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1. Introduction 

Industrial robot manipulators are essentially spatial linkages that consist of 
rigid bodies connected by joints.  Even though many types of joints (which are 
also known as kinematic pairs) are available for use in mechanical linkages, 
only two types are employed for robot manipulators.  These are the revolute, 
or rotary, joints (referred to in literature as R) and the prismatic, or sliding, 
joints (referred to as P).  These specific types allow a single degree of freedom 
relative movement between adjacent bodies; and are easier to drive and con-
trol than other kinematic pairs.  Normally every joint on the manipulator is in-
dependently driven by a dedicated motor.  It is central to kinematic control of 
manipulators to calculate the sets of joint-motor displacements which corre-
spond to a desired pose (i.e. position and orientation) at the end-effector.  The 
mathematical procedure which is followed to achieve this purpose is often re-
ferred to as, Inverse Position Analysis.  This analysis presents a special difficulty 
in the field of Robotics as it is associated with the use of intricate spatial ge-
ometry techniques.  The complexity of the analysis increases substantially with 
the number of rotary joints on the manipulator structure.  For this reason a 
considerable part of the published literature is mainly concerned with the 
revolute-joint manipulators.   
Published literature reveals that various methods have been proposed to solve 
the inverse position problem of manipulators.  These methods range from 
Jacobian-based iterative techniques to highly sophisticated levels of equation-
manipulation intended to reduce the whole model into a polynomial with 
thousands of mathematical terms.  However, most industrial robots are de-
signed with geometric features (such as parallelism and perpendicularity) to 
make it possible for simple inverse position solutions to be obtained in closed 
forms suitable for real time control.  Another geometric aspect that leads to 
simplified inverse solutions is the spherical wrist design, which entails that the 
last three joints on the manipulator structure intersect at one point.  This usu-
ally suggests that these three joints (also known as the wrist joints) have the 
main task of orienting (rather than placing) the end-effector in space.  In this 
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case it should be possible to regard the manipulator as consisting of two sepa-
rate parts where the first part (referred to as the arm) consists of the first three 
joints, counting from the stationary base, on the structure.  The task of the arm 
is to place the end-effector origin (i.e. the point of intersection of the last three 
joint axes) at a defined point in space.  The solution for this first part can be ob-
tained separately before proceeding to find the angles of the last three joints 
which will result in giving the end-effector its desired spatial orientation.  The 
work presented in this paper adopts this strategy to propose a mathematical 
procedure, for the arm inverse solution, based on assigning local coordinates 
at every joint, and utilising the properties of rotation to relate these coordi-
nates.  A model manipulation technique is then employed to obtain the arm 
inverse solution in terms of one polynomial.  A kinematic synthesis discussion 
is then presented for the arm structure in terms of local coordinates to reflect 
on the number of solutions expected from the polynomial.  It will be shown 
that the concept of intersecting spatial circles offers a good ground to compre-
hend the kinematics of revolute-joint manipulators.  Moreover, models are 
presented for the wrist structure to obtain a full inverse kinematic solution for 
the robot manipulator.  A solved example is demonstrated to prove the valid-
ity of the method presented. 
 

