
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 5 

 

 

 
 

© 2012 Ismail et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Time Series Analysis of Surface Ozone 

Monitoring Records in Kemaman, Malaysia 

Marzuki Ismail, Azrin Suroto and Nurul Ain Ismail 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/50033 

1. Introduction 

Tropospheric ozone is known as environmental air pollutants that arise from photochemical 

reaction among various natural and anthropogenic precursors that are volatile organic 

compounds (VOCs) and organic nitrogen (NOx). Accumulation of the ozone may highly 

happen under favorable meteorological conditions and will have an adverse effect on human 

health and ecosystem [1]. Chan & Chan, 2001 concluded that people in Asia also cannot escape 

from the adversely impact ozone pollution as there were elevated ozone level being detected. 

Nevertheless, the long-term ozone trend has been less researched, especially in Malaysia. 

The time series analysis is one of the best tool in understanding cause and effect relationship 

of environmental pollution [3, 4,5]. Its applications in many studies were done to describe 

the past movement of particular variable with respect to time. However, there were several 

different techniques applied by researcher so that the change of air pollution behavior 

through time period can be determined [6, 7]. A study by Kuang-Jung Hsu,2003 was done 

by using autoregression variation (VAR) in order to establish interdependence between 

primary and secondary air pollutants in area of Taipei. Besides, Omidravi et al., 2008 had 

applied the time series analysis in their investigation in order to find the answer that relate 

to extreme high ozone concentrations for each season in Ishafan by using Fast Fourier 

Transform. Therefore, this study aims to determine qualitative and quantitative aspect of the 

tropospheric ozone concentrations so that prediction on future concentration of the 

anthropogenic air pollutant can be achieved in the study area, i.e. Kemaman, Malaysia. 

2. Material and method 

This study was conducted in Kemaman (04°12'N, 103°18'E), a developing Malaysian town 

located in between the industrializing of Kertih Petrochemical Industrial Area in the north 

and industrializing and urbanizing of Gabeng Industrial Area in the South (Figure 1). In this 
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area, there are dominant sources of ozone precursors related to industrial activities and road 

traffic. 

 

Figure 1. Locations of air monitoring station in Kemaman 

In this study, ozone trend was examined using ozone data consisting of 144 monthly 

observations from January 1996 to December 2007 acquired from the Air Quality Division of 

ASMA for Sekolah Rendah Bukit Kuang station located in Kemaman district; one of the 

earliest operational stations in Malaysia. The monitoring network was installed, operated 

and maintained by Alam Sekitar Malaysia Sdn. Bhd. (ASMA) under concession by the 

Department of Environment Malaysia [10]. Tropospheric ozone concentrations data was 

recorded using a system based on the Beer-Lambert law for measuring low ranges of ozone 

in ambient air manufactured by Teledyne Technologies Incorporated (Model 400E). A 254 

nm UV light signal is passed through the sample cell where it is absorbed in proportion to 

the amount of ozone present. Every three seconds, a switching valve alternates 

measurement between the sample stream and a sample that has been scrubbed of ozone. 

The result is a true, stable ozone measurement [11].  

Time series analysis was implemented using STATGRAPHICS® statistical software 

package. A time series consists of a set of sequential numeric data taken at equally spaced 

intervals, usually over a period of time or space. This study provides statistical models for 

two time series methods: trend analysis and seasonal component which are both in time 

scale. 
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The seasonal decomposition was used to decompose the seasonal series into a seasonal 

component, a combined trend and cycle component, and a short-term variation component, 

i.e, 

 Ot = Tt x St x It (1) 

where Ot is the original ozone time series, Tt is the long term trend component, St is the 

seasonal variation, and It is the short-term variation component or called the error 

component. As the seasonality increase with the level of the series, a multiplicative model 

was used to estimate the seasonal index. Under this model, the trend has the same units as 

the original series, but the seasonal and irregular components are unitless factors, 

distributed around 1. As the underlying level of the series changes, the magnitude of the 

seasonal fluctuations varies as well. The seasonal index was the average deviation of each 

month's ozone value from the ozone level that was due to the other components in that 

month. 

In trend analysis, Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) model 

was applied to model the time series behavior in generating the forecasting trend. The 

methodology consisting of a four-step iterative procedure was used in this study. The first 

step is model identification, where the historical data are used to tentatively identify an 

appropriate Box-Jenkins model followed by estimation of the parameters of the tentatively 

identified model. Subsequently, the diagnostic checking step must be executed to check the 

adequacy of the identified model in order to choose the best model. A better model ought to 

be identified if the model is inadequate. Finally, the best model is used to establish the time 

series forecasting value.  

In model identification (step 1), the data was examined to check for the most appropriate 

class of ARIMA processes through selecting the order of the consecutive and seasonal 

differencing required to make series stationary, as well as specifying the order of the regular 

and seasonal auto regressive and moving average polynomials necessary to adequately 

represent the time series model. The Autocorrelation Function (ACF) and the Partial 

Autocorrelation Function (PACF) are the most important elements of time series analysis 

and forecasting. The ACF measures the amount of linear dependence between observations 

in a time series that are separated by a lag k. The PACF plot helps to determine how many 

auto regressive terms are necessary to reveal one or more of the following characteristics: 

time lags where high correlations appear, seasonality of the series, trend either in the mean 

level or in the variance of the series. The general model introduced by Box and Jenkins 

includes autoregressive and moving average parameters as well as differencing in the 

formulation of the model.  

