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1. Introduction

Web mapping has become a popular way of distributing online mapping through the Internet.
Multiple services, like the popular Google Maps or Microsoft Bing Maps, allow users to
visualize cartography by using a simple Web browser and an Internet connection. However,
geographic information is an expensive resource, and for this reason standardization is
needed to promote its availability and reuse. In order to standardize this kind of map
services, the Open Geospatial Consortium (OGC) developed the Web Map Service (WMS)
recommendation [1]. This standard provides a simple HTTP interface for requesting
geo-referenced map images from one or more distributed geospatial databases. It was
designed for custom maps rendering, enabling clients to request exactly the desired map
image. This way, clients can request arbitrary sized map images to the server, superposing
multiple layers, covering an arbitrary geographic bounding box, in any supported coordinate
reference system or even applying specific styles and background colors.

However, this flexibility reduces the potential to cache map images, because the probability
of receiving two exact map requests is very low. Therefore, it forces images to be dynamically
generated on the fly each time a request is received. This involves a very time-consuming
and computationally-expensive process that negatively affects service scalability and users’
Quality of Service (QoS).

A common approach to improve the cachability of requests is to divide the map into a discrete
set of images, called tiles, and restrict user requests to that set [2]. Several specifications have
been developed to address how cacheable image tiles are advertised from server-side and
how a client requests cached image tiles. The Open Source Geospatial Foundation (OSGeo)
developed the WMS Tile Caching (usually known as WMS-C) proposal [3]. Later, the OGC
released the Web Map Tile Service Standard (WMTS) [4] inspired by the former and other
similar initiatives.

©2012 García et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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Most popular commercial services, like Google Maps, Yahoo Maps or Microsoft Virtual Earth,
have already shown that significant performance improvements can be achieved by adopting
this methodology, using their custom tiling schemes.

The potential of tiled map services is that map image tiles can be cached at any intermediate
location between the client and the server, reducing the latency associated to the image
generation process. Tile caches are usually deployed server-side, serving map image tiles
concurrently to multiple users. Moreover, many mapping clients, like Google Earth or Nasa
World Wind, have embedded caches, which can also reduce network congestion and network
delay.

This chapter deals with the algorithms that allow the optimization and management of these
tile caches: population strategies (seeding), tile pre-fetching and cache replacement policies.

2. Tiling schemes

Maps have been known for a long time only as printed on paper. Those printed cartographic
maps were static representations limited to a fixed visualization scale with a certain Level Of
Detail (LOD). However, with the development of digital maps, users can enlarge or reduce the
visualized area by zooming operations, and the LOD is expected to be updated accordingly.

The adaptation of map content is strongly scale-dependent: A small-scale map contains
less detailed information than a large scale map of the same area. The process of reducing
the amount of data and adjusting the information to the given scale is called cartographic
generalization, and it is usually carried out by the web map server [5].

In order to offer a tiled web map service, the web map server renders the map across a fixed
set of scales through progressive generalization. Rendered map images are then divided into
tiles, describing a tile pyramid as depicted in Figure 1.

Figure 1. Tile pyramid representation.

26 Cartography – A Tool for Spatial Analysis
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For example, Microsoft Bing Maps uses a tiling scheme where the first level allows
representing the whole world in four tiles (2x2) of 256x256 pixels. The next level represents
the whole world in 16 tiles (4x4) of 256x256 pixels and so on in powers of 4. A comprehensive
study on tiling schemes can be found in [2].

2.1. Simplified model

Given the exponential nature of the scale pyramid, the resource consumption to store map tiles
results often prohibitive for many providers when the cartography covers a wide geographic
area for multiple scales. Consider for example that Google’s BigTable, which contains the
high-resolution satellite imagery of the world’s surface as shown in Google Maps and Google
Earth, contained approximately 70 terabytes of data in 2006 [6].

Besides the storage of map tiles, many caching systems also maintain metadata associated to
each individual tile, such as the time when it was introduced into the cache, the last access to
that object, or the number of times it has been requested. This information can then be used to
improve the cache management; for example, when the cache is out of space, the LRU (Least
Recently Used) replacement policy uses the last access time to discard the least recently used
items first.