2. Literature Survey 

Published literature reveals that the homogeneous transformation matrix 
which was developed as far back as 1955 has extensively been employed for 
the analysis of robot manipulators.  The matrix involves the use of four pa-
rameters, usually referred to as the DH-parameters, intended to perform trans-
formation between two spatial Cartesian coordinate systems (Denavit and 
Hartenberg, 1955).  Recently, other kinematic models have been proposed by 
researchers  to deal with the drawbacks of the DH presentation (Sultan and 
Wager, 1999).  This is particularly important if the model is going to be imple-
mented for robot calibration purposes.  The theory of dual-number algebra 
was introduced into the field of kinematics back in the 1960’s (Yang and Freu-
denstein, 1964); and it did appeal to researchers in the field of robot kinematics 
(Pennock and Yang, 1985; Gu and Luh, 1987; Pardeep et al, 1989).  In addition 
to these approaches, which are based on matrices, vector methods were also 
employed in the field of kinematic analysis of robots (Duffy, 1980; Lee and Li-
ang, 1988A and 1988B).  
Many industrial robots possess parallel and intersecting joint-axes and their 
direct-position models can be inverted analytically such that closed-form solu-
tions may be obtained for the joint-displacements (Gupta, 1984; Pennock and 
Yang, 1985; Pardeep et al, 1989; Wang and Bjorke, 1989).  
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Spherical-wrist manipulators have their last three joint-axes intersecting at a 
common point.  For these manipulators the position of the end-effector in 
space is determined only by the displacements performed about the first three 
joint-axes.  This concept is often referred to as the position-orientation decoup-
ling; and has been utilised to produce a closed form solution, for the inverse 
position problem of simple structure robots, efficient enough to be imple-
mented for computer control (Pieper and Roth, 1969).  Inverse position tech-
niques have been proposed to utilise the position-orientation decoupling of 
industrial robot of arbitrarily directed axes (Sultan, 2000; Sultan and Wager, 
2001).  As such these techniques do not rely on any particular spatial relations 
(e.g. parallelism or perpendicularity) between the successive joint-axes.  In 
fact, approaches which utilise these particular geometric features to produce 
the model equations are likely to produce positioning errors when used for ro-
bot control since the actual structures always deviate from their intended ideal 
geometry.  
Iterative techniques have been employed for the inverse position analysis of 
general robot manipulators.  Many of these techniques involve the computa-
tion of a Jacobian matrix which has to be calculated and inverted at every it-
eration.  The solution in this case may be obtained by a Newton-Raphson tech-
nique (Hayati and Reston, 1986) or a Kalman filter approach (Coelho and 
Nunes, 1986).  However, the inversion of the system Jacobian may not be pos-
sible near singular configurations (where the motion performed about one 
joint-axis produces exactly the same effect, at the end-effector, as the motion 
performed about another axis, hence resulting in loss of one or more degrees 
of freedom).  Therefore, a singularity avoidance approach has been reported 
where the technique of damped least-squares is used for the analysis (Chia-
verini et al, 1994).  However, this technique seems to be rather sluggish near 
singular points where extra computational procedure may have to be in-
volved.  
Optimisation techniques have also been employed to solve the inverse-
position problem of manipulators whereby a six-element error vector was im-
plemented for the analysis (Goldenberg et al, 1985).  The vector combines the 
current spatial information (position and orientation) of the robot hand and 
compares it to the desired pose to produce error values.  Published literature 
in the area of optimisation report a technique by which the robot is moved 
about one joint at a time to close an error gap (Mahalingam and Sharan, 1987; 
Wang and Chen, 1991; Poon and Lawrence, 1988).  More recent research effort 
demonstrates valuable inputs form such areas as neural networks (Zhang et al, 
2005) and fuzzy techniques (Her et al, 2002) to the field of robot inverse kine-
matics.  
 It has been shown that the kinematic behaviour of robots can be described in 
terms of a set of polynomials that can be solved iteratively (Manseur and Doty 
1992a, 1992b and 1996).  One such method features a set of eight polynomials 
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which were solved numerically to obtain different possible solutions to the in-
verse position problem; it could therefore be concluded that the maximum 
number of meaningful solutions to the inverse position problem of a general 
robotic structure is 16 (Tsai and Morgan 1985), rather than 32 as had previ-
ously been suggested (Duffy and Crane, 1980).  However it has been pointed 
out that a manipulator with 16 different real inverse position solutions can sel-
dom be found in real life (Manseur and Doty, 1989).  In reality most manipula-
tors are designed to possess up to 8 solutions of which only one or two can be 
physically attained.  
 It is possible to express the inverse position problem of robots in terms of a 16 
degree polynomial in the tan-half-angle of a joint-displacement (Lee and Liang 
1988a & 1988b; Raghavan and Roth 1989).  However it has been argued that 
the coefficients of such a polynomial are likely to contain too many terms 
which may render such a tack impractical to use (Smith and Lipkin 1990).  
Also, these  high order polynomials are obtained by evaluating the eliminants 
of hyper-intricate determinants which may be impossible to handle symboli-
cally in the first place.  This may have motivated some researchers (Manocha 
and Canny 1992; Kohli and Osvatic 1993) to reformulate the solutions in terms 
of eigenvalue models in order to simplify the analysis and avoid numerical 
complications.  However, a numerical technique has been introduced to obtain 
the inverse solutions without having to expand the system characteristic de-
terminant (Sultan, 2002). 
The procedure introduced here for the inverse position analysis of robot ma-
nipulators is described in the rest of this paper.   

3. Rotation of Vectors 

The unit vector ˆ
iz in Figure (1) represents an axis of rotation in a spatial 

mechanism.  It is required to obtain the new rotated vector, irv , which results 

from rotating the original vector iov  (where × ≠ˆ
io iv z 0 ) by an angle θ ˆ

i iz   In or-

der to do so, the Cartesian system ˆ ˆ ˆ
i i ix y z  may be introduced as follows,  

 

=cˆ ˆ 0i ix z  (1) 

where ˆ 1i =x .  
 

Then 
 

= × ˆˆ ˆ
i i iy z x  (2) 

 
The original vector, iov , and the rotated vector irv , can both be expressed with 

respect to the ˆ ˆ ˆ
i i ix y z -frame in terms of local coordinates, n, m and l as follows, 
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ˆ ˆ ˆ

ˆ ˆ ˆ

= + + ⎫
⎬

= + + ⎭

io io i io i io i

ir ir i ir i ir i

n m l

n m l

v x y z

v x y z
 (3) 

 
 
 

0x̂
0ŷ

0ẑ

Base Coordinates

iẑ
ix̂

θι

iŷ

vio
ir

 
 
Figure 1. Rotation of Vectors. 
 

 
where the local coordinates are given as follows; 

ˆ

ˆ

ˆ

io io i

io io i

io io i

n

m

l

= ⎫
⎪

= ⎬
⎪= ⎭

v x

v y

v z

c
c

c
 (4) 

 

And      

cos sin

cos sin
ir io i io i

ir io i io i

ir io

n n m

m m n

l l

θ θ

θ θ

= − ⎫
⎪

= + ⎬
⎪= ⎭

 (5) 

 
The inverse of this problem is encountered when ˆ

iz , iov  and irv  are all known 

and it is required to obtain the corresponding value of θi .  With the values of 

the local coordinates known, iθ could be obtained as follows, 

 
atan2( , )i ir io ir io ir io ir iom n n m n n m mθ = − +  (6) 
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where the function atan2(y,x) is available in many computer algebra packages 
and compilers to compute the angle iθ  (over the range of the whole circle) 

when its sine and cosine are both given.  In this paper, the concepts mentioned 
above are used together with the suitable conditions of rotation to perform the 
inverse position analysis of the manipulator arm and wrist.  The proposed 
analysis for the arm is given in the next section.  

4. Inverse Kinematics of the Arm 

The arm, which is the largest kinematic part of the manipulator, consists of 
three revolute joints connected through rigid links.  Each joint, as shown in 
Figure (2), is represented by the spatial pose of its axis.  The first joint-axis has 
a fixed location and orientation in space as it represents the connection be-
tween the whole manipulator and the fixed frame.  Any other joint-axis num-
ber i can float in space as it rotates about the joint-axis number i–1.  

