially improved by optimizing such angle of steel wires of the breaker. 

2. The tire description 

The work of the authors over a long period of time is devoted to radial tires. The automobile 
radial tire consists (e.g. cross-sections of selected tire 165 R13 Matador are on the Figures 5 
and 6, in detail on the Figures 6 below and 7) of rubber parts and composite structure parts 
(Figure 8) with textile cords (especially PA 6.6 and PES textile fibers are used) and steel-
cords into tire tread as reinforcements. 
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Figure 5. Cross sections of tire-casing 

The composite structure parts applied into radial tires (Figure 8) are: 

- Textile tire carcass; 
- Textile overlap belt;  
- Steel-cord belt. 

These structures of tire have got: 

- Different cord-angle (e.g. for steel belt applied angle 21-27° into radial tire for passenger 
car); 

- Material of cords (steel, textile, Kevlar, combine); 
- Shape and construction of cord (wire, wire strand); 
- Numbers of layer (single-layer or multi-layer). 

So a tire has got characteristic specific deformation properties. 

One construction of tire is used for passenger cars, other constructions for trucks, off-
highway cars and sports cars. The tires for air transportation, agricultural vehicle, mining 
machine and other vehicles have got complicated structured in comparison radial tires for 
passenger cars. The tire structures are differentiated by numbers of reinforcing plies into 
belt tire, construction of belts, materials and cord-angles, geometry parameters of tire, width 
of belts etc. These aspects are influenced on final behavior of tires, namely deformation 
characteristics of tires. It is possible increase of resistance of tire to some degradation 
processes by suitable tire construction. 
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Figure 6. Structure of the tire 165 R 13 [based on Matador] with microstructure of reinforcing plies 
detail A in the area of tire crown and detail B at the end of steel-cord belt (below) 
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Figure 7. Detail C in the middle of tire crown and detail D at the end of the belt layers (below) of 
different radial tire  

 
Figure 8. Composite structures used in tire 
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Two-layer steel-cord belt is used in radial tire 165 R13 Matador with construction of cord 
2x0.30 mm with texture 961 (number of cord over meter width of belt). The cord angle is 23°, 
the layers are symmetrical. 

Structure – cord orientations of radial tire 22.5" for truck vehicles presented in the Figure 9 
as an example. 

 
Figure 9. Structure of truck tire in the middle of tire crown 

Steel-cords can be in form of thin wire or wire strand with different constructions. High-
strength steels are used exclusively for steel-cord production and good adhesive bond 
between rubber and cords required. Steel-cord surfaces are modified by chemical-thermal 
treatment (braze or copperier, Figure 10) to achieve the best adhesive bond of a steel cord 
and rubber and get it corrosion resistant. The substantial factor, which expressive influence 
on coherence of whole tire, is good adhesive bonds between reinforcement materials and 
rubber parts of tire. 

 
Figure 10. Steel-cord surface and interface between cord-rubber drift-rubber matrix 
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The tire steel-cords are exposed to various chemical and thermal influences (Figure 11) 
during cyclic loading states by tensile-compression in tire loading processes. Account on 
this the adhesive bond is more exposed to be damaged than the basic materials (steel, textile 
and rubber). The aggressive environment (e.g. action of salts in winter) activates the 
corroding process on steel-cord surfaces that can lead to decreasing of the adhesion between 
reinforcement-and-matrix, which demonstrates itself by negative changes in material 
properties of steel-cord belts and such of whole tire too. 

 
Figure 11. Requirements on reinforcing tire cords 

In addition if the tire is in use is defected in tire crown (e.g. defect caused by sharp object as 
a nail and after the repair is placed back into operation) the initiation of corrosion with faster 
process is being assumed. Consequently this can lead to gradual or sudden failure of 
the steel-cords and bonds of steel-cord and rubber with a serious car accident as a final 
consequence.  

Any damage in the area of tire crown, namely into steel-cord belt, is perilous. 

