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1. Introduction

Transmission mechanisms are frequently used in machines for power transmission, varia‐
tion of speed and/or working direction and conversion of rotary motion into reciprocating
motion. At high speeds, the vibration of mechanisms causes wear, noise and transmission
errors. The vibration problem of transmission mechanisms has been investigated for a long
time, both theoretically and experimentally. In dynamic modelling, a transmission mecha‐
nism is usually modelled as a multibody system. The differential equations of motion of a
multibody system that undergo large displacements and rotations are fully nonlinear in n
generalized coordinates in vector of variable q [1–4].

M (q, t)q̈ + k (q̇, q, t)=h (q̇, q, t) (1)

It is very difficult or impossible to find the solution of Eq. (1) with the analytical way. Never‐
theless, the numerical methods are efficient to solve the problem [5-9].

Besides, many technical systems work mostly on the proximity of an equilibrium position
or, especially, in the neighbourhood of a desired motion which is usually called “program‐
med motion”, “desired motion”, “fundamental motion”,  “input–output motion” and etc.
according to specific problems. In this chapter, the term “desired fundamental motion“ is
used for this object. The desired fundamental motion of a robotic system, for instance, is
usually described through state variables determined by prescribed motions of  the end-
effector. For a mechanical transmission system, the desired fundamental motion can be the
motion of working components of the system, in which the driver output rotates uniform‐
ly and all components are assumed to be rigid. It is very convenient to linearize the equa‐
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tions of motion about this configuration to take advantage of the linear analysis tools [10-18].
In other words, linearization makes it possible to use tools for studying linear systems to
analyze the behavior of multibody systems in the vicinity of a desired fundamental mo‐
tion. For this reason, the linearization of the equations of motion is most useful in the study
of control [12-13], machinery vibrations [14-19] and the stability of motion [20-21]. Mathe‐
matically, the linearized equations of motion of a multibody system form usually a set of
linear  differential  equations with time-varying coefficients.  Considering steady-state  mo‐
tions of the multibody system only, one obtains a set of linear differential equations hav‐
ing time-periodic coefficients.

M (t)q̈(t) + C(t)q̇(t) + K (t)q(t)=d (t) (2)

Note that Eq. (2) can be expressed in the compact form as

ẋ =P(t)x + f (t) (3)

where we use the state variable x

x =
q
q̇ , ẋ =

q̇
q̈

(4)

and the matrix of coefficients P(t), vector f(t) are defined by

P(t)=
0 I

−M −1K −M −1C
, f (t)=

0
M −1d

, (5)

where I denotes the n ×n identity matrix.

In the steady state of a machine, the working components perform stationary motions
[14-18], matrices M (t), C(t), K (t) and vector d (t) in Eq. (2) are time-periodic with the least
period T. Hence, Eq. (2) represents a parametrically excited system. For calculating the
steady-state periodic vibrations of systems described by differential equations (1) or (2) the
harmonic balance method, the shooting method and the finite difference method are usually
used [8,11,14]. In addition, the numerical integration methods as Newmark method and
Runge-Kutta method can also be applied to calculate the periodic vibration of parametric vi‐
bration systems governed by Eq. (2) [5-9].

Since periodic vibrations are a commonly observed phenomenon of transmission mecha‐
nisms in the steady-state motion, a number of methods and algorithms were developed to
find a T-periodic solution of the system described by Eq. (2). A common approach is by im‐
posing an arbitrary set of initial conditions, and solving Eq. (2) in time using numerical
methods until the transient term of the solution vanishes and only the periodic steady-state
solution remains [14,22]. Besides, the periodic solution can be found directly by other speci‐
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alized techniques such as the harmonic balance method, the method of conventional oscilla‐
tor, the WKB method [14-16, 23, 24].

