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1. Introduction 

Theory of map projections is a branch of cartography studying the ways of projecting the 

curved surface of the earth and other heavenly bodies into the plane, and it is often called 

mathematical cartography. There are many fussy symbolic problems to be dealt with in map 

projections, such as power series expansions of elliptical functions, high order differential of 

transcendental functions, elliptical integrals and the operation of complex numbers. Many 

famous cartographers such as Adams (1921), Snyder (1987), Yang (1989, 2000) have made 

great efforts to solve these problems. Due to historical condition limitation, there were no 

advanced computer algebra systems at that time, so they had to dispose of these problems 

by hand, which had often required a paper and a pen. Some derivations and 

computations were however long and labor intensive such that one gave up midway. 

Briefly reviewing the existing methods, one will find that these problems were not 

perfectly and ideally solved yet. Formulas derived by hand often have quite complex and 

prolix forms, and their orders could not be very high. The most serious problem is that 

some higher terms of the formulas are erroneous because of the adopted approximate 

disposal.  

With the advent of computers, the paper and pen approach is slowly being replaced by 

software developed to undertake symbolic derivations tasks. Specially, where symbolic 

rather than numerical solutions are desired, this software normally comes in handy. 

Software which performs symbolic computations is called computer algebra system. 

Nowadays, computer algebra systems like Maple, Mathcad, and Mathematica are widely 

used by scientists and engineers in different fields(Awang, 2005; Bian, 2006). By means of 

computer algebra system Mathematica, we have already solved many complicated 

mathematical problems in special fields of cartography in the past few years. Our research 
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results indicate that the derivation efficiency can be significantly improved and formulas 

impossible to be obtained by hand can be easily derived with the help of Mathematica, 

which renovates the traditional analysis methods and enriches the mathematical theory 

basis of cartography to a certain extent.  

The main contents and research results presented in this chapter are organized as follows. In 

Section II, we discuss the direct transformations from geodetic latitude to three kinds of 

auxiliary latitudes often used in cartography, and the direct transformations from these 

auxiliary latitudes to geodetic latitude are studied in Section III. In Section IV, the direct 

expansions of transformations between meridian arc, isometric latitude, and authalic functions 

are derived. In Section V, we discuss the non-iterative expressions of the forward and inverse 

Gauss projections by complex numbers. Finally in Section VI, we make a brief summary. It is 

assumed that the readers are somewhat conversant with Mathematica and its syntax. 

2. The forward expansions of the rectifying, conformal and authalic 

latitudes 

Cartographers prefer to adopt sphere as a basis of the map projection for convenience since 

calculation on the ellipsoid are significantly more complex than on the sphere. Formulas for 

the spherical form of a given map projection may be adapted for use with the ellipsoid by 

substitution of one of various “auxiliary latitudes” in place of the geodetic latitude. In using 

them, the ellipsoidal earth is, in effect, transformed to a sphere under certain restraints such 

as conformality or equal area, and the sphere is then projected onto a plane (Snyder, 1987). If 

the proper auxiliary latitudes are chosen, the sphere may have either true areas, true 

distances in certain directions, or conformality, relative to the ellipsoid. Spherical map 

projection formulas may then be used for the ellipsoid solely with the substitution of the 

appropriate auxiliary latitudes.  

The rectifying, conformal and authalic latitudes are often used as auxiliary ones in 

cartography. The direct transformations form geodetic latitude to these auxiliary ones are 

expressed as transcendental functions or non-integrable ones. Adams (1921), Yang (1989, 

2000) had derived forward expansions of these auxiliary latitudes form geodetic one 

through complicated formulation. Due to historical condition limitation, the derivation 

processes were done by hand and orders of these expansions could not be very high. Due to 

these reasons, the forward expansions for these auxiliary latitudes are reformulated by 

means of Mathematica. Readers will see that new expansions are expressed in a power 

series of the eccentricity of the reference ellipsoid e  and extended up to tenth-order terms of 

e . The expansion processes become much easier under the system Mathematica.     

2.1. The forward expansion of the rectifying latitude 

The meridian arc from the equator 0B   to B  is  

 2 2 2 3/2

0
(1 ) (1 sin )

B
X a e e B dB      (1) 
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where X  is the meridian arc; B is the geodetic latitude; a  is the semi-major axis of the 

reference ellipsoid; 

(1) is an elliptic integral of the second kind and there is no analytical solution. Expanding 

the integrand by binomial theorem and itntegrating it item by item yield: 

 2
0 2 4 6 8 10(1 )( sin 2 sin 4 sin6 sin8 sin10 )X a e K B K B K B K B K B K B        (2) 

where  

  

2 4 6 8 10
0

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8
8

3 45 175 11025 43659
1

4 64 256 16384 65536
3 15 525 2205 72765

8 32 1024 4096 131072
15 105 2205 10395

256 1024 16384 65536
35 105 10395

3072 4096 262144
315

131072

K e e e e e

K e e e e e

K e e e e

K e e e

K e

     

     

   

   