3. Degradation processes of tires 

Tires are subject to internal and external effects which can more or less cause limit states 
leading to degradation processes Figure 12. Ones of them marked as very dangerous and 
unacceptable tire casing damage are so-called separations and delaminations (Figure 13 
left). Breakdown or damage is not necessary only at the border of single layer e.g. 
between the layers of steel-cord belt plies in the tread of tire casing, but also between 
rubber matrix and reinforcing cords. Delamination between rubber drift-rubber matrix on 
Figure 13 right. 
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Figure 12. Degradation processes of tire 
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Figure 13. Factitious delamination between belt plies and damage between rubber drift-rubber matrix 
(right) 

Root cause of mentioned degradation processes can be caused by using of low quality 
materials for the tire in manufacturing process, their incorrect storage leading to early aging 
especially at rubber compositions, not keeping optimal manufacturing conditions – 
vulcanization, as well as by the influence of incorrectly pressurized tire and damaged 
adhesive bond between cords-matrix and belt plies etc. Damaged adhesive bond is greatly 
decreasing of tire safety during the operation of a vehicle at high speeds. This has a 
significant influence to the quality of the tire casing expressing by lowering the level of 
usage (decreasing speed index) or leading to the catastrophic situations. In every case it is 
mandatory to avoid these premature limiting states. 

In tires can be caused: 

- Cords release leading to the cords working-up;  
- Separations – delaminations;  
- Combined wear;  
- Total breakdown. 

 
Figure 14. Extreme wear of tire on tread surface; and “cords working-up” (right-photo by Prof. Janíček, 
VÚT Brno, Czech Republic) 

Results of wear due to adverse change (Figure 14) of tire casing surfaces are gave in 
impairment of mechanical-physics properties of whole tire. This will be influenced the 
incoming behavior of tire in operation and related interfaces between of tire and 
surroundings. Particularly dangerous is creation of failure in such places where initiation is 
not assumed to be caused by impairment of the surface. Structural changes in a part of tire 
as composites are not only responsible for the impairment of its properties but also of its 
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geometry which can initiate vibrations leading to loss of the part’s functional ability of 
whole vehicles (automobiles). 

Wear can be of various character (development, place, form, appearance) and leads to the 
failure of the tire (Figure 15a and 15b). The task of prediction is to find ways how to 
reduce wear and to postpone initiation of dangerous degradation processes such as 
delamination and separation and to focus on the removal of initiators of these 
degradation processes. 

Wear due to adverse changes of surfaces results in impairment of properties and behavior of 
parts. Particularly dangerous is failure in such places where initiation is not assumed to be 
caused by impairment of the surface. Structural changes in a part are not only responsible 
for the impairment of its mechanical properties but also of its geometry which can initiate 
vibrations leading to loss of the part’s functional ability. All this resulted in environmental 
and economical losses. 
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Figure 15. a. Limit states of tire; b. Limit states of tire 

Tires must resist during operating to surrounding effects, to negative effects of operation 
and to other effects, which could lead to wear and degradation processes as are e.g. 
delamination. Resistance to the following effects is considered (Figure 16): 

- Puncture – capability of tires to resist puncture by sharp objects; 
- Cut-through – capability of tires (especially of the tread and sidewall) to resist contact 

with sharp objects; 
- Breakdown – capability of tires to resist damage during short-term loading by 

concentrated forces; 
- Fatigue – capability of tires to resist material fatigue and defects in consequence of 

repeated loading cycles; 
- Separation and delamination – capability of structural tire components to maintain 

integrity of the system during operation; 
- Humidity – tire elements must be able to resist degradation by contact with water; 
- Ozone influence – capability of tires and of theirs components to resist degradation 

caused by ozone present in atmosphere; 
- Temperature – tire components must be able to resist high and low ambient 

temperatures and also consequences of contact with the road; 
- Chemicals – capability of tires and theirs components to resist degradation caused by 

chemicals (in winter – influence of salt solutions); 
- Corrosion processes – capability of tire reinforcing cords to resist corrosion, etc. 



 
The Chosen Aspects of Materials and Construction Influence on the Tire Safety 279 

 
Figure 16. Basic requirements on the tire resistance 

An appropriate design will help to increase resistance of the tire to certain degradation 
processes such as e.g. corrosive attacks initiated by local damage of the tire in cases where 
damaged are the steel cord reinforcements. Design optimization aimed at resistance to 
degradation and at achievement of longer life can be well performed by computer 
modelling. The computer modelling has reached such a level that it can work with a great 
amount of input data which represent the initiation of degradation effects on such a 
complicated technical object as a tire. 