Following the above introduction,  an overview of  the numerical  calculation of  dynamic
stability conditions of linear dynamic systems with time-periodic coefficients is presented
in Section 2. Sections 3 presents numerical procedures based on Runge-Kutta method and
Newmark method to find periodic solutions of  linear systems with time-periodic coeffi‐
cients. In Section 4, the proposed approach is demonstrated and validated by dynamic models
of transmission mechanisms and measurements on real objects.  The improvement in the
computational  efficiency of  Newmark method comparing with  Runge-Kutta  method for
linear systems is also discussed.

2. Numerical calculation of dynamic stability conditions of linear
dynamic systems with time-periodic coefficients: An overview

We shall consider a system of homogeneous differential equations

ẋ =P(t)x (6)

where P(t) is a continuous T-periodic n ×n matrix. According to Floquet theory [17, 18, 20,
21], the characteristic equation of Eq. (6) is independent of the chosen fundamental set of
solutions. Therefore, the characteristic equation can be formulated by the following way.
Firstly, we specify a set of n initial conditions xi(0) for i =1, ..., n , their elements

( ) 1 when
(0)

0 otherwhile
s
i

s i
x

=ì
= í
î

(7)

and x1(0), x2(0), ..., xn(0) = I . By implementing numerical integration of Eq. (6) within inter‐

val 0, T  for n given initial conditions respectively, we obtain n vectors xi(T ), i =1, ..., n .

The matrix Φ(t) defined by

Φ(T )= x1(T ), x2(T ), ..., xn(T ) (8)

is called the monodromy matrix of Eq. (6) [20]. The characteristic equation of Eq. (6) can then
be written in the form
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Expansion of Eq. (9) yields a n-order algebraic equation

ρ n + a1ρ
n−1 + a2ρ

n−2 + .... + an−1ρ + an =0 (10)

where unknowns ρk (k =1, ..., n),  called Floquet multipliers, can be determined from Eq.
(10). Floquet exponents are given by

λk =
1
T lnρk , (k =1, ..., n) (11)

When the Floquet multipliers or Floquet exponents are known, the stability conditions of
solutions of the system of linear differential equations with periodic coefficients can be easi‐
ly determined according to the Floquet theorem [17–20]. The concept of stability according
to Floquet multipliers can be expressed as follows.

If |ρk |1,  the trivial solution x =0 of Eq. (6) will be asymptotically stable. Conversely, the
solution x =0 of Eq. (6) becomes unstable if at least one Floquet multiplier has modulus be‐
ing larger than 1.

If |ρk | ≤1 and Floquet multipliers with modulus 1 are single roots of the characteristic
equation, the solution x =0 of Eq. (6) is stable.

If |ρk | ≤1 and Floquet multipliers with modulus 1 are multiple roots of the characteristic
equation, and the algebraic multiplicity is equal to their geometric multiplicity, then the sol‐
ution x =0 of Eq. (6) is also stable.

3. Numerical procedures for calculating periodic solutions of linear
dynamic systems with time-periodic coefficients

3.1. Numerical procedure based on Runge-Kutta method

Now we consider only the periodic vibration of a dynamic system which is governed by a
set of linear differential equations with periodic coefficients. As already mentioned in the
previous section, these differential equations can be expressed in the compact matrix form
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ẋ =P(t)x + f (t) (12)

where x is the vector of state variables, matrix P(t) and vector f (t) are periodic in time with
period T. The system of homogeneous differential equations corresponding to Eq. (12) is

ẋ =P(t)x (13)

As well known from the theory of differential equations, if Eq. (13) has only non-periodic
solutions except the trivial solution, then Eq. (12) has an unique T-periodic solution. This pe‐
riodic solution can be obtained by choosing the appropriate initial condition for the vector of
variables x and then implementing numerical integration of Eq. (12) within interval 0, T  .
An algorithm is developed to find the initial value for the periodic solution [18, 19]. Firstly,
the T-periodic solution must satisfy the following condition

x(0)= x(T ) (14)