 10

10
10

3465

524288
693

1310720

e

K e













 



 


 (3) 

The rectifying latitude   is defined as  

 

  
2

( )
2

X

X




   (4)    

Inserting (2) into (4) yields 

 2 4 6 8 10sin 2 sin 4 sin6 sin8 sin10B B B B B B             (5)   

where  

  

2 2 0

4 4 0

6 6 0

8 8 0

10 10 0

/

/

/

/

/

K K

K K

K K

K K

K K







 
  
 
 

  (6) 

 

Yang (1989, 2000) gave an expansion similar to (5) but expanded   up to sin8B . For 

simplicity and computing efficiency, it is better to expand (6) into a power series of the 

eccentricity. This process is easily done by means of Mathematica. As a result, (6) becomes: 
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2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10
10

3 3 111 141 1533

8 16 1024 2048 32768
15 15 405 165

256 256 8192 4096
35 35 4935

3072 2048 262144
315 315

131072 65536
693

1310720

e e e e e

e e e e

e e e

e e

e












     


    


   



 

  

  (7) 

2.2 The forward expansion of the conformal latitude 

Omitting the derivation process, the explicit expression for the isometric latitude q  is  

 

/22

2 20

1 1 sin
ln tan

4 2 1 sin(1 sin )cos

arctan h(sin )- arctan h( sin )

e
B e B e B

q dB
e Be B B

B e e B

              
 

  (8) 

For the sphere, putting 0e  and rewriting the geodetic latitude as the conformal one  , (8) 

becomes 

  ln tan( ) arctan h(sin )
4 2

q
   

   
 

  (9) 

Comparing (9) with (8) leads to  

  /21 sin
tan( ) tan( )( )

4 2 4 2 1 sin
eB e B

e B

   
  


 (10) 

Therefore, it holds 

  /21 sin
2arctan tan( )( )

4 2 1 sin 2
eB e B

e B

   
    

  (11) 

Since the eccentricity is small, the conformal latitude is close to the geodetic one. Though 

(11) is an analytical solution of  , (11) is usually expanded into a power series of the 

eccentricity 

 

2 3 9
2 3

2 3 9
0 0 0 0

10
9 10

10
0

1 1 1
( , ) ( ,0)

2! 3! 9!

1

10!

e e e e

e

B e B e e e
e e e e

e e
e

    



   



   
    

   


 







 (12) 
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as the conventional usage in mathematical cartography. 

Through the tedious expansion process, Yang (1989, 2000) gave a power series of the 

eccentricity e  for the conformal latitude   as 

  2 4 6 8sin 2 sin 4 sin6 sin8B B B B B           (13) 

Due to that (11) is a very complicated transcendental function, the coefficients 2 , 4 , 6 , 8  

in (13) derived by hand are only expanded to eighth-order terms of e . They are not accurate 

as expected and there are some mistakes in the eighth-order terms of e .  

In fact, Mathematica works perfectly in solving derivatives of any complicated functions. By 

means of Mathematica, the new derived forward expansion expanded to tenth-order terms 

of e  reads 

 2 4 6 8 10sin 2 sin 4 sin6 sin8 sin10B B B B B B             (14) 

The derived coefficients in (13) and (14) are listed in Table 1 for comparison.  

 

Coefficients derived by Yang(1989, 2000) Coefficients derived by the author 

2 4 6 8
2

4 6 8
4

6 8
6

8
8

1 5 3 1399

2 24 32 53760
5 7 689

48 80 17920
13 1363

480 53760
677

17520

e e e e

e e e

e e

e










    


   

   


 


 

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10
10

1 5 3 281 7

2 24 32 5760 240
5 7 697 93

48 80 11520 2240
13 461 1693

480 13440 53760
1237 131

161280 10080
367

161280

e e e e e

e e e e

e e e

e e

e












     


    


   



 

  

 

Table 1. The comparison of coefficients of the forward expansion of conformal latitude derived by 

Yang (1989, 2000) and the author  

Table 1 shows that the eighth order terms of e in coefficients given by Yang(1989, 2000) are 

erroneous. 

2.3. The forward expansion of the authalic latitude 

From the knowledge of mapping projection theory, the area of a section of a lune with a 

width of a unit interval of longitude F  is  

 2 2 2 2

2 2 2 2 20

cos sin 1 1 sin
(1 ) (1 ) ln

4 1 sin(1 sin ) 2(1 sin )

B B B e B
F a e dB a e

e e Be B e B

 
     

   
   (15) 

where F  is also called authalic latitude function.  
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Denote 

  
2

1 1 1
ln

4 12(1 )

e
A

e ee


 


  (16) 

Suppose that there is an imaginary sphere with a radius  

 2(1 )R a e A   (17) 

and whose area from the spherical equator 0   to spherical latitude   with a width of a 

unit interval of longitude is equal to the ellipsoidal area F , it holds 

  2 2 2sin (1 ) sinR a e A F     (18)  

Therefore, it yields 

   
2 2

1 sin 1 1 sin
arcsin ln

4 1 sin2(1 sin )

B e B

A e e Be B


  
       

 (19) 

where   is authalic latitude. Yang(1989, 2000) gave its series expansion as 

   2 4 6 8sin 2 sin 4 sin6 sin8B B B B B          (20) 

(19) is a complicated transcendental function. It is almost impossible to derive its eighth-

order derivate by hand. There are some mistakes in the high order terms of coefficients 2 ,

4 , 6 , 8 .The new derived forward expansion expanded to tenth-order terms of e  by 

means of Mathematica reads 

 2 4 6 8 10sin 2 sin 4 sin6 sin8 sin10B B B B B B            (21) 

The derived coefficients in (20) and (21) are listed in Table 2 for comparison.  