In the current context, the main function of the arm is to displace a certain spa-
tial point from an initial known location to a required final position.  In spheri-
cal-wrist manipulators, this point is at the intersection of the wrist axes.  In a 
calibrated (non-spherical-wrist) manipulator, it may represent a point on the 
sixth axis as close as possible to the fifth joint-axis.  In Figure (2), the arm is re-
quired to displace point pi to a final position pf.  The position vectors, bpi  and 

bpf  respectively, of these two points are known with respect to the base coor-

dinate system. 
As per Appendix A, any joint-axis ˆ

iz is related to the successive axis, +1
ˆ

iz , 

through a common normal, +1
ˆ

ix .  This common normal is used to construct a 

local frame at the axis +1
ˆ

iz  using the relation, + + += ×1 1 1
ˆˆ ˆ

i i iy z x .  The shortest dis-

tance, 1ia + , between the axes, ˆ
iz  and +1

ˆ
iz , is measured along +1

ˆ
ix  which inter-

sects ˆ
iz  at the point pi  and +1

ˆ
iz  at the point ( 1)pi i+ . 

At the zero initial position which is shown in Figure (2), the axis 1x̂  is chosen 

to coincide with 2x̂ .  In this figure, the position vectors, 3opi  and 1rpf , of 

points pi and pf respectively with respect to the frames 3 3 3
ˆ ˆ ˆx y z  and 1 1 1

ˆ ˆ ˆx y z  may 

be numerically calculated as follows, 
 
 

= − ⎫
⎬

= − ⎭
1 1

3 32

r b

o b

pf pf p

pi pi p  (7) 

 
where 1p  and 32p  are the position vectors of the axes-attached, points 1p  and 

32p , respectively as measured from the origin of the base coordinates.  Accord-
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ing to the concepts in (4) and (5), 1rpf  can be described with respect to the 

1 1 1
ˆ ˆ ˆx y z -frame in terms of known local coordinates ( 1rn , 1rm  and 1rl ).  Also, 

30pi  can be described with respect to the 3 3 3
ˆ ˆ ˆx y z -frame in terms of known local 

coordinates ( 3on , 3om  and 3ol ).   

 
 
 

1ẑ 2z

3ẑ

3x̂

2x̂
1x̂ 3ŷ

2ŷ

1ŷ

a2

a 3

d 2
p1

p32
p
2

p21

pi

pf

3o
pi

1rpf

θ1

θ2

θ3

0x̂
0ŷ

0ẑ

Base Coordinates
 

 
Figure 2. A General View of a 3R Manipulator Arm at Its Zero Position. 
 

It is understood that the vector 1rpf  resulted from rotating another vector 1opf  

about the ˆ
iz  axis by an angle, θ1  (i.e. a θ1 1ẑ -type rotation).  The original vector, 

1opf , can be expressed with respect to the 1 1 1
ˆ ˆ ˆx y z -frame in terms of local coor-

dinates ( 1on , 1om  and 1ol ).  Also, during the positioning process the vector 3opi  

will perform a θ3 3ẑ -type rotation to evolve into 3rpi  which can be expressed 

with respect to the 3 3 3
ˆ ˆ ˆx y z -frame in terms of local coordinates ( 3rn , 3rm  and 

3rl ).  Therefore the two vectors, 1opf  and 3rpi  can be written as follows; 

 
 

1 1 1 1 1 1 1

3 3 3 3 3 3 3

ˆ ˆ ˆ

ˆ ˆ ˆ
o o o o

r r r r

n m l

n m l

= + + ⎫
⎬

= + + ⎭

pf x y z

pi x y z
 (8) 
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where the two equations above have four unknowns that need to be deter-
mined.  These four unknowns are 1on , 1om , 3rn  and 3rm .  The numerical values 

of the l-type local coordinates are calculated as follows; 
 

= ⎫
⎬

= ⎭

c
c

3 3 3

1 1 1

ˆ

ˆ
r o

o r

l

l

pi z

pf z
 (9) 

 
In fact the value of 3rl  is calculated, and stored in a data file, once the manipu-

lator has been calibrated and an initial position has been nominated; however, 

1ol  has to be calculated for every new desired end-effector position.  Moreover, 

the end-effector positions which are defined by the vectors 1opf  and 3rpi  can 

be used to study the rotation about the middle joint-axis, 2ẑ .  These same posi-

tions can be expressed relative to a point, 2p , attached to 2ẑ , using the two re-

spective vectors, 2rp  and 20p  as follows; 

 

= + − ⎫
⎬

= + ⎭

2 1 2 2 2 2

2 3 3 3

ˆˆ

ˆ
r o

o r

d a

a

p pf z x

p pi x  (10) 

 
where = − c2 21 2 2

ˆ( )d p p z  

 
It may be noted that 2rp  and 20p  are separated by a single rotation, θ2 2ẑ .  The 

properties of this rotation may be utilised to show that, 
 

=c c2 2 2 2
ˆ ˆ

o rpi z pi z  (11) 

and 
=c c2 2 2 2o o r rpi pi pi pi  (12) 

 
Equations (7) to (12) may then be manipulated to obtain the following two lin-
ear equations, 

1 1 2 3 3 2 3 3 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

o r r om m l l d= + − −y z y z z z z zc c c c  (13) 

 
and 

( )2 2 2
1 2 1 2 2 1 3 3 3 3 1 1 3 2 2 1 2 1 2

1
ˆ ˆ ˆ ˆ2

2
o o r i i r r om d a n a n a a d l d− = + − + − − −y z pi pi pf pf z zc c c c (14) 