The interval 0, T  is now divided into m equal subintervals with the step-size
h = ti − ti−1 =T / m. At the discrete times ti and ti+1,  xi = x(ti) and xi+1 = x(ti+1) represent the

states of the system, respectively. Using the fourth-order Runge-Kutta method, we get a nu‐
merical solution [5]

xi = xi−1 +
1
6 k1

(i−1) + 2k2
(i−1) + 2k3

(i−1) + k4
(i−1) (15)

where

k1
(i−1) =h P(ti−1)xi−1 + f (ti−1) ,

k2
(i−1) =h P(ti−1 +

h
2 )(xi−1 +

1
2 k1

(i−1)) + f (ti−1 +
h
2 ) ,

k3
(i−1) =h P(ti−1 +

h
2 )(xi−1 +

1
2 k2

(i−1)) + f (ti−1 +
h
2 ) ,

k4
(i−1) =h P(ti)(xi−1 + k3

(i−1)) + f (ti) .

(16)

Substituting Eq. (16) into Eq. (15), we obtain

xi =Ai−1xi−1 + bi−1 (17)

where matrix Ai−1 is given by
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Ai−1 = I +
1
6 {h P(ti−1) + 4P(ti−1 +

h
2 ) + P(ti)

+ h 2 P(ti−1 +
h
2 )P(ti−1) + P 2(ti−1 +

h
2 ) +

1
2 P(ti)P(ti−1 +

h
2 )

+
h 3

2 P 2(ti−1 +
h
2 )P(ti−1) +

1
2 P(ti)P

2(ti−1 +
h
2 )

+
h 4

4 P(ti)P
2(ti−1 +

h
2 )P(ti−1)}(i =1, ..., m),

(18)

and vector bi−1 takes the form

bi−1 =
1
6 {h f (ti−1) + 4 f (ti−1 +

h
2 ) + f (ti)

+ h 2 P(ti−1 +
h
2 ) f (ti−1) + P(ti−1 +

h
2 ) f (ti−1 +

h
2 ) +

1
2 P(ti) f (ti−1 +

h
2 )

+
h 3

2 P 2(ti−1 +
h
2 ) f (ti−1) + P(ti)P(ti−1 +

h
2 ) f (ti−1 +

h
2 )

+
h 4

4 P(ti)P
2(ti−1 +

h
2 ) f (ti−1)}.

(19)

Expansion of Eq. (17) for i =1 to m yields

x1 =A0x0 + c1

x2 =A1A0x0 + c2

................................

xm = (∏
i=m−1

0
Ai)x0 + cm

(20)

where  c0 =0, c1 =A0c0 + b0,  c2 =A1c1 + b1  ,...,  cm =Am−1cm−1 + bm−1.  Using  the  boundary  condi‐

tion according to Eq. (14), the last equation of Eq. (20) yields a set of the linear algebra‐

ic equations

(I − ∏
i=m−1

0
Ai)x0 =cm. (21)

The solution of Eq. (21) gives us the initial value for the periodic solution of Eq. (12). Finally,

the periodic solution of Eq. (12) with the corresponding initial value can be calculated using

the computational scheme according to Eq. (15).
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3.2. Numerical procedure based on Newmark integration method

The procedure presented below for finding the T-periodic solution of Eq. (2) is based on the
Newmark direct integration method. Firstly, the interval 0, T  is also divided into m equal
subintervals with the step-size h = ti − ti−1 =T / m. We use notations qi =q(ti) and qi+1 =q(ti+1) to

represent the solution of Eq. (2) at discrete times ti and ti+1 respectively. The T-periodic solu‐

tion must satisfy the following conditions

q(0)=q(T ), q̇(0)= q̇(T ), q̈(0)= q̈(T ). (22)

Based on the single-step integration method proposed by Newmark, we obtain the follow‐
ing approximation formulas [6-7]

qi+1 =qi + h q̇ i + h 2( 1
2 −β)q̈ i + βh 2q̈ i+1, (23)

q̇ i+1 = q̇ i + (1−γ)h q̈ i + γh q̈ i+1, (24)

Constants β, γ are parameters associated with the quadrature scheme. Choosing γ =1 / 4 and
β =1 / 6 leads to linear interpolation of accelerations in the time interval [ ti, ti+1 ]. In the same

way, choosing γ =1 / 2,  β =1 / 4 corresponds to considering the acceleration average value
over the time interval [6, 7].