 

Coefficients derived by Yang(1989, 2000) Coefficients derived by the author 

2 4 6 8

2

4 6 8

4

6 8

6

8

8

1 31 59 126853

3 180 560 518400

17 61 3622447

360 1260 94089600

383 6688039

43560 658627200

27787

23522400

e e e e

e e e

e e

e









    

  

  

 













 

2 4 6 8 10

2

4 6 8 10

4

6 8 10

6

8 10

8

10

1 31 59 42811 605399

3 180 560 604800 11975040

17 61 76969 215431

360 1260 1814400 5987520

383 3347 1751791

45360 259200 119750400

6007 201293

3628800 59875200

5839

171

e e e e e

e e e e

e e e

e e











     

   

   

 

  10

07200
e















 

Table 2. The comparison of coefficients of the forward expansion of conformal latitude derived by 

Yang (1989, 2000) and the author 
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Table 2 shows that the eighth-orders terms of e  in coefficients given by Yang(1989, 2000) are 

erroneous. 

2.4. Accuracies of the forward expansions 

In order to validate the exactness and reliability of the forward expansions of rectifying, 

conformal and authalic latitudes derived by the author, one has examined their accuracies 

choosing the CGCS2000 (China Geodetic Coordinate System 2000) reference ellipsoid with 

parameters 6378137ma  , 1 / 298.257222101f   (Chen, 2008; Yang, 2009), where f is the 

flattening. The accuracies of the forward expansions derived by Yang (1989, 2000) are also 

examined for comparison. The results show that the accuracy of the forward expansion of 

rectifying latitude derived by Yang (1989, 2000) is higher than 10-5″, while the accuracy of 

the forward expansion (5) derived by the author is higher than 10-7″. The accuracies of the 

forward expansion of conformal and authalic latitudes derived by Yang (1989, 2000) are 

higher than 10-4″, while the accuracies of the forward expansions derived by the author are 

higher than 10-8″ . The accuracies of forward expansions derived by the author are improved 

by 2~4 orders of magnitude compared to forward expansions derived by Yang (1989, 2000). 

3. The inverse expansions of rectifying, conformal and authalic latitudes 

The inverse expansions of these auxiliary latitudes are much more difficult to derive than 

their forward ones. In this case, the differential equations are usually expressed as implicit 

functions of the geodetic latitude. There are neither any analytical solutions nor obvious 

expansions. For the inverse cases, to find geodetic latitude from auxiliary ones, one usually 

adopts iterative methods based on the forward expansions or an approximate series form. 

Yang (1989, 2000) had given the direct expansions of the inverse transformation by means of 

Lagrange series method, but their coefficients are expressed as polynomials of coefficients of 

the forward expansions, which are not convenient for practical use. Adams (1921) expressed 

the coefficients of inverse expansions as a power series of the eccentricity e  by hand, but 

expanded them up to eighth-order terms of e  at most. Due to these reasons, new inverse 

expansions are derived using the power series method by means of Mathematica. Their 

coefficients are uniformly expressed as a power series of the eccentricity and extended up to 

tenth-order terms of e .  

3.1. The inverse expansions using the power series method  

The processes to derive the inverse expansions using the power series method are as 

follows: 

1. To obtain their various order derivatives in terms of the chain rule of implicit 

differentation; 

2. To compute the coefficients of their power series expansions; 

3. To integrate these series item by item and yield the final inverse expansions. 
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One can image that these procedures are quite complicated. Mathematica output shows that 

the expression of the sixth order derivative is up to 40 pages long! Therefore, it is 

unimaginable to derive the so long expression by hand. These procedures, however, will 

become much easier and be significantly simplified by means of Mathematica. As a result, 

the more simple and accurate expansions yield. 