However, the space required to store the metadata associated to a given tile may only differ
by two or three orders of magnitude to the one necessary to store the actual map image object.
Therefore, it is not usually feasible to work with the statistics of individual tiles. To alleviate
this problem, a simplified model has been proposed by different researchers. This model
groups the statistics of adjacent tiles into a single object [7]. A grid is defined so all objects
inside the same grid section are combined into a single one. The pyramidal structure of scales
is therefore transformed in some way in a prism-like structure with the same number of items
in all the scales.

3. Web Map Server workload

In order to deal with this complexity some cache management algorithms have been
created. However, the efficiency of the designed algorithms usually depends on the service’s
workload. Because of this, prior to diving into the details of the cache management policies, a
workload characterization of the WMS services need to be shown. Lets take some real-life
examples for such characterization: trace files from two different tiled web map services,
Cartociudad1 and IDEE-Base2, provided by the National Geographic Institute (IGN)3 of
Spain, are presented in this chapter.

Cartociudad is the official cartographic database of the Spanish cities and villages with their
streets and roads networks topologically structured, while IDEE-Base allows viewing the
Numeric Cartographic Base 1:25,000 and 1:200,000 of the IGN.

Available trace files were filtered to contain only valid web map requests according to the
WMS-C recommendation. Traces from Cartociudad comprise a total of 2.369.555 requests

1 http://www.cartociudad.es
2 http://www.idee.es
3 http://www.ign.es/ign/main/index.do?locale=en
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Figure 2. Percentile of requests for the analyzed services.

received from the 9th December of 2009 to 13th May in 2010. IDEE-Base logs reflect a total of
16.891.616 requests received between 15th March and 17th June in 2010.

It must be noted that the performance gain achieved by the use of a tile cache will vary
depending on how the tile requests are distributed over the tiling space. If those were
uniformly distributed, the cache gain would be proportional to the cache size. However, lucky
for us, it has been found that tile requests usually follow a heavy-tailed Pareto distribution,
as shown in Figure 2. In our example, tile requests to the Cartociudad map service follow the
20:80 rule, which means that the 20% of tiles receive the 80% of the total number of requests. In
the case of IDEE-Base, this behaviour is even more prominent, where the 10% of tiles receive
almost a 90% of total requests. Services that show Pareto distributions are well-suited for
caching, because high cache hit ratios can be found by caching a reduced fraction of the total
tiles.

Figure 3 and Figure 4 show the distribution of tile requests to each resolution level of the
tile pyramid for the analyzed services. The maximum number of requests is received at
resolution level 4 for both services. This peak is due to the fact that this is the default resolution
on the initial rendering of the popular clients in use with this cartography, as it allows the
visualization of the whole country on a single screen. As can be observed, the density of
requests (requests/tile) is higher at low resolution levels than at higher ones. Because of this,
a common practice consists in pregenerating the tiles belonging to the lowest resolution levels,
and leave the rest of tiles to be cached on demand when they are first requested.

4. Tile cache implementations

With the standardization of tiled web map services, multiple tile cache implementations have
appeared. Between them, the main existent implementations are: TileCache, GeoWebCache
and MapProxy. A comparison between these implementations is summarized in Table 1.

As can be seen, TileCache and MapProxy are both implemented in Python (interpreted
language), while GeoWebCache is implemented in Java (compiled language). These three

28 Cartography – A Tool for Spatial Analysis
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Figure 3. Distribution of requests along the different resolution levels for Cartociudad service.
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Figure 4. Distribution of requests along the different resolution levels for IDEE-Base service.

services implement the WMS-C, TMS and KML service interfaces. GeoWebCache and
MapProxy also offer the WMTS service from OGC. In addition, GeoWebCache can recombine
and resample tiles to answer arbitrary WMS requests, and can also be used to serve maps to
Google Maps and Microsoft Bing Maps.