From Eq. (2) we have the following iterative computational scheme at time ti+1

M i+1q̈ i+1 + Ci+1q̇ i+1 + K i+1qi+1 =di+1, (25)

where M i+1 =M (ti+1), Ci+1 =C(ti+1),  K i+1 =K (ti+1) and di+1 =d (ti+1).

In the next step, substitution of Eqs. (23) and (24) into Eq. (25) yields

(M i+1 + γhCi+1 + βh 2K i+1)q̈ i+1 =di+1−Ci+1 q̇ i + (1−γ)h q̈ i −K i+1 qi + h q̇ i + h 2( 1
2 −β)q̈ i . (26)

The use of Eqs. (23) and (24) leads to the prediction formulas for velocities and displace‐
ments at time ti+1

qi+1
* =qi + h q̇ i + h 2( 1

2 −β)q̈ i, q̇ i+1
* = q̇ i + (1−γ)h q̈ i. (27)

Eq. (27) can be expressed in the matrix form as
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*
1

*
1

i
i

i
i

i

+

+

é ù
é ù ê ú=ê ú ê ú
ë û ê úë û

q
q

D q
q

q
&

&
&&

(28)

with

D =
I h I h 2(0.5−β)I
0 I (1−γ)h I

(29)

where 0 represents the n ×n matrix of zeros. Eq. (26) can then be rewritten in the matrix form
as

( ) ( )
*

1 1 1
1 1 1 1 1 *

1

,i
i i i i i

i

- - +
+ + + + +

+

é ù
= - ê ú

ë û

q
q S d S H

q
&&

& (30)

where matrices Si+1 and H i+1 are defined by

Si+1 =M i+1 + γhCi+1 + h 2βK i+1, (31)

H i+1 = K i+1 Ci+1 . (32)

By substituting relationships (28) into (30) we find

( ) ( )1 1
1 1 1 1 1

i

i i i i i i

i

- -
+ + + + +

é ù
ê ú= - ê ú
ê úë û

q
q S d S H D q

q
&& &

&&
(33)

From Eqs. (23), (24) and (27) we get the following matrix relationship

*
1 1

*
1 1

1 1

,
i i

i i

i i

+ +

+ +

+ +

é ùé ù
ê úê ú = ê úê ú
ê úê úë û ë û

q q
q T q
q q
& &
&& &&

(34)

where matrix T is expressed in the block matrix form as

2h
h

é ù
ê ú= ê ú
ê úë û

I 0 I
T 0 I I

0 0 I

b
g (35)
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The combination of Eqs. (28), (33) and (34) yields a new computational scheme for determin‐
ing the solution of Eq. (2) at the time ti+1 in the form

( )
( )

1

11
1 1 1

1 1 1

.
i i

i i
i i

i i i i

+

-+
+ + -

+ + +

é ùé ù é ùé ù ê úê ú ê ú= +ê ú ê úê ú ê ú-ê ú ê úë ûê ú ê úë û ë û ê úë û

q q 0D
q T q T 0

S H Dq q S d

& &
&& &&

(36)

In this equation, the iterative computation is eliminated by introducing the direct solution
for each time step. Note that T and D are matrices of constants.

By setting

( )
( )

11 1
1 1 1

1 1

, , ,
i

i i i i
i i

i i i

-+ +
+ + -

+ +

é ùé ù é ù ê úê ú= = =ê ú ê úê ú -ê ú ê úë ûê úë û ê úë û

q 0D
x q A T b T 0

S H Dq S d

& (37)

Eq. (36) can then be rewritten in the following form

xi =Aixi−1 + bi (i =1, 2, ..., m). (38)

Expansion of Eq. (38) for i =1 to m yields the same form as Eq. (20)

x1 =A1x0 + c1

x2 =A2A1x0 + c2

................................

xm = (∏
i=m

1
Ai)x0 + cm

(39)

where c0 =0, c1 =A1c0 + b1,  c2 =A2c1 + b2 ,..., cm =Amcm−1 + bm.