3.1.1. The inverse expansion of the rectifying Latitude 

Differentiation to the both sides of (1) yields 

 
2

2 2 3/2

(1 )

(1 sin )

dX a e

dB e B





 (22) 

From (4) and (2), one knows 

 2
0(1 )X a e K    (23) 

Inserting (23) into (22) yields  

  2 2 3/2

0

(1 sin )
dB

e B
K d

   (24) 

To expand (24) into a power series of sin , we introduce the following new variable 

 sint    (25)  

therefore 

 
1

cos

d

dt




  (26) 

and then denote 

  2 2 3/2

0

( ) (1 sin )
dB

f t e B
K d

    (27) 

Making use of the chain rule of implicit differentiation 

 , ,t t

df df df dfdB d d dB d d
f f

dB d dt d dt dB d dt d dt

   
   

 
       (28) 

It is easy to expand (27) into a power series of sin  

  2 3 (10) 101 1 1
( ) (0) (0) (0) (0) (0)

2! 3! 10!t t t tf t f f t f t f t f t           (29) 

Omitting the detailed procedure, one arrives at 
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 2 4 6 8 10
2 4 6 8 10

0

1 sin sin sin sin sin
dB

A A A A A
K d

    


       (30) 

where 

 

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10
10

3 27 729 4329 381645

2 8 128 512 32768
21 621 11987 757215

8 64 512 16384
151 775 621445

32 32 8192
1097 57607

128 1024
8011

512

A e e e e e

A e e e e

A e e e

A e e

A e


     


    


   



 

  

  (31) 

Multiplying 0K  and integrating at the both sides of (30) give the inverse expansion of 

rectifying latitude as 

 2 4 6 8 10sin 2 sin 4 sin6 sin8 sin10B a a a a a            (32) 

where 

  

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10
10

3 3 213 255 20861

8 16 2048 4096 524288
21 21 533 197

256 256 8192 4096
151 151 5019

6144 4096 131072
1097 1097

131072 65536
8011

2621440

a e e e e e

a e e e e

a e e e

a e e

a e


    


    


  



 

 

   (33) 

3.1.2. The inverse expansion of the conformal latitude  

Differentiating the both sides of (10) yields  

 
2

2 2

1

cos (1 sin )cos

d e
dB

e B B








 (34) 

Therefore, it holds  

 
2 2

2

(1 sin )cos

(1 )cos

dB e B B

d e 





  (35) 
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For the same reason, we introduce the following new variable 

 sint    (36) 

and then denote 

  
2 2

2

(1 sin )cos
( )

(1 )cos

dB e B B
f t

d e 


 


 (37) 

Using the same procedure as described in the former section, one arrives at  

  2 4 6 8 10
2 4 6 8 102

1
sin sin sin sin sin

1

dB
B B B B B

d e
    


     


 (38) 

where 

 

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10
10

11 21
2 17 25

2 2
14 62 1369 3005

3 3 24 24
56 614 4909

5 9 20
8558 7367

315 35
4174

63

B e e e e e

B e e e e

B e e e

B e e

B e


     


    


   



 

  

 (39) 

Integrating the both sides of (38) gives the inverse expansion of conformal latitude as 

 2 4 6 8 10sin 2 sin 4 sin6 sin8 sin10B b b b b b            (40) 

where 

 

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10
10

1 5 1 13 3

2 24 12 360 160
7 29 811 81

48 240 11520 2240
7 81 3029

120 1120 53760
4279 883

161280 20160
2087

161280

b e e e e e

b e e e e

b e e e

b e e

b e


    


    


  



 

 

 (41) 

3.1.3 The inverse expansion of the authalic latitude 

Inserting (18) into (15) yields 
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2 2 20

cos
sin

(1 sin )

B B
A dB

e B
 

   (42) 

Differentiating the both sides of (42) yields  

 

 
2 2 2(1 sin ) cos

cos

dB A e B

d B





   (43) 

For the same reason, we introduce the folllowing new variable 

 

  sint    (44) 

and then denote 

 

 
2 2 2(1 sin ) cos

( )
cos

dB A e B
f t

d B





   (45) 

(45) can be expanded into a power series of sin . Using the chain rule of implicit function 

differentiation, one similarly arrives at 

 

  2 4 6 8 10
2 4 6 8 10( ) sin sin sin sin sin

dB
f t A C C C C C

d
    


        (46) 

where 

 

 

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10
10

4 41 4108 58427 28547

3 15 945 9450 3465
92 6574 223469 2768558

45 945 14175 93555
3044 28901 21018157

945 1890 467775
24236 2086784

4725 66825
768272

93555

C e e e e e

C e e e e

C e e e

C e e

C e


     


    


   

 

 









  (47) 

To get the inverse expansion of the authalic latitude, one integrates (46) and arrives at 

 2 4 6 8 10sin 2 sin 4 sin6 sin8 sin10B c c c c c             (48) 
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where 

 

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8 10
8

10

1 31 517 120389 1362253

3 180 5040 181400 29937600
23 251 102287 450739

360 3780 1814400 997920
761 47561 434501

45360 1814400 14968800
6059 625511

1209600 59875200
48017

c e e e e e

c e e e e

c e e e

c e e

c

    

   

  

 

 10

29937600
e















 (49) 

3.2. The inverse expansions using the Hermite interpolation method  

In mathematical analysis, interpolation with functional values and their derivative values is 

called Hermite interpolation. The processes to derive the inverse expansions using this 

method are as follows:  

1. To suppose the inverse expansions are expressed in a series of the sines of the multiple 

arcs with coefficients to be determined;  

2. To compute the functional values and their derivative values at specific points; 

3. To solve linear equations according to interpolation constraints and obtain the 

coefficients. 