 
The concept in equations (3) and (5) may be employed to express the x2-, y2- 

and z2-components of a rotated vector 2

r

op  which results from performing a 

θ2 2ẑ  rotation on 20p .  Then the coincidence of 2
r

op  and 2rp  may be described 

by, 
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=c c2 2 2 2
ˆ ˆr

o rp x p x   (15) 

and  

=c c2 2 2 2
ˆ ˆr

o rp y p y  (16) 

 

where =c c2 2 2 2
ˆ ˆr

o rp z p z  is already described in equation (13) , and the ex-

panded forms of the (15) and (16) are given respectively as follows; 
 

( ) ( )

( ) ( )

1 2 3 2 2 3 2 2 3 3 2 2 3 2 2 3

3 3 2 3 3 2 2 3 3 2 3 3 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

o r r

r r

n a c s n c s m

l a c l a s

− = − + −

+ + − +

x x x y y x y y

z x x x z y x y

c c c c

c c c c
 (17) 

and 
  

( ) ( )

( ) ( )

1 1 2 1 1 2 3 2 2 3 2 2 3 3 2 2 3 2 2 3

3 3 2 3 3 2 2 3 3 2 3 3 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

o o r r

r r

m l s c n s c m

l a c l a s

+ = + + +

+ + + +

y y z y x x x y y x y y

z y x y z x x x

c c c c c c

c c c c
 (18) 

 

where 2c  and 2s  stand for 2cosθ  and 2sinθ  respectively.  

 
The four linear equations, (13), (14), (17) and (18) represent the mathematical 
core of the kinematic model introduced in the present work for the inverse po-
sition analysis of the arm module.  A symbolic solution for these equations can 
be obtained such that, 3rn  and 3rm  are expressed in the following forms, 

 

3 1 /rn f f=  (19) 

 
and  
 

3 2 /rm f f=  (20) 

 
where f, 1f  and 2f  are linear functions of 2s  and 2c .   

Noting the properties of rotation about 3ẑ  the following may be deduced, 

 

( )+ = −c2 2 2 2
1 2 3 3 3o o rf f f lpi pi  (21) 

 

This last equation is a polynomial of 2s , 2c , 2
2s , 2

2c  and 
2 2s c ; and can be re-

expressed in the following form, 
 

−

−

=

=∑
4

4
4

0

0k
k

k

b t  (22) 
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where the coefficients are calculated symbolically from the model presented 
above.  The parameters which constitute these coefficients reflect the kinematic 
relations between the successive arm axes and they can be calculated and 
stored for run-time use once the arm is calibrated.  These parameters are all 

constant for a given arm except 1 1r rpf pfc  and 1ol  which depend on the desired 

final location of the end-effector as described above.  The fact that only two pa-
rameters need to be calculated highlights the computational efficiency of the 
described approach. 
In (22), t is the tangent of half θ2  and it is used to replace 2c  and 2s  as follows, 

 

⎫−
= ⎪⎪+

⎬
⎪=
⎪+ ⎭

2

2 2

2 2

1

1
2

1

t
c

t
t

s
t

 (23) 

 
Equation (22), which is a fourth degree polynomial, can be solved using a sys-
tematic non-iterative technique (Tranter, 1980).  The resulting roots can succes-
sively be plugged back in equations (23) to work out the corresponding values 
of 2c  and 2s .  These values are then employed to obtain the joint-displacement 

2θ  using the atan2 function referred to above.  The values of the local coordi-

nates, 3rn  and 3rm , may be calculated by using equations (19) and (20).   

A numerically stable method to obtain 1om  and 1on  is to use equation (17) for 

1on  and then obtain 1om  from the following equation, 

 

( )1 2 2 2 1
ˆ ˆr

o om d= −p z yc  (24) 

 
Finally, 3rn , 3rm , 3on , 3om  are employed in equation (6) to obtain the corre-

sponding values of θ3 .  Similarly, 1rn , 1rm , 1on , 1om  are used to obtain the cor-

responding values of θ1 . 

As revealed by the polynomial in (22), the maximum number of arm configu-
rations, armN , which correspond to a given end-effector position is four.  In 

some cases, however, the geometrical relationships between the consecutive 
axes as well as the required position of pf allow for the inverse position prob-
lem to be solved through the use of quadratic, rather quartic or higher, poly-
nomials.  Arms which exhibit this sort of simplification are said to have simple 
structures.  Some of these cases are outlined in the next section.  
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5. Kinematic Synthesis of the Arm Mechanism 

Most industrial robots are designed to have their successive axes either paral-
lel or perpendicular to make a simplified closed form inverse position solution 
achievable.  Researchers have repeatedly assigned the term, simple structure, to 
these robotic arms.  The word "simple" usually implies that a non-iterative so-
lution can be obtained for the inverse position problem of this particular struc-
ture.  However, as the discussion in the previous section reveals, a non-
iterative solution can still be obtained even for arms with arbitrarily positioned 
and directed joint-axes.  A definition has been proposed for this term in the 
light of the conics theory (Smith and Lipkin, 1990).  In the present section, a 
consistent simplified geometrical definition is introduced.   
To gain understanding of the results obtainable from the fourth-degree poly-
nomial equation (22), equations (13) and (14) along with the following two 
equations may be considered, 
 

2 2 2
3 3 3 3 3r r o o rn m l+ = −pi pic  (25) 

 
2 2 2
1 1 1 1 1o o r r on m l+ = −pf pfc  (26) 

 