Using the condition of periodicity according to Eq. (22), the last equation of Eq. (39) yields a
set of the linear algebraic equations

(I −∏
i=m

1
Ai)x0 =cm. (40)

The solution of Eq. (40) gives us the initial value for the periodic solution of Eq. (2). Finally,
the periodic solution of Eq. (2) with the obtained initial value can be calculated without diffi‐
culties using the computational scheme in Eq. (36).
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Based on the proposed numerical procedures in this section, a computer program with
MATLAB to calculate periodic vibrations of transmission mechanisms has been developed
and tested by the following application examples.

4. Application examples

4.1. Steady-state parametric vibration of an elastic cam mechanism

Cam mechanisms are frequently used in mechanical transmission systems to convert rotary
motion into reciprocating motion (Figure 1). At high speed, the vibration of cam mecha‐
nisms causes transmission errors, cam surface fatigue, wear and noise. Because of that, the
vibration problem of cam mechanisms has been investigated for a long time, both theoreti‐
cally and experimentally.

Figure 1. A cam mechanism.

The dynamic model of this system is schematically shown in Figure 2. This kind of model
was also considered in a number of studies, e.g. [25-26]. The mechanical system of the elastic
cam shaft, the cam with an elastic follower can be considered as rigid bodies connected by
massless spring-damping elements with time-invariant stiffness ki and constant damping
coefficients ci for i =1, 2, 3. Among them k1 is the torsional stiffness of the cam shaft. Parame‐
ter k2 is the equivalent stiffness due to the longitudinal stiffness of the follower, the contact
stiffness between the cam and the roller, and the cam bearing stiffness. Parameter k3 denotes
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the combined stiffness of the return spring and the support of the output link. The rotating
components are modeled by two rotating disks with moments of inertia I0 and I1. Let us in‐

troduce into our dynamic model the nonlinear transmission function U (φ1) of the cam

mechanism as a function of the rotating angle φ1 of the cam shaft, the driving torque from

the motor M(t) and the external load F(t) applied on the system.

Figure 2. Dynamic model of the cam mechanism.

The kinetic energy, the potential energy and the dissipative function of the considered sys‐
tem can be expressed in the following form

T = 1
2 I0φ̇02 + 1

2 I1φ̇12 + 1
2 m2 ẏ22 + 1

2 m3 ẏ32 (41)

Π = 1
2 k1(φ1−φ0)2 + 1

2 k2(y2− y1)2 + 1
2 k3(y3− y2)2 (42)

Φ = 1
2 c1(φ̇1− φ̇0)2 + 1

2 c2( ẏ2− ẏ1)2 + 1
2 c3( ẏ3− ẏ2)2 (43)

The virtual work done by all non-conservative forces is

∑ δA=M (t)δφ0−F (t)δ y3 (44)
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Using the generalized coordinates φ0, φ1, q2, q3,  we obtain the following relations

y1 =U (φ1), y2 = y1 + q2, y3 = y2 + q3 (45)

Substitution of Eq. (45) into Eqs. (41-44) yields

T = 1
2 I0φ̇02 + 1

2 I1φ̇12 + 1
2 m2(U ′φ̇1 + q̇2)2 + 1

2 m3(U ′φ̇1 + q̇2 + q̇3)2, (46)

Π = 1
2 k1(φ1−φ0)2 + 1

2 k2q22 + 1
2 k3q32, (47)

Φ = 1
2 c1(φ̇1− φ̇0)2 + 1

2 c2q̇22 + 1
2 c3q̇32, (48)

∑ δA=M (t)δφ0−F (t)U ′δφ1−F (t)δq2−F (t)δq3, (49)

where the prime represents the derivative with respect to the generalized coordinate φ1. The
generalized forces of all non-conservative forces are then derived from Eq. (49) as