It is important to design such structure that the tire would be as much resistant to any 
degradation type as possible. These are required complex approach to experiments and 
computation of tire from macrostructure and microstructure too. It is necessary to have a 
good knowledge about: 

- Structure of tire-casing; 
- Material parameters of matrixes and reinforcements (steel-belt);  
- Adhesive bonds cord-rubber, which obtained by metallography observation of 

reinforcements-matrix transit; 
- Influence of degradation processes – corrosion effect on composite materials from micro 

and macrostructure point of view. 

4. Testing of tires 

It is necessary to run tests of tires as a whole, as shown in the Figure 17, and tests of 
individual tire casing components, purposely separated parts etc. This is how an overview 
which structural modifications can lead to an increase of the level of safety criteria, increase 
of resistance, life etc. can be obtained. 
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Figure 17. Tests of the tire as a whole 

 
Figure 18. Static adhesor with detail of contact patch 

Also basic statical deformation characteristics of tires can be obtained from a device called 
statical adhesor (Figure 18), which is available to author. The statical adhesor also enables 
measurement of data from the contact surface under defined conditions – shape of obstacles, 
vertical loading and inflation pressure. It is possible to obtain outputs from experiments on 
statical adhezor: 



 
The Chosen Aspects of Materials and Construction Influence on the Tire Safety 281 

- Radial deformation characteristic (by vertical tire force loading);  
- Torsion deformation characteristic (slip curve by twist moment); 
- Size and shape of contact area and distribution of contact pressure; 
- at following conditions:  
- Loading (vertical); 
- Tire pressure (under-inflation, overinflated tire, specified pressure); 
- Size of radial deformation;  
- Shape of obstacle etc. 

5. Test of tire structure 

Material parameters of long-fiber composite structural parts as the tire steel-belt are 
necessary input data for tire computational models (e.g. steel-cord belt) and for 
subsequent comparison of computational models with experiments. Knowledge is 
necessary of the behaviour of composites as belts under mechanical load. These data are 
obtained by experimental modelling of composite specimens and composite structural 
parts (matrixes and reinforcement) by static tensile, compression, shear and bending tests. 
The behaviour of such materials as tire belts under mechanical loading is in many ways 
different from the behaviour of commonly used technical materials such as steels. In 
composites, compared with metals, final mechanical properties can be controlled e.g. in 
the direction of the orientation of fibers-cords. Composites of tire also have elevated 
fatigue life, by one order higher material damping and are resistant to failure due to their 
ability to stop growth or decelerate propagation of cracks on the rubber matrix-cord 
interface. Tests of specific long-fiber composite materials with hyperelastic matrixes 
(namely steel.-cord belt test sample) are not standardized and neither are the shapes and 
dimensions of test samples, namely for tensile tests, which are for the observation of 
mechanical behaviour absolutely essential. For determination of material parameters of 
rubber matrixes and cord-reinforcements are necessary make experiments in agreement 
with standard specifications. 

In composite samples or in samples with a certain content of composite layers of concern are 
the configurations of cords with respect to the direction of loading which results in a change 
of the stiffness characteristics. Therefore is necessary to design the geometrically parameters 
and shapes of one or multi-layer tested samples before experiments. The samples must have 
different: 

- Angle of cord (with respect of the direction of loading – not only longitudinal and 
transverse orientated samples) – see figure 19; 

- Material of cord (surface treatment); 
- Form of cord (wire, thin wire); 
- Number of layers (single-layer, two-layer – Figure 19, multi-layer); 
- Specimen width, shape etc. 

The author Krmela was designed multi-layer test samples with different wide 10, 15 and 25 
mm and of length 120 mm. The cord-angle orientations in single-layer specimens are 0°, 22.5°, 
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45°, 67.5° and 90°. Two-layer specimens (Figure 19) are symmetrically orientated between 
top/bottom layer 22.5°, 67.5°, 45° and asymmetrically orientated with cord-angles +0°/-
45° and +67.5°/+22.5° (it is +22.5°/-112.5°, specimen D) with thickness 4 mm. Real single and 
two-layer specimens are presented Figure 20 as an example. 