All these services offer the possibility of storing map image tiles directly in the file system.
TileCache and GeoWebCache also support the MBTiles speficication4 for storing tiled map
data in a SQLite database for immediate use and for transfer. MapProxy supports the Apache
CouchDB5, a document-oriented database that can be queried and indexed in a MapReduce

4 http://mapbox.com/mbtiles-spec/
5 http://couchdb.apache.org/
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TileCache GeoWebCache MapProxy

Company Metacarta Labs OSGeo Omniscale

Implementation Python Java Python

Supported services WMS-C, TMS, KML
WMS, WMS-C, TMS
WMTS, KML, Google
Maps, Bing Maps

WMS, WMS-C, TMS
WMTS, KML

Tile storage

Disk, GoogleDisk,
Memcached,
Amazon S3,
MBTiles

Disk
Disk, MBTiles
CouchDB

Tile metadata
storage

No Yes Yes

Replacement
policies

LRU LRU, LFU None

Seeding regions
bounding box
center and radius

bounding box
bounding box
WKT polygons
any OGR source

Supports
Meta Tiles

Yes Yes Yes

Supports
Meta Buffer

Yes Yes Yes

Reprojection
on-the-fly

No Yes (with Geoserver) Yes (native)

Table 1. Comparison of features between different open-source tile cache implementations: TileCache,
GeoWebCache and MapProxy.

fashion, as backend to store tiles. Moreover, TileCache can store map tiles in the cloud through
Amazon S36 or to maintain them in memory using Memcached7.

GeoWebCache maintain tile metadata, such as the last access time or the number of times
that each tile has been requested. By using this metadata, it supports the LRU and LFU
replacement policies. TileCache supports LRU by using the operating system’s time of last
access.

These services allow to specify a geographic region for automatically seeding tiles. For
example, TileCache can be configured to seed a particular regions defined by a rectangular
bounding box or a circle by specifying its center and radius. GeoWebCache supports only the

6 http://aws.amazon.com/es/s3/
7 http://memcached.org/
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former. MapProxy offers three different ways to describe the extent of a seeding or cleanup
task: a simple rectangular bounding box, a text file with one or more polygons in WKT format,
or polygons from any data source readable with OGR (e.g. Shapefile, PostGIS).

These three services support both metatiling and meta-buffer methods. The meta-buffer adds
extra space at the edges of the requested area.

When a request of a tile in an unsupported coordinate reference system (CRS) is received, both
GeoWebCache and MapProxy supports the reprojection on the fly from one of the available
CRSs to the specified one. The former achieves this using GeoServer, while the latter offers it
natively.

5. Cache management algorithms

Significant improvements can be achieved by using a cache of map tiles, like the ones
discussed above. However, adequate cache management policies are needed, especially in
local SDIs with lack of resources. In this section, our contributions to the main cache strategies
are presented: cache population (or seeding), cache replacement and tile prefetching.

5.1. Cache population

Anticipating the content that users will demand can guide server administrators to know
which tiles to pregenerate and to include in their server-side caches of map tiles. With this
objective in mind, a predictive model that uses variables known to be of interest to Web map
users, such as populated places, major roads, coastlines, and tourist attractions, is presented
in [8].

In contrast, we propose a descriptive model based on the mining of the service’s past history
[7]. Past history can be easily extracted, for example, from server logs. The advantage of this
model is that it is able to determine in advance which areas are likely to be requested in the
future based exclusively on past accesses, and it is therefore very simple.

In order to experiment with the proposed model, real-world logs from the IDEE-Base
nation-wide public web map service have been used. Request logs were divided in two time
ranges of the same duration. The first one was used as source to make predictions and the
second one was used to prove the predictions created previously. Due to the difficulty of
working with the statistics of individual tiles, the simplified model presented in Section 2 has
been used. Concretely, the experiment was conducted with the simplified model to the grid
cell defined by the level of resolution 12.

Figure5 shows the heatmaps of requests extracted from the web server logs of IDEE-Base
service, propagated to level 12 through the proposed model. These figures demonstrate that
some entities such as coast lines, cities and major roads are highly requested. These elements
could be used as entities for a predictive model to identify priority objects, as explained in [8].

These figures show that near levels are more related than distant ones, but all of them share
certain similarity. This relationships between resolution levels encourages the use of statistics
collected in a level to predict the map usage patterns in another level with detailer resolution.
For example, as shown in Figure5(c) and Figure5(e), resolution levels 14 and 16 are very

31Web Map Tile Services for Spatial Data Infrastructures: Management and Optimization
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Figure 5. Heatmap of the requests to the IDEE-BASE service propagated from levels 12-19 to level 12.
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correlated. It is easier to work with the statistics of level 14 than with those of level 16 which
has much more elements.