The detailed derivation processes are given by Li (2008, 2010). Confined to the length of the 

chapter, they are omitted. Comparing the results derived by this method with those in 3.1, 

one will find that they are consistent with each other even though they are formulated in 

different ways. This fact substantiates the correctness of the derived formulas.   

3.3. The inverse expansions using the Lagrange’s theorem method 

We wish to investigate the inversion of an equation such as 

 ( )y x f x    (50) 

with ( )f x x  and y x . The Lagrange’s theorem states that in a suitable domain the 

solution of (50) is  

 
1

1
1

( 1)
[ ( )]

!

n n
n

n
n

d
x y f y

n dy







   (51) 

The proof of this theorem is given by Whittaker (1902) and Peter (2008). 

The processes to derive the inverse expansions using the Lagrange series method are as 

follows:  
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1. To apply the Lagrange theorem to a trigonometric series;  

2. To write the inverse expansions of the rectifying, conformal and authalic latitude; 

3. To express the coefficients of the inverse expansions as a power series of the 

eccentricity. 

The detailed derivation processes are given by Li (2010). Confined to the length of the 

chapter, they are also omitted. Comparing the results derived by this method with those in 

3.1 and 3.2, one will find that they are all consistent with each other even though they are 

also formulated in different ways. This fact substantiates the correctness of the derived 

formulas, too.   

3.4. Accuracies of the inverse expansions 

The accuracies of the inverse expansions derived by Yang (1989, 2000) and the author has 

been examined choosing the CGCS2000 reference ellipsoid.  

The results show that the accuracy of the inverse expansion of rectifying latitude is higher 

than 10-5″, while the accuracy of the inverse expansion (32) derived by the author is higher 

than 10-7″. The accuracies of the inverse expansion of conformal and authalic latitudes 

derived by Yang (1989, 2000) are higher than 10-4″, while the accuracies of the inverse 

expansions derived by the author are higher than 10-8″. The accuracies of inverse expansions 

derived by the author are improved by 2~4 orders of magnitude compared to those derived 

by Yang (1989, 2000). 

4. The direct expansions of transformations between meridian arc, isometric 

latitude and authalic latitude function 

The meridian arc, isometric latitude and authalic latitude function are functions of 

rectifying, conformal and authalic latitudes correspondingly. The transformations between 

the three variables are indirectly realized by computing the geodetic latitude in the past 

literatures such as Yang (1989, 2000), Snyder (1987). The computation processes are tedious 

and time-consuming. In order to simplify the computation processes and improve the 

computation efficiency, the direct expansions of transformations between meridian arc, 

isometric latitude and authalic latitude function are comprehensively derived by means of 

Mathematica.   

4.1. The direct expansions of transformations between meridian arc and 

isometric latitude  

4.1.1. The direct expansion of the transformation from meridian arc to isometric latitude 

Inserting the known meridian arc X  into (23) yields the rectifying latitude  . Using the 

inverse expansion of the rectifying latitude (32) and the forward expansion of the conformal 

latitude (14), one obtains the conformal latitude  . Inserting it into (9) yields the isometric 

latitude q . The whole formulas are as follows: 
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2
0

2 4 6 8 10

2 4 6 8 10

(1 )

sin 2 sin 4 sin6 sin8 sin10

sin 2 sin 4 sin6 sin8 sin10

arctanh(sin )

X

a e K

B a a a a a

B B B B B B

q



     
     







     

      
 

 (52) 

Since the coefficients 2ia , 2i ( 1,2, 5i   ) are expressed in a power series of the eccentricity, 

one could expand q  as a power series of the eccentricity e  at 0e   in order to obtain the 

direct expansion of the transformation from X  to q . It is hardly completed by hand, but 

could be easily realized by means of Mathematica. Omitting the main operations by means 

of Mathematica yields the direct expansion of the transformation from meridian arc to 

isometric latitude 

 2
0

1 3 5 7 9

(1 )

arctanh(sin ) sin sin 3 sin 5 sin7 sin9

X

a e K

q



          





      

 (53) 

where 

  

2 4 6 8 10
1

4 6 8 10
3

6 8 10
5

8 10
7

10
9

1 1 1 33 2363

4 64 3072 16384 1310720
1 13 13 1057

96 3072 8192 1966080
11 29 2897

7680 24576 3932160
25 727

86016 1966080
53

737280

e e e e e

e e e e

e e e

e e

e












     


     

    

   

  

  (54) 

4.1.2. The direct expansion of the transformation from isometric latitude to meridian arc 

The whole formulas for the transformation from isometric latitude to meridian arc are as 

follows: 

 
2 4 6 8 10

2 4 6 8 10

2
0

arcsin(tanh )

sin 2 sin 4 sin6 sin8 sin10

sin 2 sin 4 sin6 sin8 sin10

(1 )

q

B b b b b b

B B B B B B

X a e K


     

     