 
Figure 19. Two-layer specimens from plates with cord orientations 45° (left): A – lengthwise 
symmetrical specimen with 22.5°; B – transverse symmetrical specimen with 67.5°; C – asymmetrical 
specimen with +0°/-45°; D – asymmetrical specimen with +67.5°/+22.5°; Specimens from plates with cord 
orientations 90° (right): E – symmetrical specimen with 45° 

 

 
Figure 20. Single-layer specimens of steel-cord belt with wire cord and two-layer specimens with thin-
wire cord (right) 

Also must be determined conditions for individual type of tests, namely: 

- Statically tensile tests (uniaxial and biaxial); 
- Statically bend tests; 
- Statically tests of composites under combined loading states (combinations tensile with 

bend) - that are to be approximated tire real state during tire operational loading 
(predicate about real deformation behaviors of steel-cord belt plies); 

- Corrosion tests in a corrosion chamber (exposition time); 
- Dynamically test etc. 
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Statical tensile tests of steel-belt samples are important for obtaining knowledge about 
stiffness characteristics and material parameters. The conditions of the tensile tests are: 

- Initial length between the jaws of the testing machine is 92 mm.  
- Elongation measured on the same length and also measured on 50 (or 25 mm) in centre 

of specimens.  
- Rate of test is 10 or 25 mm/min. 

As output example from tensile test of two-layer belt for different cord-angle and cord-type 
Figures 21 and 22 give tensile force-elongation and stress-strain dependences (elongation 
measured on the length between the jaws). 

 
 
 

 

 

Figure 21. Outputs from tensile test of steel-cord belt samples – force-elongation dependences 
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Figure 22. Outputs from tensile test of steel-cord belt samples – stress-strain dependences 

Figure 23 presents some examples of specimens’ failure after tensile test. 

 
Figure 23. Failure of two-layer symmetrical ±22.5° and asymmetrical specimens +67.5°/+22.5° (right) 
after tensile test 
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The selected specimens were subject to statical tensile, also compression, shear and bending 
tests. Also testing conditions have been designed. Tests is necessary perform not only at 
ambient temperature 20°C but also at lowered and elevated temperature (from -30° into 
180°Celsius). 

6. Corrosion test of steel-cord belt 

It will be possible uniform statically test conditions for samples affected by corrosion and 
samples without corrosion. 

Selected single and two-layer composite test specimens are exposed to corrosion tests in 
a corrosion chamber Gebr. Liebisch S 400 M TR (for 500 or 265 hours in saline application by 
temperature at 70°Celsius – authors note: such extreme conditions should not ever appear in 
tire operations if proper conditions are kept) and to static tensile tests till the failure. The aim 
of these tests is to find the influence of the degrading process on the stiffness characteristics 
of the composite structures. Also will be investigated an influence of degree of degradation 
on the adhesive bond matrix-reinforcement. 

 
Figure 24. Outputs from tensile test of steel-cord belt samples – stress-strain dependences 
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The results obtained from tensile test will be compared with results obtained from tensile 
test on samples without corrosion. The experimental results of tensile tests of undamaged 
(non-corrosion) steel-cord belt ply (two-layer with cord-angle 22.5°) for comparison 
analyses with belt ply after corrosion tests are shown in Figure 24 as dependences stress on 
strain. 

The influence of corrosion on the stiffness and tensile force-elongation or engineering-stress 
dependences is sizable. The oxide film is strongly affected on failure of adhesive bond. 

The fracture characters of test specimen after tensile and corrosion test in a corrosion 
chamber were accounted. The fracture of test specimen with 22.5° angle and thin wire cord 
is on Figure 25 as an example. The corrosion processes on cord surfaces is very dangerous. 
Therefore, it will be important to study also adhesive bond. 

 
Figure 25. Fracture character of specimen with corrosion after tensile test 

7. Metallography of Interface between Cord-Rubber 

The light microscope is used for metallography observations of the adhesive bond between 
steel-cord and rubber after failure after corrosion test in corrosion chamber and statically 
tensile test and without corrosion too. The edges of steel-cord belt specimens were observed 
in detail – (see Figures 25 and 26). 

 
Figure 26. Interface between thin wire steel-cord/rubber drift/rubber matrix after corrosion and tensile 
tests 
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Microscopy with 100x-200x zoom will be used for the evaluation of adhesive bonds from 
level of failure point of view. It appears that sufficient zoom from setting of failure level 
point of view (detection of delaminations, separations).It is necessary to prepare of samples 
for microscopy observation of structures so that the samples included different: 

- Form of cord; 
- Geometrical configurations and number of layers; 
- Level of corrosion impact of steel-cords – adhesive bonds (without corrosion, easy 

corrosion, after corrosion test behind extremely conditions). 