Table 2 represents the hit percentage achieved by using this model for the IDEE-Base service.
This table shows the percentage of hits obtained for the level identified by the column index
from the statistics collected in the level identified by the row index. Last column shows
the resources consumption, as a percentage of cached tiles. Last row collects the results of
combining the statistics of all levels to make predictions over every level. Shadowed cell in
Table 2 indicates that using retrieved statistics of level 13 as the prediction source, a hit rate
of 92.1573% is obtained for predictions made in the level 18, being necessary the storage of a
25.8049% of the tiles in cache.

12 13 14 15 16 17 18 19 resources

12 98.6417 98.9362 99.3573 99.4737 99.6901 99.2637 99.2993 94.7561 40.2172

13 87.8163 93.5760 95.8939 96.4146 97.4372 95.2686 92.1573 75.5073 25.8049

14 53.0529 61.5825 86.7783 88.2709 91.1807 81.6460 63.4527 43.9129 9.3302

15 37.1553 47.9419 77.9136 84.0861 83.7095 69.9489 57.0746 33.3348 5.2354

16 46.9387 57.5640 84.3110 86.7747 91.8272 78.7670 64.3781 41.8433 7.7686

17 30.2021 37.6348 57.0138 60.1330 62.2834 69.5106 55.5134 23.4647 3.2676

18 23.5791 25.5913 41.7535 46.1559 45.8693 41.4502 61.9763 33.3799 2.3291

19 8.8690 8.6848 12.4556 13.1338 14.3302 12.2756 13.6932 44.1113 1.2295

prop 98.9340 99.3080 99.6074 99.6321 99.7763 99.4244 99.4308 97.2315 41.3647

Table 2. Percentage (%) of cache hits through the simplified model obtained from IDEE-BASE logs,
using the mean of the normalized frequencies as the probability threshold.

Nevertheless, it must be noted that the main benefit of using a partial cache is not the
reduction in the number of cached tiles. The main benefits are the savings in storage space
and generation time. As explained in [8], the amount of saved tiles is bigger than the storage
saving. It reveals that the most interesting tiles come at a bigger cost. Mainly, popular areas
are more complex, and it is necessary more disk space to store them.

Figure6 and Figure7 represent the cache hit ratios obtained by the simplified model for the
IDEE-BASE service. This model bases its operation on the knowledge of past accesses,
assuming a certain stationarity of requests; it assumes that map regions that have been
popular in the past will maintain its popularity in the future. However, from a certain
percentage of cached objects, identified by the continuous vertical line, the simplified model
is not able to make predictions. Tiles situated at the right of this line correspond to objects that
have never been requested so are not collected in server logs. To complete the model, these
never-requested tiles have been randomly selected for caching, yielding a linear curve for this
interval.

Results demonstrate that the simplified model obtains better results for predicting user
behavior from near resolution levels. For low-resolution levels high cache hit ratios are
achieved by using a reduced subset of the total tiles. However, descending in the scale
pyramid, the requested objects percentage decreases, so the model prediction range and its
ability to make predictions decrease too. For future work, instead of randomly selecting
objects for caching in this interval, interesting features could be identified and used to define
priority objects.

33Web Map Tile Services for Spatial Data Infrastructures: Management and Optimization
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Figure 6. Percentage of hits vs cached objects for IDEE-BASE service through the simplified model. Scales 12 to 15.
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Figure 7. Percentage of hits vs cached objects for IDEE-BASE service through the simplified model. Scales 16 to 19.
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5.2. Tile pre-fetching

For a given tile request, tile pre-fetching methods try to anticipate which tiles will be
requested immediately afterwards. There are several works in the literature that address
object prefetching in Web GIS: [9, 10] approximate which tiles will be used in advance based
on the global tile access pattern of all users and the semantics of query; [11, 12] use an heuristic
method that considers the former actions of a given user.

3x3 metatile 

requested to 

the WMS server 
Tile requested 

by the client 

Buffer=1 

Figure 8. Metatile 3x3 centered in the requested tile.