Qφ0

* =M (t), Qφ1

* = −F (t)U ′, Qq2

* = −F (t), Qq3

* = −F (t). (50)

Substitution of Eqs. (46)-(48) and (50) into the Lagrange equation of the second type yields
the differential equations of motion of the system in terms of the generalized coordinates
φ0, φ1, q2, q3

I0φ̈0− c1(φ̇1− φ̇0)−k1(φ1−φ0)=M (t), (51)

I1 + (m2 + m3)U
′2 φ̈1 + (m2 + m3)U

′q̈2 + m3U
′q̈3 + (m2 + m3)U

′U ″φ̇12

+c1(φ̇1− φ̇0) + k1(φ1−φ0)= −F (t)U ′,
(52)

(m2 + m3)U
′φ̈1 + (m2 + m3)q̈2 + m3q̈3 + (m2 + m3)U

″φ̇12 + c2q̇2 + k2q2 = −F (t), (53)

m3U
′φ̈1 + m3q̈2 + m3q̈3 + m3U

″φ̇12 + c3q̇3 + k3q3 = −F (t). (54)

When the angular velocity Ω of the driver input is assumed to be constant in the steady state

φ0 =Ωt , (55)

one leads to the following relation
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φ1 =Ωt + q1, (56)

where q1 is the difference between rotating angles φ0 and φ1 due to the presence of the
spring element k1 and the damping element c1. Assuming that φ1 varies little from its mean
value during the steady-state motion, the transmission function y1 =U (φ1) depends essen‐
tially on the input angle φ0 =Ωt . Using the Taylor series expansion around Ωt ,  we get

U (φ1)=U (Ωt + q1)= Ū + Ū ′q1 + 1
2 Ū ″q12 + …, (57)

U ′(φ1)=U ′(Ωt + q1)= Ū ′ + Ū ″q1 + 1
2 Ū ‴q12 + …, (58)

U ″(φ1)=U ″(Ωt + q1)= Ū ″ + Ū ‴q1 + 1
2 Ū (4)q12 + …. (59)

where we used the notations

Ū =U (Ωt), Ū ′ =U ′(Ωt), Ū ″ =U ″(Ωt), Ū ‴ =U ‴(Ωt). (60)

Since the system performs small vibrations, i.e. there are only small vibrating amplitudes
q1, q2 and q3,  substituting Eqs. (57)-(59) into Eqs. (52)-(54) and neglecting nonlinear terms,
we obtain the linear differential equations of vibration for the system

(I1 + (m2 + m3)Ū
′2)q̈1 + (m2 + m3)Ū

′q̈2 + m3Ū
′q̈3 + c1 + 2(m2 + m3)ΩŪ ′Ū ″ q̇1

+ k1 + F (t)Ū ″ + (m2 + m3)Ω
2(Ū ′Ū ‴ + Ū ″2) q1 = −F (t)Ū ′− (m2 + m3)Ω

2Ū ′Ū ″,
(61)

(m2 + m3)Ū
′q̈1 + (m2 + m3)q̈2 + m3q̈3 + 2(m2 + m3)ΩŪ ″q̇1

+c2q̇2 + (m2 + m3)Ω
2Ū ‴q1 + k2q2 = −F (t)− (m2 + m3)Ω

2Ū ″,
(62)

m3Ū
′q̈1 + m3q̈2 + m3q̈3 + 2m3ΩŪ ″q̇1 + c3q̇3 + m3Ω

2Ū ‴q1 + k3q3 = −F (t)−m3Ω
2Ū ″. (63)

In most cases, the force F (t) can be approximately a periodic function of the time or a con‐
stant. Thus, Eqs. (61)-(63) form a set of linear differential equations with periodic coeffi‐
cients. Finally, the linearized differential equations of vibration can be expressed in the
compact matrix form as