The four equations, (13), (14), (25) and (26), together are useful in studying the 
kinematic behaviour of the arm mechanism.  
Essentially, the inverse position problem of the arm structure may be depicted 
as shown in Figure (3).  In the figure, points pf and pi assume their local circu-
lar paths about the rotary axes, 1ẑ  and 3ẑ , creating two spatial circles Cz1 and 

Cz3, respectively, in two planes perpendicular to 1ẑ and 3ẑ  with their centres 

located on the axes.  Thus, a solution exists if a circle, Cz2, that intersects both 
Cz1 and Cz3 simultaneously, can be drawn in a plane normal to 2ẑ  with its 

centre located along it.  As the analysis given in the previous section suggests, 
if the three axes are located and directed arbitrarily in space, a maximum of 
four different circles can be drawn about 2ẑ  to satisfy this condition.  Each cir-

cle intersects each of Cz1 and Cz3 at one point and hence, the four possible so-
lutions.   
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1ẑ

3ẑ

3x̂

2x̂

0ŷ

p i

p
f θ1 θ2

θ3

0x̂

0ẑ

Base Coordinates

2ẑ Cz3

Cz2Cz1

 
 

Figure 3. The Kinematic Behaviour of the Arm Joints. 
 

As established in Appendix B, any two spatial circles may intersect at two 
points if, and only if, their corresponding axes lie in one and the same plane 
(this is the plane which perpendicularly halves the line connecting the two 
points of intersection).  Therefore, in arms with ideal (non-calibrated) struc-
tures where 2ẑ  lies in the same plane with either 1ẑ  or 3ẑ , the number of 

middle circles, Cz2, becomes two.  In such a case, the complex mathematical 
aspects associated with the inverse position problem of the arm disappear and 
the solution can easily be obtained by using equations (13), (14), (25) and (26).  
For example, if 1ẑ  and 2ẑ  lie in one plane where 2 0a = , the following proce-

dure may be adopted for the solution; 
 

- i. use equations (13) and (14) to express 3rn  and 3rm  as functions of 1om .  

- ii. use these functions in equation (25) to obtain the two roots of 1om : 1 1om
 

and 1 2om
, 

- iii. use equation (26) to obtain the four corresponding values of 1on : 1 1on
, 

1 1on−
, 1 2on

and 1 2on−
,  
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- iv. use equations (13) to obtain the two corresponding values of 3rm : 

3 1rm
and 3 2rm

; then use (14) to obtain the corresponding values of 3rn :. 

3 1rn
 and 3 2rn

, 
- v. combine the roots in the following order to obtain the required solu-

tions,   

- ( 1 1on
, 1 1om

, 3 1rn
, 3 1rm

), ( 1 1on−
, 1 1om

, 3 1rn
, 3 1rm

), ( 1 2on
, 1 2om

, 3 2rn
, 

3 2rm
) and ( 1 2on−

, 1 2om
, 3 2rn

, 3 2rm
).  

 
The corresponding four values of θ2  may be obtained by solving equations 

(17) and (18) simultaneously for θ2cos  and θ2sin .  Also, θ1  and θ3  are ob-

tained by using equation (5).   
The above mathematical procedure can be performed symbolically such that, 
closed form expressions are obtained for the three joint-displacements.   
Similar simplified mathematical procedure may be used in cases with 1ẑ  par-

allel to 2ẑ .  It may be noted that in designs where 2ẑ  lies in one plane with 1ẑ  

and in another plane with 3ẑ , the number of middle circles, Cz2, becomes one 

and the solution can be simplified even further.  In such a case, the middle cir-
cle, Cz2, intersects both Cz1 and Cz3 at two points to produce the four possible 
solutions.  An example may be sought in PUMA-type robots, whose nominal 
structures possess the following kinematic features, 
 

=2 0a ,   = −c1 2
ˆ ˆ 1y z   and   =c3 2

ˆ ˆ 0y z  

 
This makes it possible to obtain the solution for a non-calibrated PUMA arm 
substructure using the following procedure, 
 

- i. obtain 1om  from equation (13) 

- ii. obtain 3rn  from equation (14) 

- iii. obtain 3rm±  from equation (25) 

- iv. obtain 1on±  from equation (26) 
 

Thus, the four possible configurations of the arm are given by the following 
root combinations, 
 
( 1on , 1om , 3rn , 3rm ), ( 1on , 1om , 3rn , 3rm− ), ( 1on− , 1om , 3rn , 3rm ) and ( 1on− , 1om , 

3rn , 3rm− ).  
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Based on the above discussion it can be concluded that the middle axes 2ẑ  

must lie in one plane with either 1ẑ  or 3ẑ  for a simplified mathematical pro-

cedure to be realisable.  Once this condition is satisfied, the four equations, 
(13), (14), (25) and (26) can be readily employed to obtain the inverse solution 
and therefore the arm structure can be described as simple.  
In the next section, the procedure which is presented for the inverse position 
analysis of the wrist substructure is explained.   

6. Inverse Kinematics of the Wrist 

In the current context, the main task of the first two wrist joints (namely the 
fourth and fifth joints on the manipulator structure) is to displace the axis of 
the last joint (i.e. the sixth joint) from a given known orientation to a new de-
sired direction in space.   
Figure (4) depicts an arrangement of two revolute joints with their axes 4ẑ  and 

5ẑ  pointing in the directions calculated using any suitable direct kinematic 

procedure featuring three consecutive rotations, θ3 3ẑ , θ2 2ẑ  and θ1 1ẑ .  At this 

specific pose, the axis of the sixth joint, i
6 5

ˆ
o

z , is also calculated using the same 

consecutive rotations, and it is now required to be orientated in the direction 

of f
6ẑ .  In the figure, the common normal 5x̂  is directed from 4ẑ  to 5ẑ  (where 

= ×5 4 5
ˆ ˆ ˆx z z ).  At zero position 4x̂  is selected to coincide with 5x̂  such that two 

Cartesian coordinate systems 4 4 4
ˆ ˆ ˆx y z  and 5 5 5

ˆ ˆ ˆx y z  can be established.  Accord-

ing to the concepts in (4) and (5), f
6ẑ  can be described with respect to the 

4 4 4
ˆ ˆ ˆx y z -frame in terms of local coordinates ( 4rn , 4rm  and 4rl ).  Also, i

6 5
ˆ

o
z  can 

be described with respect to the 5 5 5
ˆ ˆ ˆx y z -frame in terms of known local coordi-

nates ( 5on , 5om  and 5ol ).   
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5ŷ

4ŷ
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Figure 4. A 2R Arrangement Used for Orienting Vectors in Space. 