We propose another pre-fetching strategy, known as metatiling, that works as follows [13]:
when the proxy receives a tile request from a client and a cache miss is produced, it requests a
larger image tile (called metatile) to the remote backend. This metatile includes the requested
tile and also the surrounding ones contained in a specified buffer, as shown in Figure 8.
Then, the proxy cuts the metatile into individual tiles, returns the requested tile to the client,
and stores all these fragments into the cache, as shown in Figure 9. The main advantage of
metatiling is that it can reduce the bottleneck between the proxy cache and the remote Web
Map Server.

remote

WMS

Proxy Cache

cache

1

getMap(tile)

3

getMap(metatile)

46

2

5

metatile

requested tile

requested tileClient

cut & insert tiles

Is in cache?

no (cache miss)

Figure 9. Tile request flow with metatiling.

Moreover metatiling reduces the problem of duplicating the labeling of features that span
more than one tile. This problem is illustrated in Figure 10. Depending on the WMS server’s
configuration, this feature can be labeled once on each tile (Figure 10(a)). By increasing
the geographic bounding box of tile requests, the WMS server avoids label duplicates
(Figure 10(b)).
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(a) Buffer=0

(b) Buffer=2

Figure 10. WMS labelling issues. (a) Requesting individual tiles yields duplicate labels between adjacent
tiles. (b) With metatiling labels are not duplicated.

The analyzed tile cache implementations (see Section 4) allow users to configure the size
of metatiles. For a given request, the cache orders a metatile of pre-configured size to the
WMS server, centered on the requested tile. Considering a scenario where the cache is neither
complete nor empty, this selection of the area to generate may not be very efficient, because it
is probable that some of the tiles contained in the metatile would already be cached.

Under the assumption that the surrounding area of the requested tile is not uniformly cached,
a novel algorithm for the optimal selection of the metatiles to generate has been developed.
This procedure, illustrated in Figure 11, seeks to obtain, based on the current state of the
cache, the metatile that contains the requested tile (but not necessarily centered in it) and that
provides the system with the maximum new information.

In order to validate the hypothesis that a performance improvement can be achieved by using
metatiles, the following experiment has been realized. A total of 2000 different tiles have been
requested to the CORINE (CoORdination of INformation of the Environment) service8 proxied
by the WMSCWrapper tile cache. The experiment has been repeated for different metatile
sizes, always starting from an empty-cache state. The mean latencies measured for each
configuration are collected in Table 3.

8 http://www.ign.es/ign/layoutIn/corineLandCover.do
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buffer (B) τm,metatile τm,metatile_n Gainmetatiling

0 (no metatiling) 1454,10 ms 1454,10 ms 1

1 (metatile 3x3) 2933,94 ms 325,99 ms 4,46

2 (metatile 5x5) 5660,63 ms 226,42 ms 6,42

3 (metatile 7x7) 9561,54 ms 195,13 ms 7,45

Table 3. Mean latencies to obtain an object from the WMS original service for different metatile sizes.
Proxy cache: WMSCWrapper; remote WMS: CORINE Land Cover.

The first column of the table shows the mean latency of a cache miss τm,metatile for different
metatile sizes. This delay includes the transmisission and propagation delays in the network,
the map image generation time in the remote web map service and the processing time in
the proxy cache. The values of the second column τm,metatile_n are computed by normalizing
those of the first column by the number of tiles encompassed by each metatile ([2B + 1]2). The
last column shows the cache gain achieved by the use of metatiling, computed as the average
acceleration in the delivery of a tile versus not using metatiling, as depicted in Equation 1.

Gainmetatiling(B) =
τm,metatile_n(0)

τm,metatile_n(B)
(1)

Results reflect that the latency involved in the request of a metatile increases with the buffer
size. However, it increases in less proportion than the number of tiles it is compossed by.
Therefore, the mean latency to obtain each individual tile decreases when increasing the size
of the metatile requested to the remote web map service. In other words, it is faster to retrieve
a metatile composed by n × n tiles than the n2 tiles individually.

, ,T i j n Uncached ti le 

i

j

Cached tile 

Requested tile 

Figure 11. Metatile selection algorithm.