The three types of parameters in the model are: the autoregressive parameters (p), the 

number of differencing passes (d) and moving average parameters (q). Box-Jenkins model 

are summarized as ARIMA (p, d, q). For example, a model described as ARIMA (1,1,1) 

means that this contains 1 autoregressive (p) parameter and 1 moving average (q) parameter 
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for the time series data after it was differenced once to attain stationary. In addition to the 

non-seasonal ARIMA (p, d, q) model, introduced above, we could identify seasonal ARIMA 

(P, D, Q) parameters for our data. These parameters are: seasonal autoregressive (P), 

seasonal differencing (D) and seasonal moving average (Q). Seasonality is defined as a 

pattern that repeats itself over fixed interval of time. In general, seasonality can be found by 

identifying a large autocorrelation coefficient or large partial autocorrelation coefficient at a 

seasonal lag. For example, ARIMA (1,1,1)(1,1,1)12 describes a model that includes 1 

autoregressive parameter, 1 moving average parameter, 1 seasonal autoregressive 

parameter and 1 seasonal moving average parameter. These parameters were computed 

after the series was differenced once at lag 1 and differenced once at lag 12.  

The general form of the above model describing the current value Zt of a time series by its 

own past is:  

         12 12 12
1 1 1 11 1 1 1   1  1   t tB B B B Z B B            (2) 

Where: 

  = non seasonal autoregressive of order 1 


 = seasonal autoregressive of order 1 

Zt  = the current value of the time series examined 

B = the backward shift operator BZt = Zt-1 and B12Zt= Zt-12 

1-B  = 1st order non-seasonal difference 

1-B12 = seasonal difference of order 1 

 = non seasonal moving average of order 1 

γ = seasonal moving average of order 1 

For the seasonal model, we used the Akaike Information Criterion (AIC) for model selection. 

The AIC is a combination of two conflicting factors: the mean square error and the number 

of estimated parameters of a model. Generally, the model with smallest value of AIC is 

chosen as the best model [12]. 

After choosing the most appropriate model, the model parameters are estimated (step 2) - 

the plot of the ACF and PACF of the stationary data was examined to identify what 

autoregressive or moving average terms are suggested. Here, values of the parameters are 

chosen using the least square method to make the Sum of the Squared Residuals (SSR) 

between the real data and the estimated values as small as possible. In most cases, nonlinear 

estimation method is used to estimate the above identified parameters to maximize the 

likelihood (probability) of the observed series given the parameter values [13].  

In diagnose checking step (step 3), the residuals from the fitted model is examined against 

adequacy. This is usually done by correlation analysis through the residual ACF plots and 

the goodness-of-fit test by means of Chi-square statistics . If the residuals are correlated, 

then the model should be refined as in step one above. Otherwise, the autocorrelations are 

white noise and the model is adequate to represent our time series. 
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The final stage for the modeling process (step 4) is forecasting, which gives results as three 

different options: - forecasted values, upper, and lower limits that provide a confidence 

interval of 95%. Any forecasted values within the confidence limit are satisfactory. Finally, 

the accuracy of the model is checked with the Mean-Square error (MS) to compare fits of 

different ARIMA models. A lower MS value corresponds to a better fitting model. 

3. Results and discussion 

The first step in time series analysis is to draw time series plot which provide a preliminary 

understanding of time behavior of the series as shown in Figure 2. Trend of the original 

series appear to be slightly increasing. Nonetheless, this needs to be tested and conformed 

through descriptive analysis and trend modeling. 

 

Figure 2. Original monthly ozone concentration for Kemaman 

In seasonality of ozone, a well-defined annual cycle was consistent with the highest ozone 

means occurring in August, and the lowest ozone means in November (Figure 3). Table 1 

show the seasonal indices range from a low of 80.047 in November to a high of 122.058 in 

August. This indicates that there is a seasonal swing from 80.047% of average to 122.058% of 

average throughout the course of one complete cycle i.e. one year. The seasonal variation 

pattern in Kemaman differed from other countries, such as United States, United Kingdom, 

Italy, Canada, and Japan, in that the peak ozone concentration did not correspond to 

maximum photochemical activity in summer [14,15,16].  