 

It is understood that the vector f
6ẑ  resulted from rotating another vector f

6 4
ˆ

o
z  

about the 4ẑ  axis by an angle, θ4  (i.e. a θ4 4ẑ -type rotation).  The original vec-

tor, f
6 4

ˆ
o

z , can be expressed with respect to the 4 4 4
ˆ ˆ ˆx y z -frame in terms of local 

coordinates ( 4on , 4om  and 4ol ), where 4on  and 4om  are unknowns to be worked 

out and 4ol  is numerically obtained from = = cf
4 4 6 4

ˆ ˆ
o rl l z z . 

The vector i
6 5

ˆ
r

z   which results from rotating i
6 5

ˆ
o

z  by an angle θ5 5ẑ  may be ex-

pressed in the following form, 
 

( ) ( )i
6 5 5 5 5 5 5 5 5 5 5 5 55

ˆˆ ˆ ˆ
o o o o or

n c m s n s m c l= − + + +z x y z  (27) 

 

where 5c  and 5s  stand for 5cosθ and 5sinθ  respectively.  

A property of rotation about 4ẑ  may be stated as, 

 

( )4 5 5 5 5 5 4 5 5 4
ˆ ˆ ˆ ˆ

o o o ol n s m c l= + +y z z zc c  (28) 

 
This last expression (28) is a linear equation in 5s  and 5c .  This equation may 

be re-expressed in a polynomial form as follows, 
 

−

−

=

=∑
2

2
2

0

0k
k

k

b t  (29) 

 



200       Industrial Robotics: Theory, Modelling and Control  

where t is the tangent of half θ5  and jb  is the coefficient of the jth power term.  

It could be concluded from equation (29), which is a second degree polyno-
mial, that the number of the wrist configurations, wristN , which correspond to 

the required orientation of f
6ẑ  is ≤ 2.  

Once 5θ  is obtained, m4o and n4o can be worked out as follows; 

 

( )
4 5 5 5 5

4 5 5 5 5 5 4 5 5 4
ˆ ˆ ˆ ˆ

o o o

o o o o

n n c m s

m n s m c l

= − ⎫
⎬

= + + ⎭y y z yc c
 (30) 

 
Finally, 4rn , 4rm , 4on  and 4om  are employed in equation (6) to obtain the corre-

sponding values of θ4 . 

From the analysis presented in this and the previous sections, it can be con-
cluded that the maximum number of configurations of a spherical-wrist ma-
nipulator structure which correspond to any given position and orientation at 
the end-effector is eight.  The actual number of configurations, N, is calculated  
by, 
 

= arm wristN N N  (31) 

 
In spherical-wrist manipulators, each arm configuration corresponds to two 
possible wrist configurations as indicated by equation (31). 

7. Completing the Full Pose 

Once the first five joints on the manipulator structure have performed con-
secutive rotations (θ =ˆ , where 1, 2,...5i i iz ) to place the sixth joint axis at its 

desired position and orientation, one final rotation (θ6 6ẑ ), will be performed to 

align any side axis on the end-effector with its desired direction.  The term 
“side axis” here refers to any axis, on the end-effector Cartesian frame, whose 
direction is influenced by rotations performed about 6ẑ .  This final part of the 

inverse kinematic procedure is a straight forward application of the model 
presented in equations (3) to (6) to calculate the angle of rotation.  However, it 
worth noting here that this final step of the analysis is preceded by a direct ki-
nematic procedure to calculate the updated direction of the side axis after five 
consecutive rotations, θ θ θ θ θ5 5 4 4 3 3 2 2 1 1

ˆ ˆ ˆ ˆ ˆ, , , and ,z z z z z have been performed. 
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8. The Inverse Solution Procedure 

Figure (5) depicts a flow chart that has been designed to explain the procedure 
proposed here for the inverse position analysis of manipulators.  For spherical-
wrist manipulators, the procedure produces eight sets of solutions in a non-
iterative fashion.  However, for calibrated robotic structures, the eight solu-
tions are obtained in a simple iterative approach which does not involve any 
Jacobian matrix computations.  By virtue of the concepts presented, the vari-
ous solutions may be calculated simultaneously if parallel computing facilities 
are available.  
In the present approach, the arm is assigned the task of positioning any point 
on the sixth joint-axis at its required spatial location.  The closest point on the 
sixth-joint axis to the fifth joint-axis may be conveniently selected for this pur-

pose.  This point will be referred to in the following discussion as 0pi .  The four 

joint-displacement solutions which correspond to this positioning task are 
therefore obtained using the models presented above and saved in four three-
element vectors, jv , where j=1,2,3 and 4.  