A limiting factor when choosing the metatile size is the overhead in memory consumption
required to generate the map image. For example, by default the maximum amount of
memory that a single request is allowed to use in Geoserver is 16MB, which are sufficient to
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render a 2048x2048 image at 4 bytes per pixel, or a 8x8 meta-tile of standard 256x256 pixel
tiles.

Table 3 shows the maximum gain that can be achieved by the use of metatiling techniques.
This maximum gain occurs when the whole metatile is used to cache new tiles that were not
yet cached. While this is the case when automatically seeding tiles in sequential order with
non-overlapping metatiles from an empty cache or in the early startup of the service, it would
be useful to evaluate metatiling in the most general scenario where the cache is partially filled.
In that case, each metatile is likely to add redundant information, since it is probable that some
of the tiles encompassed by the metatile were already cached, thus reducing the effective gain
of this method.

The performance of metatiling during dynamic cache population with users’ requests has
been evaluated using the WMSCWrapper tile cache, described in Section 4. Simulations were
driven by trace files from the public WMS-C tiled web map service of Cartociudad. Being
traces recorded in a real, working system, these logs represent a more realistic pattern of user
behavior than a synthetic pattern. The CORINE WMS service was used as remote backend.

0

10

20

30

40

50

60

70

80

90

100

B=0 B=1 B=2 B=3

%
 C

a
c
h

e
 h

it
s
 

Buffer size 

sin metatiling

metatile centrado

metatile min. corr.

without metatiling 

centered metatile 

arbitrary metatile 

Figure 12. Cache-hit ratios obtained for different buffer sizes and metatile configurations.

A total of 1.000.000 requests were made to the cache. The experiment was repeated for
different metatile configurations. For each configuration, the cache-hit ratio and the number of
cached tiles after task completion have been collected, starting from an empty cache. Results
are shown in Figure 12 and Figure 13.

As can be shown, both the cache-hit ratio and the number of cached tiles grow with the buffer
size. For a fixed buffer size, both metatiling strategies (centered and minimum-correlation)
obtain similar results. However, the number of cached objects is significantly improved with
the minimum-correlation configuration. The improvement increases with the metatile size.

Thus, the advantage achieved with the minimum-correlation metatile configuration is that,
maintaining the cache misses, and therefore maintaining the number of requests to the remote
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Figure 13. Number of cached tiles for different buffer sizes and metatile configurations.

WMS server, a broaden population of the cache is achieved. These extra pre-generated map
image tiles stored in the cache will allow a faster delivery of future requests.

5.3. Cache replacement policies

When the tile cache runs out of space, it is necessary to determine which tiles should

be replaced by the new ones. Most important characteristics of Web objects, used to

determine candidate objects to evict in Web cache replacement strategies, are: recency

(time since the last reference to the object), frequency (number of times the object has

been requested), size of the Web object and cost to fetch the object from its origin

server. These properties classifies replacement strategies as recency-based, frequency-based,

recency/frequency-based, function-based and randomized strategies [14]. Recency-based

strategies exploit the temporal locality of reference observed in Web requests, being usually

extensions of the well-known LRU strategy, which removes the least recently referenced

object. Another popular recency-based method is the Pyramidal Selection Scheme (PSS)

[15]. Frequency-based strategies rely on the fact that popularity of Web objects is related

to their frequency values, and are built around the LFU strategy, which removes the least

frequently requested object. Recency/frequency-based strategies combine both, recency and

frequency information, to take replacement decisions. Function-based strategies employ a

general function of several parameters to make decisions of which object to evict from the

cache. This is the case of GD-Size [16], GDSF [17] and Least-Unified Value (LUV) [18].

Randomized strategies use a non-deterministic approach to randomly select a candidate object

for replacement.

For a further background, a comprehensive survey of web cache replacement strategies is

presented in ([14]). According to that work, algorithms like GD-Size, GDSF, LUV and PSS
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were considered “good enough” for caching needs at the time it was published in 2003.

However, the explosion of web map traffic did not happen until a few years later.

In this section, we propose a cache replacement algorithm that uses a neural network to

estimate the probability of a tile request occurring before a certain period of time, based on the

previously discussed properties of tile requests: recency of reference, frequency of reference,

and size of the referenced tile [19, 20]. Those tiles that are not likely to be requested shortly

are considered as good candidates for replacement.