For selected cords were accounted: 

- Uniformity of layer of rubber drift on cord surfaces;  
- Surface treatment of cords; 
- Interface between cord-rubber matrix after tire production; 
- Structural change into microlocality of cord-rubber after corrosion. 

The corrosion processes on cords are shown Figure 27. The results from microscopy 
observation are presented in Figures 28-33. 

 
Figure 27. Corrosion processes on steel-cord surfaces – thin wire versus wire (right) 

 
Figure 28. Good adhesive bond between wire steel cord 2+20.28 mm (cord consists of 4 filaments) and 
rubber after tire production (without corrosion) 
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Figure 29. Damaged adhesive bond between wire steel cord 2+20.28 mm and rubber after corrosive 
attack (with extreme corrosion and tensile loading) with detail of oxide on filament surfaces 

 
Figure 30. Damaged whole wire steel cord 2+20.28 mm 

 
Figure 31. Good adhesive bond between thin-wire steel cord 0.94 mm and rubber drift after tire  
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Figure 32. Damaged adhesive bond between thin-wire steel cord 0.94 mm and rubber drift after 
corrosive attack (with extreme corrosion and tensile loading) with detail of oxide on cord surfaces 

 
Figure 33. Damaged whole thin-wire steel cord 0.94 mm  

On the base of corrosion tests is possible note: 

- Arise of uniform surface corrosion; 
- Fragility and hardness of corrosive layer; 
- Quicker grow of oxides near cord surfaces; 
- Fracture of oxide layer; 
- Quality of cord-surfaces and surface treatment of cords with respect to corrosion attack; 
- Decreased of material characteristics of steel-cord belt on the basic of tensile tests. 
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The adhesive bonds are influenced internal impacts (inserted during production, mounting) 
and external impacts (operating conditions, surrounding conditions etc.) or their interaction. 
It can be caused degradation on reinforcement-matrix adhesive bond, when its effect is 
failure into whole macro volume of tire which isn’t permissible from safety aspect of vehicle. 

- Any damage in the area of tire crown, namely into steel-cord belt plies, is perilous. 
- If extreme corrosion on cords then cord surface treatment lost function of corrosive 

protection. 
- If cords are with corrosion then adhesive bonds between cord-rubber matrix are 

damaged and safety of steel-cord belt plies and also tire is decreased. 
- For predication of damaged belt ply is possible used combination of computational 

with experimental modeling.  
- Corrosive attacks on reinforcing cords in whatever form can reduce the quality and 

operating safety of the whole tires. 

8. Dynamic testing 

In this part we continue with a description of dynamic materials behavior as well as a 
dynamic tire testing. 

The tread displacement changes caused by the breaker angle changes were measured by an 
apparatus presented in Figure 34. The apparatus consists of a line laser, CCD camera and a 
computer with an appropriate measuring software. The CCD camera records the changes of 
the line laser spot, which copies the tire dimension changes. This system measures the main 
dimension of the rotating tire (the illuminated part of tread) at constant velocity. For more 
details see the work (Koštial et al 2006). 

 
Figure 34. The measuring system for a tread deformation 
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Figure 35. The measuring system for a sidewall displacement measurement 

I. mixture Properties S T D 
Hardness of vulcanizate [ShA] 73 Strength , LOP, [MPa] 19.23 17.08 23.27 
Modulus 300% [MPa] 15 Elongation [%] 

Modulus 300% [MPa] 
565 
7.8 

495 
9.2 

440 
17.4 Strength [MPa] 16.2 

Elongation [%] 340 Hardness [ShA] 58 66 72 

II. mixture Elasticity [%] 35 18 48 
Hardness of vulcanizate [ShA] 85 Tear resistance [kNm-1] 

at 20°C 
at 90°C 

 
57.1 
43.4 

 
37.5 
29.9 

 
74.8 
74.3 

Modulus 300% [MPa] 12 
Strength [MPa] 16.5 

Elongation [%] 285 
III. mixture 
Hardness of vulcanizate [ShA] 60 
Modulus 300% [MPa] 7.2 
Strength [MPa] 17.9 
Elongation [%] 570 

Table 1. The physical parameters of bead core blends (left) and other part of the tire (right part). 