For the purpose of forecasting the trend in this study, the first 132 observations (January 

1996 to December 2006) were used to fit the ARIMA models while the subsequent 12 

observations (from January 2007 to December 2007) were kept for the post sample forecast 

accuracy check. Ozone concentrations data has been adjusted in the following way before 

the model was fit: - simple differences of order 1 and seasonal differences of order 1 were 

taken. The model with the lowest value (-11.8601) of the Akaike Information Criterion (AIC)  
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Figure 3. Annual variation of monthly ozone means 

 

 
 

Month Seasonal Index 

January 107.199 

February 90.8259 

March 84.7179 

April 80.7204 

May 101.135 

June 105.618 

July 115.073 

August 122.058 

September 117.771 

October 93.0941 

November 80.0473 

December 101.741 

 

Table 1. Seasonal Index of Ozone 
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is (ARIMA) (0, 1, 1) x (1, 1, 2)12 was selected and has been used to generate the forecasts 

(Figure 4). This model assumes that the best forecast for future data is given by a parametric 

model relating the most recent data value to previous data values and previous noise. As 

shown in Table 2, The P-value for the MA (1) term, SAR (1) term, SMA (1) term and SMA (2) 

term, respectively are less than 0.05, so they are significantly different from 0. Meanwhile, 

the estimated standard deviation of the input white noise equals 0.00277984. Since no tests 

are statistically significant at the 95% or higher confidence level, the current model is 

adequate to represent the data and could be used to forecast the upcoming ozone 

concentration. Therefore, we can assume that the best model for ground level ozone in 

Kemaman is the mathematical expression:  

 
Z(t) a(t) 0.53a(t 12) 0.82(t 1) 1.67a(t 12) 0.73a(t 24)

0.82(1.67)a(t 13) 0.82(0.73)a(t 25)

        
     (3) 

 

 

 
 

Figure 4. Model predicted plot of ozone concentration with actual and 95% confidence band 

 

Parameter Estimate Stnd. Error T P-value 

MA(1) 0.818786 0.0478133 17.1246 0.000000 

SAR(1) 0.531745 0.146213 3.63678 0.000400 

SMA(1) 1.67374 0.092474 18.0996 0.000000 

SMA(2) -0.728689 0.081741 -8.91461 0.000000 

 

Table 2. ARIMA (0, 1, 1) x (1, 1, 2)12 model parameter characteristics 
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Model* RMSE MAE MAPE ME MPE AIC 

(A) 0.00337 0.00249 13.526 0.000004 -1.5017 -11.2253 

(B) 0.00271 0.00206 11.086 0.000002 -1.8498 -11.6431 

(C) 0.00269 0.00201 10.786 0.000002 -1.8157 -11.6409 

(H) 0.00267 0.00198 10.707 0.000003 -1.7185 -11.6712 

(I) 0.00271 0.00201 10.870 -0.000050 -1.9817 -11.6423 

(J) 0.00270 0.00199 10.671 0.000206 -0.5469 -11.6286 

(M) 0.00258 0.00206 11.250 0.000031 -1.5638 -11.8601 

(N) 0.00257 0.00204 11.192 -0.00009 -2.0636 -11.8478 

(O) 0.00258 0.00206 11.298 -0.000053 -1.9673 -11.8392 

(P) 0.00259 0.00207 11.260  -1.7473 -11.8382 

(Q) 0.00259 0.00207 11.267 0.000030 -1.5789 -11.8335 

*Models 

(A) Random walk; (B) Constant mean = 0.0190056; (C) Linear trend = 0.0184806 + 0.00000789502 t  

(H) Simple exponential smoothing with α= 0.109; (I) Brown's linear exp. smoothing with α = 0.0572 

(J) Holt's linear exp. smoothing with α = 0.1291 and β = 0.0301; (M) ARIMA(0,1,1)x(1,1,2)12 

(N) ARIMA(1,0,1)x(1,1,2)12; (O) ARIMA(0,1,1)x(1,1,2)12 with constant 

(P) ARIMA(0,1,1)x(2,1,2)12; (Q) ARIMA(0,1,2)x(1,1,2)12 

Table 3. Model Comparison 

According to plots of residual ACF (Figure 5) and PACF (Figure 6), residuals are white noise 

and not-auto correlated. Furthermore, as shown in Figure 7 of normal probability plot, 

residuals of the model are normal. 

 

 

Figure 5. Residual autocorrelation functions (ACF) plot 
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Figure 6. Residual partial autocorrelation (PACF) functions plot 

 
 

 

 

 
 

Figure 7. Residual normal probability plot 
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Based on the prediction for ozone concentration (Figure 4), there is a statistical significant 

upward trend at Kemaman station. The detection of a steady statistical significant upward 

trend for ozone concentration in Kemaman is quite alarming. This is likely due to sources of 

ozone precursors related to industrial activities from nearby areas and the increase in road 

traffic volume.  

4. Conclusion 

Time series analysis is an important tool in modeling and forecasting air pollutants. 

Although, this piece of information was not appropriate to predict the exact monthly ozone 

concentration, ARIMA (0, 1, 1) x (1, 1, 2)12 model give us information that can help the 

decision makers establish strategies, priorities and proper use of fossil fuel resources in 

Kemaman. This is very important because ground level ozone (O3) is formed from NOx and 

VOCs brought about by human activities (largely the combustion of fossil fuel).  In 

summary, the ozone level increased steadily in Kemaman area and is predicted to exceed 40 

ppb by 2019 if no effective countermeasures are introduced.  
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