At arm configuration number j, the wrist joints align the sixth joint-axis with 
its required final orientation, as previously described, and the two correspond-
ing solutions are accordingly obtained and saved in a pair of two-elements 
vectors, jkw , where k may assume the values of 1 or 2.  To this end, a set of 

eight joint-displacement solutions have been obtained.  If the robot was of the 
spherical-wrist type these solutions should accurately represent the required 
joint-displacements and no iterations would be required. 
Calibrated robots, however, are not likely to have their last three joint-axes in-
tersecting at a common point (i.e. the spherical-wrist property is lost), the mo-
tions performed by the wrist joints will displace the point which was previ-

ously positioned by the arm to eight new locations, 0p jk , corresponding to the 

wrist solutions obtained.  

At location number jk, the instantaneous position vector, 0
jkp , of the displaced 

point may be calculated, using a suitable direct kinematic procedure, and 

compared to the required position vector 0
np  where the net radial error, jke , is 

calculated as follows, 
 

0 0
jkn

jke = −p p  (32) 
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Figure 5.  Inverse Position Analysis of Robots Using Elementary Motions. 
 

If the calculated value for jke  does not fall within an allowable error zone, the 

calculations proceed such that at iteration number m, the arm sets out from the 

most updated configuration number jk(m-1) to position point p jk
m-1  in the re-

quired location, 0
np .  The four solutions obtained may be stored in four three-
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element vectors whose norms are subsequently calculated and compared.  

Only the vector which corresponds to minimum norm, m
jkv , may be saved in 

the memory and the other solutions would be discarded.  This vector is re-

ferred to here as the arm elementary-motions vector because it contains frac-

tional quantities of elementary joint-displacements.  
The two corresponding wrist solutions may then be obtained and stored in a 
pair of two-element vectors whose norms will also be calculated and com-

pared.  The vector with minimum norm, m
jkw , is subsequently saved while the 

other vector may be disposed of.  In the current context, m
jkw  is designated as 

the wrist elementary-motions vector because it contains small values of joint-
displacements.  
The new displaced location of the positioned point may then be calculated and 
compared with the required location as per equation (32).  When the radial er-

ror is small enough, the final joint-displacement vector, n
jkv , of the arm group 

which corresponds to solution number jk may be calculated as follows, 
 

=

= +∑
1

M
n m
jk j jk

m

v v v  (33) 

 
where M is the corresponding number of iterations.  
 

The vector, n
jkw , which corresponds to the jk-solution of the wrist is calculated 

as; 

=

= +∑
1

M
n m
jk jk jk

m

w w w  (34) 

 
Once the jk-solution for the first five joint-displacements has been obtained, 
the corresponding displacement of the last joint may simply be calculated.  
The iterative technique presented here utilises the physical kinematic behav-
iour of manipulator joints and therefore fast and singularity-proof conver-
gence may be assured.  The technique does not require initial guesses intro-
duced into the model. 
In the next section a numerical example is given where the inverse position so-
lutions will be produced for a PUMA-type robot of both calibrated and ideal 
structures.  
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9. Numerical Example 

A PUMA-like manipulator with six revolute joints is selected for the example.  
The dimensions of the spherical-wrist structure of the manipulator are given in 
Table (1).  The dimensions of the non-spherical-wrist version of the same ma-
nipulator are similar to those given in Table (1) except for the locations of the 
fourth and fifth joint-axes which were displaced to (-128.0, 818.51 and 205.04 
mm) and (-130.5, 802.0 and 180.4 mm) respectively.  
 
 
 Direction Cosines of Joint-axes Axes Locations (mm) 

Axes zx zy zz px py pz 

z1 -0.0871557 0.02255767 0.9848077 -1.0 -9.0 8.0 
z2 -0.9961946 0.0001274 -0.0871557 5.0 -5.0 198.0 
z3 -0.9961947 0.05233595 0.0696266 -68.0 438.0 195.0 
z4 0.02233595 -0.9993908 0.02681566 -130.5 808.5 177.0 
z5 0.99975050 -0.0223359 0.00009744 -130.5 808.5 177.0 
z6 0.02489949 0.9996253 0.00012081 -130.0 808.5 177.0 

Table 1. Cartesian Dimensions of a Spherical-wrist Manipulator. 

 
In both cases, the initial and final locations of the Tool Centre Point (TCP) of 
the end-effector are given with respect to the base coordinates as, -120.54, 
1208.36 and 175.095 and, –400.0, –400.0 and 1009.0 mm respectively.  The initial 
and final orientations of the end-effector are given in terms of an Euler ZYZ-
system as: 88.5733, 89.9604 and 89.722 and, 120.0, –20.0 and 150.0 degrees re-
spectively.  
The models proposed in this paper were used to calculate the inverse position 
solutions for both the spherical-wrist and general manipulator structures and 
the results are displayed in Tables (2) and (3) respectively.  The angular dis-
placements given in these tables are in degrees.  
 
 
 

 
1θ  2θ  3θ  4θ  5θ  6θ  

Sol. No. 1 -34.45 -163.09 64.67 86.12 -36.06 -130.97
Sol. No. 2 -34.45 -163.09 64.67 -85.75 31.73 58.63
Sol. No. 3 -47.14 -104.39 -72.4 19.01 -84.81 154.74
Sol. No. 4 -47.14 -104.39 -72.4 -160.03 80.47 -20.04
Sol. No. 5 104.39 -72.90 64.57 24.26 85.22 2.38
Sol. No. 6 104.39 -72.90 64.57 -156.27 -89.56 177.24
Sol. No. 7 117.07 -11.05 -72.30 68.50 28.82 68.23
Sol. No. 8 117.07 -11.05 -72.30 -120.58 -33.16 -122.18

Table 2. Inverse Position Solutions for the Spherical-wrist Robot. 
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1θ  2θ  3θ  4θ  5θ  6θ  

Sol. No. 1 -39.20 -162.93  66.79  86.5 -36.82 -125.19 
Sol. No. 2 -30.78 -162.92  70.95  -73.54  32.47   68.51 
Sol. No. 3 -48.12 -106.90 -68.18  19.18 -83.65  156.37 
Sol. No. 4 -46.46 -103.38 -65.35 -158.64  72.85 -17.25 
Sol. No. 5 105.11 -73.14  67.49  24.37  87.28  0.42 
Sol. No. 6 103.60 -70.98  72.08 -154.89 -98.19  173.67 
Sol. No. 7 120.24 -11.00 -68.57    65.31  29.99  60.59 
Sol. No. 8 114.00 -11.34 -62.96 -133.30 -37.94 -134.91 

Table 3. Inverse Position Solutions for the Non-spherical-wrist Robot. 