The sidewall displacement changes caused by both, bead core and the breaker angle, were 
measured by a contactless system Aramis. This system is able to measure changes of the 
displacements (radial and axial) during the rotation of the tire. More experimental details 
about the apparatus are in the work (Koštial et al 2005) (see Figure 35.) The statistically 
evaluated precision of both described equipments at the actual arrangement of the 
apparatus was 0.05mm (the result of ten independent measurements on the same tire). The 
radial loading was 7360 N (that is 80% of the maximum available load) with a tire inflation 
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of 290 kPa. After the tire conditioning (30 min at the velocity 80 km/h) the tire inflation 
increased (due to heat generation at the tire movement) to a pressure of 310-320 kPa. The 
considered testing velocities were 10, 50, 80, 120, 150 and 180 km/h. The reference velocity 
was 10 km/h (zeroth stage). The image of a sidewall obtained at 10 km/h is compared with 
other images obtained at different velocities. The difference between those images 
determines a displacement. 

 
Figure 36. The axial displacement changes at the contact (left side) and radial displacement (right side) 
for three different bead core blends. Unwinded means a length of a given sidewall part. 

The physical parameters of the bead core blends are described in the left part of Table 1. The 
characteristic physical parameters blends used for the construction of the other part of a tire 
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are collected in Table 1 – right part. The abbreviations used in Table 1 mean: S – sidewall 
rubber mixture, T – tread rubber mixture and D – depositional rubber mixture on the steel 
cord. 

The measurements of the sidewall displacement at the contact of the driving drum and tire 
presented in Figure 36 also show the smallest radial and axial value for the sidewall 
containing the blend II. The upper line is for the reference velocity 10 km/h. The minimum 
showing at the bottom of every picture (for axial displacement) corresponds to the velocity 
of 180 km/h. According to the presented results it is possible to conclude that in the current 
case the blend II has the best properties (the smallest displacement of a sidewall means 
higher mechanical stiffness and smaller rolling resistance, for instance) for the sidewall 
construction. Further we will analyze the changes of the tread and sidewall displacement 
caused by changes of breaker angle with unchanged bead core blend. The tread and 
sidewall materials were also the same according to the description presented above 
(Table 1). 

 
Figure 37. The electronic picture of a tread with characteristic points marked as “segments” 

Figure 37 shows the electronic picture of the tread with characteristic points marked as 
“segments” obtained by an optical system with a line laser. The tread displacement changes 
in radial direction (at above defined velocities) caused by a breaker angle change are visible 
in Figure 38. 

Rising of the breaker angle changes the shape of the tread deformation from convex to 
concave. The best solution was obtained for the breaker angle equals 27°, where practically 
the full profile of the tread is in contact with the road. In order to study the influence of 
breaker angle changes on “sidewall displacement dynamic” at different velocities we also 
tested the sidewall displacement changes (measured by ARAMIS, breaking angle equal to 
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20° and 27°). The experimental results of both the axial and radial displacement in this case 
were compared with those obtained by the FEM simulation in ABAQUS environment. It is 
possible to see a good agreement between both simulated and measured curves. Differences 
occur at higher velocities for radial displacement. Both, the experimental and simulated 
axial displacements for different velocities and chosen breaker angles (20° and 27°) are 
displayed in Figures 39 and 40. The corresponding simulation and experimental results 
obtained for radial displacement also show the best results (the highest axial displacement) 
for breaker angle 27°. 

 
Figure 38. The displacement differences for the breaker angle 20° (variant 1 - left) and the displacement 
differences for the breaker angle 27° (variant 4 - right) 

On the basis of these results it is possible to state that the higher the breaker angle the higher 
the displacement is in both axial and radial directions. In other words, the tire “grows” with 
rising of the breaker angle.). These results support the highest values of elongation and a 
relatively high value of strength and elasticity which provide also the so called driving 
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comfort. On the other hand, the highest tear resistivity, 300 % modulus and hardness of the 
depositional rubber mixture on a steel cord provide all together good tire safety (see 
parameters in Table 1). 

 
Figure 39. The axial (left) and radial (right) displacement of the sidewall for 20° breaker angle  
(s-simulation) 
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Figure 40. The axial displacement of the sidewall for 27° breaker angle (s-simulation) 
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9. Conclusion 

The chapter presents the large scale view on the problem of tire safety concluding materials 
aspects, damage and experimental testing of tires and tire components materials. For more 
information about the solution of tyres, see reference (Krmela 2008). 
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