5.3.1. Related work

The use of neural networks for cache replacement was first introduced by Khalid [21], with the

KORA algorithm. KORA uses backpropagation neural network for the purpose of guiding

the line/block replacement decisions in cache. The algorithm identifies and subsequently

discards the dead lines in cache memories. It is based on previous work by [22], who

suggested the use of a shadow directory in order to look at a longer history when making

decisions with LRU. Later, an improved version of the former, KORA-2, was proposed [23, 24].

Other algorithms based on KORA were also proposed [25, 26]. A survey on applications of

neural networks and evolutionary techniques in web caching can be found in [27]. [28–32]

proposes the use of a backpropagation neural network in a Web proxy cache for taking

replacement decisions. A predictor that learns the patterns of Web pages and predicts the

future accesses is presented in [33]. [34] discusses the use of neural networks to support the

adaptivity of the Class-based Least Recently Used (C-LRU) caching algorithm.

5.3.2. Neural network cache replacement

Artificial neural networks (ANNs) are inspired by the observation that biological learning

systems are composed of very complex webs of interconnected neurons. In the same way,

ANNs are built out of a densely interconnected group of units. Each artificial neuron takes a

number of real-valued inputs (representing the one or more dendrites) and calculates a linear

combination of these inputs. The sum is then passed through a non-linear function, known as

activation function or transfer function, which outputs a single real-value, as shown in Figure 14.

In this work, a special class of layered feed-forward network known as multilayer perceptron

(MLP) has been used, where units at each layer are connected to all units from the preceding

layer. It has an input layer with three inputs, two-hidden layers each one comprised of 3

hidden nodes, and a single output (Figure 15). According to the standard convention, it can be

labeled as a 3/3/3/1 network. It is known that any function can be approximated to arbitrary

accuracy by a network with three layers of units [35].

Learning an artificial neuron involves choosing values for the weights so the desired output

is obtained for the given inputs. Network weights are adjusted through supervised learning

using subsets of the trace data sets, where the classification output of each request is known.

Backpropagation with momentum is the used algorithm for training. The parameters used

for the proposed neural network are summarized in Table 4.

The neural network inputs are three properties of tile requests: recency of reference, frequency

of reference, and the size of the referenced tile. These properties are known to be important
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Figure 15. Proposed two-hidden layer feed-forward artificial neural network.

in web proxy caching to determine object cachability. Inputs are normalized so that all values

fall into the interval [−1, 1], by using a simple linear scaling of data as shown in Equation 2,

where x and y are respectively the data values before and after normalization, xmin and xmax

are the minimum and maximum values found in data, and ymax and ymin define normalized

interval so ymin ≤ y ≤ ymax. This can speed up learning for many networks.

y = ymin + (ymax − ymin)×
x − xmin

xmax − xmin
(2)

Recency values for each processed tile request are computed as the amount of time since the

previous request of that tile was made. Recency values calculated this way do not address the

case when a tile is requested for the first time. Moreover, measured recency values could be

too disparate to be reflected in a linear scale.
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To address this problem, a sliding window is considered around the time when each request

is made, as done in [28]. With the use of this sliding window, recency values are computed as

shown in Equation 3.

recency =

{

max(SWL, ∆Ti) if object i was requested before

SWL otherwise
(3)

where ∆Ti is the time since that tile was last requested.

Recency values calculated that way can already be normalized as stated before in Equation 2.

Frequency values are computed as follows. For a given request, if a previous request of the

same tile was received inside the window, its frequency value is incremented by 1. Otherwise,

frequency value is divided by the number of windows it is away from. This is reflected in

Equation 4.

f requency =

⎧

⎪

⎨

⎪

⎩

f requency + 1 if ∆Ti ≤ SWL

max

[

f requency
∆Ti

SWL

, 1

]

otherwise
(4)

Size input is directly extracted from server logs. As opposite to conventional Web proxies

where requested object sizes can be very heterogeneous, in a web map all objects are image

tiles with the same dimensions (typically 256x256 pixels). Those images are usually rendered

in efficient formats such as PNG, GIF or JPEG that rarely reach 100 kilobytes in size. As

discussed in [8], due to greater variation in colors and patterns, the popular areas, stored

as compressed image files, use a larger proportion of disk space than the relatively empty

non-cached tiles. Because of the dependency between the file size and the “popularity” of tiles,