M (Ωt)q̈ + C(Ωt)q̇ + K (Ωt)q =d (Ωt), (64)

where
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M (Ωt)=

I1 + (m2 + m3)Ū
′2 (m2 + m3)Ū

′ m3Ū
′

(m2 + m3)Ū
′ (m2 + m3) m3

m3Ū
′ m3 m3

C(Ωt)=

c1 + 2(m2 + m3)ΩŪ ′Ū ″ 0 0

2(m2 + m3)ΩŪ ″ c2 0

2m3ΩŪ ″ 0 c3

K (Ωt)=

k1 + F Ū ″ + (m2 + m3)Ω
2(Ū ′Ū ‴ + Ū ″2) 0 0

(m2 + m3)Ω
2Ū ‴ k2 0

m3Ω
2Ū ‴ 0 k3

d (Ωt)=

−F Ū ′− (m2 + m3)Ω
2Ū ′Ū ″

−F − (m2 + m3)Ω
2Ū ″

−F −m3Ω
2Ū ″

, q =

q1

q2

q3

.

We consider now the function U ′(φ) , called the first grade of the transmission function U (φ),
where the angle φ  is the rotating angle of the cam shaft. In steady state motion of the cam

mechanism, function U ′(φ) can be approximately expressed by a truncated Fourier series

U ′(φ)=∑
k=1

K
(akcoskφ + bksinkφ). (65)

Parameters Units Values

m2 (kg) 28

m3 (kg) 50

I1 (kgm2) 0.12

k1 (Nm/rad) 8 × 104

k2 ( N/m) 8.2 × 108

k3 ( N/m) 2.6 × 108

c1 (Nms/rad) 18.5

c2 (Ns/m) 1400

c3 (Ns/m) 1200

Table 1. Calculation parameters.

The functions Ū ′, Ū ′′, Ū ‴ in Eq. (64) can then be calculated using Eq. (65) for φ =Ωt . Param‐
eters used for the numerical calculation are listed in Table 1. Two set of coefficients ak  in Eq.

(46) are given in Table 2 corresponding to two different cases of cam profile, coefficients bk =0.

Without loss of generality, the external force F is assumed to have a constant value of 100 N.
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ak  ( m) Case 1 Case 2

a 1 0.22165 0.22206

a 2 0 0

a 3 0.05560 0.08539

a 4 0 0

a 5 - 0.01706 0.00518

a 6 0 0

a 7 0 - 0.00373

a 8 0 0

a 9 0 0.00345

a 10 0 0

a 11 0 - 0.00182

a 12 0 0

Table 2. Fourier coefficients ak  of U ′(φ) .

Figure 3. Dynamic transmission errors q3 with nim=100(rpm) for Case 1 (left) and Case 2 (right).

The rotating speed of the driver input nin takes firstly the value of 100 (rpm) corresponding

to angular velocity Ω ≈10.47 (rad/s) for the calculation. The periodic solutions of Eq. (64) are
then calculated using the numerical procedures proposed in Section 3. The results of a peri‐
odic solution for coordinate q 3, which represents the dynamic transmission errors within the
considered system, are shown in Figures 3 and 4. The influence of cam profile to the vibra‐
tion response of the system can be recognized by a considerable difference in the vibration
amplitude of both curves in Figure 3 and the frequency content of spectrums in Figure 4. In
addition, the spectrums in Figure 4 shows harmonic components of the rotating frequency,
such as ,Ω 3Ω, 5Ω which indicate stationary periodic vibrations.
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Figure 4. Frequency spectrum of q3 with nin = 100(rpm) for Case 1 (left) and Case 2 (right).

Figures 5 and 6 show the calculating results with rotating speed nin =600 (rpm), correspond‐
ing to Ω ≈62.8 (rad/s). The mechanism has a more serious dynamic transmission error at
high speeds. It can be seen clearly from the frequency spectrums that the steady state vibra‐
tion at high speeds of the considered cam mechanism may include tens harmonics of the ro‐
tating frequency as mentioned in [3].

Figure 5. Dynamic transmission errors q3 with nin = 600(rpm) for Case 1.