 
      
      
  

  (55) 

Expanding X  as a power series of the eccentricity e  at 0e   by means of Mathematica 

yields the direct expansion of the transformation from isometric latitude to meridian arc 
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  0 2 4 6 8 10

arcsin(tanh )

sin 2 sin 4 sin6 sin8 sin10

q

X a j j j j j j


     

 
      

  (56) 

where 

 

    

2 4 6 8 10
0

2 4 6 8 10
2

4 6 8 10
4

6 8 10
6

8

1 3 5 175 441
1

4 64 256 16384 65536
1 1 9 901 16381

8 96 1024 184320 5898240
13 17 311 18931

768 5120 737280 20643840
61 899 14977

15360 430080 27525120
49561

41287680

j e e e e e

j e e e e e

j e e e e

j e e e

j e

     

    

   

  

 8 10

10
10

175087

165150720
34729

82575360

e

j e













 






 (57) 

4.2. The direct expansions of transformations between meridian arc and authalic 

latitude function  

4.2.1. The direct expansion of the transformation from meridian arc to authalic latitude 

function  

The whole formulas for the transformation from meridian arc to authalic latitude function 

are as follows: 

 

2
0

2 4 6 8 10

2 4 6 8 10

2

(1 )

sin 2 sin 4 sin6 sin8 sin10

sin 2 sin 4 sin6 sin8 sin10

sin

X

a e K

B a a a a a

B B B B B B

F R



     
     




 

      
      
 

   (58) 

Expanding F  as a power series of the eccentricity e  at 0e   by means of Mathematica 

yields the direct expansion of the transformation from meridian arc to authalic latitude 

function 

 

 
2

0

2
1 3 5 7 9 11

(1 )

sin sin 3 sin 5 sin7 sin9 sin11

X

a e K

F a



           


 

      

  (59) 

where 
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2 4 6 8 10
1

2 4 8 10
3

4 6 8 10
5

6 8 10
7

8
9

5 17 121 137 1407
1

16 256 4096 8192 131072
1 1 103 1775

48 384 196608 3145728
3 43 17 467

1280 30720 24576 1572864
37 5 563

86016 10752 1572864
59 1853

589824 11796480

e e e e e

e e e e

e e e e

e e e

e e











     

   

   

  

  10

10
11

1543

57671680
e




















 (60) 

4.2.2. The direct expansion of the transformation from authalic latitude function to 

meridian arc  

The whole formulas for the transformation from authalic latitude function to meridian arc are 

as follows: 

 

2

2 4 6 8 10

2 4 6 8 10

2
0

arcsin( )

sin 2 sin 4 sin6 sin8 sin10

sin 2 sin 4 sin6 sin8 sin10

(1 )

F

R
B c c c c c

B B B B B B

X a e K



     
     






      
      

  

 (61) 

Expanding X  as a power series of the eccentricity e  at 0e   by means of Mathematica yields 

the direct expansion of the transformation from authalic latitude function to meridian arc 

  

 
2

0 2 4 6 8 10

arcsin( )

sin 2 sin 4 sin6 sin8 sin10

F

R

X a k k k k k k



     





      

 (62) 

where 

  

2 4 6 8 10
0

2 4 6 8 10
2

4 6 8 10
4

6
6

1 3 5 175 441
1

4 64 256 16384 65536
1 7 61 2719 30578453

24 1440 107520 8294400 61312204800
29 1411 180269 4110829

11520 967680 232243200 10218700800
1003 341

2903040 921

k e e e e e

k e e e e e

k e e e e

k e

     

     

    

   8 10

8 10
8

10
10

36598301
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40457 3602683

619315200 35035545600
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e e

k e e

k e










 


   



 


 (63) 



 
Mathematical Analysis in Cartography by Means of Computer Algebra System 17 

4.3. The direct expansions of transformations between isometric latitude and 

authalic latitude function 

4.3.1. The direct expansion of the transformation from isometric latitude to authalic 

latitude function 

The whole formulas for the transformation from isometric latitude to authalic latitude 

function are as follows: 

 

 
2 4 6 8 10

2 4 6 8 10

2

arcsin(tanh )

sin 2 sin 4 sin6 sin8 sin10

sin 2 sin 4 sin6 sin8 sin10

sin

q

B b b b b b

B B B B B B

F R


     

     



 
      
      
 

  (64) 

Expanding F  as a power series of the eccentricity e  at 0e   by means of Mathematica 

yields the direct expansion of the transformation from isometric latitude to authalic latitude 

function 

 

   2
1 3 5 7 9 11

arcsin(tanh )

sin sin 3 sin 5 sin7 sin9 sin11

q

F a



           

 


     
 (65) 

where 
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1
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12 960 192 13440
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41 1
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






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
    

    


   

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  






  (66) 

4.3.2. The direct expansion of the transformation from authalic latitude function to 

isometric latitude 

The whole formulas for the transformation from authalic latitude function to isometric 

latitude are as follows: 
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q



     
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
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  (67) 

Expanding q  as a power series of the eccentricity at 0e   by means of Mathematica yields 

the direct expansion of the transformation form authalic latitude function to isometric 

latitude 

 2

1 3 5 7 9

arcsin( )

arctanh(sin ) sin sin 3 sin 5 sin7 sin9

F

R
q l l l l l
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  (68) 

where 
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
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  (69) 

4.4 Accuracies of the direct expansions 

The accuracies of the indirect and direct expansions given by Yang(1989, 2000) derived by 

the author has been examined choosing the CGCS2000 reference ellipsoid.  