Parameter Value

Architecture Feed-forward Multilayer Perceptron

Hidden layers 2

Neurons per hidden layer 3

Inputs 3 (recency, frequency, size)

Output 1 (probability of a future request)

Activation functions Log-sigmoid in hidden layers, Hyperbolic tangent
sigmoid in output layer

Error function Minimum Square Error (mse)

Training algorithm Backpropagation with momentum

Learning method Supervised learning

Weights update mode Batch mode

Learning rate 0.05

Momentum constant 0.2

Table 4. Neural network parameters
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tile size can be a very valuable input of the neural network to correctly classify the cachability

of requests.

During the training process, a training record corresponding to the request of a particular tile

is associated with a boolean target (0 or 1) which indicates whether the same tile is requested

again or not in window, as shown in Equation 5.

target =

{

1 if the tile is requested again in window

0 otherwise
(5)

Once trained, the neural network output will be a real value in the range [0,1] that must be

interpreted as the probability of receiving a successive request of the same tile within the time

window. A request is classified as cacheable if the output of the neural network is above 0.5.

Otherwise, it is classified as non cacheable.

The neural network is trained through supervised learning using the data sets from the

extracted trace files. The trace data is subdivided into training, validation, and test sets, with

the 70%, 15% and 15% of the total requests, respectivelly. The first one is used for training the

neural network. The second one is used to validate that the network is generalizing correctly

and to identify overfitting. The final one is used as a completely independent test of network

generalization.

Each training record consists of an input vector of recency, frequency and size values, and the

known target. The weights are adjusted using the backpropagation algorithm, which employs

the gradient descent to attempt to minimize the squared error between the network output

values and the target values for these outputs [36]. The network is trained in batch mode, in

which weights and biases are only updated after all the inputs and targets are presented. The

pocket algorithm, which saves the best weights found in the validation set, is used.

Neural network performance is measured by the correct classification ratio (CCR), which

computes the percentage of correctly classified requests versus the total number of processed

requests.

CartoCiudad IDEE-Base

training 76.5952 75.6529

validation 70.2000 77.5333

test 72.7422 82.7867

Table 5. Correct classification ratios (%) during training, validation and testing for Cartociudad and
IDEE-Base.

Figure 16 shows the CCRs obtained during training, validation and test phases for

Cartociudad and IDEE-Base services. As can be seen, the neural network is able to correctly

classify the cachability of requests, with CCR values over the testing data set ranging between

72% and 97%, as shown in Table 5. The network is stabilized to an acceptable CCR within 100

to 500 epochs.
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Figure 16. Correct classification ratios achieved with the neural network for CartoCiudad and
IDEE-Base.

6. Conclusion

Serving pre-generated map image tiles from a server-side cache has become a popular way

of distributing map imagery on the Web. However, in order to achieve an optimal delivery

of online mapping, adequate cache management strategies are needed. These strategies can

benefit of the intrinsic spatial nature of map tiles to improve its performance. During the

startup of the service, or when the cartography is updated, the cache is temporarily empty and

users experiment a poor Quality of Service. In this chapter, a seeding algorithm that populates

the cache based on the history of previous accesses has been proposed. The seeder should

automatically cache tiles until an acceptable QoS is achieved. Then, tiles could be cached

on-demand when they are first requested. This can be improved with short-term prefetching;

anticipating the following tiles that will be requested after a particular request can improve

users’ experience. The metatiling approach presented here requests, for a given tile request,

a bigger map image containing adjacent tiles, to the remote WMS backend. Since the user is

expected to pan continuously over the map, those tiles are likely to be requested. Finally, when

the tile cache runs out of space, it is necessary to determine which tiles should be replaced by

the new ones. A cache replacement algorithm based on neural networks has been presented. It

tries to estimate the probability of a tile request occurring before a certain period of time, based

on the following properties of tile requests: recency of reference, frequency of reference, and

size of the referenced tile. Those tiles that are not likely to be requested shortly are considered

as good candidates for replacement.
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