 
The solutions obtained for the spherical-wrist manipulator did not involve it-
erations at all.  However, a maximum of 4 iterations were used for the non-
spherical-wrist manipulator.  In most cases the number of iterations was 2 ex-
cept for the second and first solutions were this number was 3 and 4 respec-
tively.  This demonstrates the numerical efficiency of the proposed models.  
 

10. Conclusions 

The work presented in this paper introduces a technique for inverse position 
analysis of revolute-joint manipulators.  The analysis developed results in 
simplified solutions for both the arm and the wrist subassemblies.  These solu-
tions are obtained in form of polynomials whose coefficients can be simply 
calculated for a given manipulator structure.  The technique can be used to ob-
tain inverse kinematic solutions for both spherical-wrist and calibrated ma-
nipulator structures.  
The technique results in obtaining multiple sets of the joint-motor displace-
ments which correspond to a given pose at the end-effector.  This enables the 
trajectory designer to the select the joint-trajectory which best fits a desired 
manipulator task.  
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Appendix A 
 
To relate a pair of successive axes on a manipulator structure, the direction co-
sines of the two axes are given (with respect to a Cartesian base frame), to-
gether with a position vector describing a point on each axis.  These spatial 
particulars are defined in Figure (A) as ˆ

iz  and 0ip  for the joint axis number i, 

and 1
ˆ

i+z  and 0( 1)i+p  for joint-axis number i+1.  The procedure kicks off by cal-

culating the common normal, 1i+x  as follows; 

 

+ += ×1 1
ˆ ˆ

i i ix z z  (A.1) 

 
where the following condition is employed;  
 

( ) ( )1 1 0( 1) 0 0( 1) 0
ˆ ˆ ˆ ˆ0i i i i i i i i iif then+ + + +

⎡ ⎤× = = − − −⎣ ⎦z z x p p z p p zc  (A.2) 

 

The unit vector, +1
ˆ

ix , is then calculated as follows; 

 

1
1

1

ˆ i
i

i

+
+

+

=
x

x
x

 (A.3) 
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0ŷ

0ẑ
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(i+1)i

p
0(i+1)

 

Figure A.  Relating Successive Axes with a Common Normal. 
 

The shortest distance, +1ia ,  separating the two axes is calculated as follows; 

 

( )+ + += − c1 0( 1) 0 1
ˆ

i i i ia p p x  (A.4) 
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The intersection of +1
ˆ

ix  with ˆ
iz  is defined by a position vector ip , which is ob-

tained from; 
 

= +0
ˆ

i i i ibp p z  (A.5) 

 
where  
 

( ) ( )
( )

1 1 0( 1) 0

1 1

ˆˆ

ˆˆ ˆ

i i i i

i

i i i

b
+ + +

+ +

× −
=

×

z x p p

z x z

c
c

 (A.6) 

 

which is subject to the condition, ( )+ +× = =c1 1
ˆˆ ˆ 0 0i i i iif then bz x z  (A.7) 

 

The intersection of +1
ˆ

ix  with +1
ˆ

iz  is defined by a position vector +( 1)i ip , which is 

calculated from; 
 

+ + += +( 1) 1 1
ˆ

i i i i iap p x  (A.8) 

 
Appendix B 
 
Claim: 
Any two spatial circles intersect at two points if, and only if, their axes lie in 
one and the same plane. 
 
Proof: 
Figure (B) depicts two spatial circles, C1 and C2, and their axes, 1ẑ  and 2ẑ  re-

spectively. The circles intersect one another at two points, 1s  and 2s .  To prove 

that 1ẑ  and 2ẑ  must lie in one and the same plane, the centres of the two cir-

cles, Pc1 and Pc2, are connected to the point, 3s , which divides the line 
1 2s s  into  

two equal parts. 
 

1ẑ
2ẑ

C2C1 s1

s2

s3

Pc2Pc1

 

Figure B. Two-point Intersection of Spatial Circles. 



208       Industrial Robotics: Theory, Modelling and Control  

• 
1 2s s  lies in a plane perpendicular to 1ẑ and therefore 

1 2s s  is perpendicular to 

1ẑ . 

• From planar geometry, s s1 2
 is perpendicular to the line 

1 3Pc s . 

• Therefore 1 2s s  is perpendicular to the plane which contains the two intersec-

ting lines, 1ẑ  and 1 3Pc s .  Let this plane be referred to as PN1.  

• Similarly, it could be established that 1 2s s is also perpendicular to the plane 

which contains the two intersecting lines, z2 and 2 3Pc s .  This plane may be 

referred to as PN2. 
• A general conclusion may now be drawn that, PN1 is parallel to PN2. 
• However, PN1 and PN2 share one common point, 3s . 

• Therefore, the two planes coincide and 1ẑ , 1 3Pc s , 2ẑ  and 2 3Pc s  must all lie 

in one and the same plane. 
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