The results show that the accuracy of the indirect expansion of the transformation from 

meridian arc to isometric latitude is higher than 10-3″, while the accuracy of the direct 

expansion (53) is higher than 10-7″. The accuracy of the indirect expansion of the 

transformation from isometric latitude to meridian arc is higher than 10-2 m, while the 

accuracy of the direct expansion (56) is higher than 10-7 m. The accuracy of the indirect 

expansion of the transformation from meridian arc to authalic latitude function is higher 

than 0.1 2km , while the accuracy of the direct expansion (59) is higher than 5 210 km . The 

accuracy of the indirect expansion of the transformation from authalic latitude function to 

meridian arc is higher than 10-2 m, while the direct expansion (62) is higher than 10-4 m. The 

accuracy of the indirect expansion of the transformation from isometric latitude to authalic 

latitude function is higher than 0.1 2km , while the accuracy of the direct expansion (65) is 
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higher than 7 210 km . The accuracy of the indirect expansion of the transformation from 

authalic latitude function to isometric latitude is higher than 10-2″, while the accuracy of the 

direct expansion (67) is higher than 10-6″. The accuracies of the direct expansions derived by 

the author are improved by 2~6 orders of magnitude compared to the indirect ones derived 

by Yang (1989, 2000).  

5. The non-iterative expressions of the forward and inverse Gauss 

projections by complex numbers 

Gauss projection plays a fundamental role in ellipsoidal geodesy, surveying, map projection 

and geographical information system (GIS). It has found its wide application in those areas. 

 

Figure 1. Gauss Projection, where x  and y  are the vertical and horizontal axes after the projection 

respectively, O  is the origin of the projection coordinates. 

As shown in Figure 1, Gauss projection has to meet the following three constraints: 

① conformal mapping; 

② the central meridian mapped as a straight line (usually chosen as a vertical axis of x ) 

after projection; 

③ scale being true along the central meridian. 

Traditional expressions of the forward and inverse Gauss projections are real functions in a 

power series of longitude difference. Though real functions are easy to understand for most 

people, they make Gauss projection expressions very tedious. Mathematically speaking, 

there is natural relationship between the conformal mapping and analytical complex 

functions which automatically meet the differential equation of the conformal mapping, or 

the “Cauchy-Riemann Equations”. Complex functions, a powerful mathematical method, 

play a very special and key role in the conformal mapping. Bowring (1990) and Klotz (1993) 

have discussed Gauss projection by complex numbers. But the expressions they derived 

require iterations, which makes the computation process very fussy. In terms of the direct 

expansions of transformations between meridian arc and isometric latitude given in section 

O

N

S

N

S

O

x

y
equator
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Ⅳ, the non-iterative expressions of the forward and inverse Gauss projections by complex 

numbers are derived. 

5.1. The non-iterative expressions of the forward Gauss projection by complex 

numbers 

Let w  be complex numbers consisting of isometric latitude q  and longitude difference l  

before projection, z  be complex numbers consisting of corresponding coordinates x , y  

after projection. 

   
w q il

z x iy

  
  

  (70) 

where 1i   . 

In terms of complex functions theory, analytical functions meet conformal mapping 

naturally. Therefore, to meet the conformal mapping constraint, the forward Gauss 

projection should be in the following form 

  ( ) ( )z x iy f w f q il       (71) 

where f  is an arbitrary analytical function in the complex numbers domain. According to 

the second constraint, when 0l  , imaginary part disappears and only real part exists, (71) 

becomes  

  ( )x f q   (72) 

(72) shows that the central meridian is a straight line after the projection when 0l  . 

Finally, from the third constraint, “scale is true along the central meridian”, one knows that 

x  in (72) should be nothing else but the meridian arc X , and (72) is essentially consist with 

the direct expansion of the transformation from isometric latitude to meridian arc (56). 

Substituting X  in (56) with x  gives the explicit form of (72) 

  0 2 4 6 8 10

arcsin(tanh )

sin 2 sin 4 sin6 sin8 sin10

q

x a j j j j j j


     

 
      

 (73) 

(73) defines the functional relationship between meridian arc and isometric latitude. If one 

extends the definition of q  in a real number variable to a complex numbers variable, or 

substitutes q  with w q il  , the original real number conformal latitude   will be 

automatically extended as a complex numbers variable. We denote the corresponding 

complex numbers latitude as  , and insert it into (73). Rewriting a real variable x  at the 

left-hand of the second equation in (73) as a complex numbers variable z x iy  , one 

arrives at 
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  0 2 4 6 8 10

arcsin(tanh )

sin 2 sin 4 sin6 sin8 sin10

w

z x iy a j j j j j j     
 
        

 (74) 

(74) is the solution of the forward Gauss projection by complex numbers. Its correctness can 

be explained as follows: 

The two equations in (74) are all elementary complex functions. Because elementary 

functions in their basic interval are all analytical ones in the complex numbers domain, the 

mapping defined by (74) form w q il   to z x iy   meets the conformal mapping 

constraint. When 0l  , the imaginary part disappears and (74) restores to (73). Therefore, 

(74) meets the second and third constraints of Gauss projection when 0l  . Hence, it is clear 

that (74) is the solution of the forward Gauss projection indeed.    

5.2. The non-iterative expressions of the inverse Gauss projection by complex 

numbers 

In principle, the inverse Gauss projection can be iteratively solved in terms of the forward 

Gauss projection (74). In order to eliminate the iteration, one more practical approach is 

proposed based on the direct expansion of the transformation from meridian arc to 

isometric latitude (53). 

In order to meet the conformal mapping constraint, the inverse Gauss projection should be 

in the following form 

 1 1( ) ( )w q il f z f x iy       (75) 

where 1f   is the inverse function of f . According to the second constraint, when 0l  , 

imaginary part disappears and only real part exists, (75) becomes  

  1( )q f x   (76) 

Finally, from the third constraint, one knows that x  in (76) should be the meridian arc X , and 

(76) is essentially consist with the direct expansion of the transformation from meridian arc to 

isometric latitude as (53) shows. Substituting X  in (53) with x  gives the explicit form of (76) 

 2
0

1 3 5 7 9

(1 )

arctanh(sin ) sin sin 3 sin 5 sin7 sin9

x

a e K

q



          





      

 (77) 

If one extends the definition of x  in a real number variable to a complex numbers variable, 

or substitutes x  with z x iy  , the original real number rectifying latitude   will be 

automatically extended as a complex numbers variable. We denote the corresponding 

complex number latitude as  , and insert it into (77). Rewriting a real variable q  at the left-

hand of the second equation in (77) as a complex numbers variable w q il  , one arrives at 
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 2
0

1 3 5 7 9

(1 )

arctanh(sin ) sin sin 3 sin 5 sin7 sin9

x iy

a e K

w q il     

 
 


              

  (78) 

Therefore, the isometric latitude q  and longitude l  is known. Inserting q  into (78) yields 

the conformal latitude 

 arcsin(tanh )q    (80) 

Then one can compute the geodetic latitude through the inverse expansion of the conformal 

latitude (40). 

(77) is the solution of the inverse Gauss projection by complex numbers. Its correctness can 

be explained as follows: 

The two equations in (78) are all elementary complex functions, so the mapping defined by 

(78) form z x iy   to w q il   meets the conformal mapping constraint. When 0l  , the 

imaginary part disappears and (78) restores to (77). Therefore, (78) meets the second and 

third constraints of Gauss projection when 0l  . Hence, it is clear that (78) is the solution of 

the inverse Gauss projection indeed.    

6. Conclusions  

Some typical mathematical problems in map projections are solved by means of computer 

algebra system which has powerful function of symbolical operation. The main contents and 

research results presented in this chapter are as follows: 

1. Forward expansions of rectifying, conformal and authalic latitudes are derived, and 

some mistakes once made in the high orders of traditional forward formulas are pointed 

out and corrected. Inverse expansions of rectifying, conformal and authalic latitudes are 

derived using power series expansion, Hermite interpolation and Language’s theorem 

methods respectively. These expansions are expressed in a series of the sines of the 

multiple arcs. Their coefficients are expressed in a power series of the first eccentricity of 

the reference ellipsoid and extended up to its tenth-order terms. The accuracies of these 

expansions are analyzed through numerical examples. The results show that the 

accuracies of these expansions derived by means of computer algebra system are 

improved by 2~4 orders of magnitude compared to the formulas derived by hand. 

2. Direct expansions of transformations between meridian arc, isometric latitude and 

authalic latitude function are derived. Their coefficients are expressed in a power series 

of the first eccentricity of the reference ellipsoid, and extended up to its tenth-order 

terms. Numerical examples show that the accuracies of these direct expansions are 

improved by 2~6 orders of magnitude compared to the traditional indirect formulas. 

3. Gauss projection is discussed in terms of complex numbers theory. The non-iterative 

expressions of the forward and inverse Gauss projections by complex numbers are 

derived based on the direct expansions of transformations between meridian arc and 

isometric latitude, which enriches the theory of conformal projection. In USA, Universal 
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Transverse Mercator Projection (or UTM) is usually implemented. Mathematically 

speaking, there is no essential difference between UTM and Gauss projections. The only 

difference is that the scale factor of UTM is 0.9996 rather than 1. With a slight 

modification, the non-iterative expressions of the forward and inverse Gauss 

projections can be extended to UTM projection accordingly.  
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