Figure 6. Dynamic transmission errors q3 with nin = 600(rpm) for Case 2.

The calculation of the periodic solution of Eq. (64) was implemented by a self-written com‐
puter program in MATLAB environment, and a Dell Notebook equipped with CPU Intel®
Core 2 Duo T6600 at 2.2 GHz and 3 GB memory. The calculating results obtained by the nu‐
merical procedures are identical, but the computation time with Newmark method is great‐
ly reduced in comparison with Runge-Kutta method as shown in Figure 7, especially in the
cases of large number of time steps.
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Figure 7. Comparison of the computation time for the model of cam mechanism.

4.2. Parametric vibration of a gear - pair system with faulted meshing

Dynamic modeling of gear vibrations offers a better understanding of the vibration genera‐
tion mechanisms as well as the dynamic behavior of the gear transmission in the presence of
gear tooth damage. Since the main source of vibration in a geared transmission system is
usually the meshing action of the gears, vibration models of the gear-pair in mesh have been
developed, taking into consideration the most important dynamic factors such as effects of
friction forces at the meshing interface, gear backlash, the time-varying mesh stiffness and
the excitation from gear transmission errors [31-33].

Figure 8. Dynamic model of the gear-pair system with faulted meshing.

From experimental works, it is well known that the most important components in gear vi‐
bration spectra are the tooth-meshing frequency and its harmonics, together with sideband
structures due to the modulation effect. The increment in the number and amplitude of side‐
bands may indicate a gear fault condition, and the spacing of the sidebands is related to
their source [27], [30]. However, according to our knowledge, there are in the literature only
a few of theoretical studies concerning the effect of sidebands in gear vibration spectrum
and the calculating results are usually not in agreement with the measurements. Therefore,
the main objective of the following investigation is to unravel modulation effects which are
responsible for generating such sidebands.
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Figure 8 shows a relative simple dynamic model of a pair of helical gears. This kind of the
model is also considered in references [24, 28, 32, 33]. The gear mesh is modeled as a pair of
rigid disks connected by a spring-damper set along the line of contact.

The model takes into account influences of the static transmission error which is simulated
by a displacement excitation e(t) at the mesh. This transmissions error arises from several
sources, such as tooth deflection under load, non-uniform tooth spacing, tooth profile errors
caused by machining errors as well as pitting, scuffing of teeth flanks. The mesh stiffness
kz(t) is expressed as a time-varying function. The gear-pair is assumed to operate under high
torque condition with zero backlash and the effect of friction forces at the meshing interface
is neglected. The viscous damping coefficient of the gear mesh cz is assumed to be constant.
The differential equations of motion for this system can be expressed in the form

J1φ̈1 + rb1kz(t) rb1φ1 + rb2φ2 + e(t) + rb1cz rb1φ̇1 + rb2φ̇2 + ė(t) =M1(t), (66)

J2φ̈2 + rb2kz(t) rb1φ1 + rb2φ2 + e(t) + rb2cz rb1φ̇1 + rb2φ̇2 + ė(t) =M2(t). (67)

where φi, φ̇ i, φ̈ i (i = 1,2) are rotation angle, angular velocity, angular acceleration of the in‐
put pinion and the output wheel respectively. J 1 and J 2 are the mass moments of inertia of
the gears. M 1(t) and M 2(t) denote the external torques load applied on the system. r b1 and r
b2 represent the base radii of the gears. By introducing the composite coordinate

q = rb1φ1 + rb2φ2. (68)

Eqs. (66) and (67) yield a single differential equation in the following form

mred q̈ + kz(t)q + czq̇ = F (t)−kz(t)e(t)− cz ė(t), (69)

where

mred =
J1J2

J1rb2
2 + J2rb1

2 F (t)=mred ( M1(t)rb1
J1

+
M2(t)rb2

J2
). (70)

Note that the rigid-body rotation from the original mathematical model in Eqs. (66) and
(67) is eliminated by introducing the new coordinate q(t) in Eq. (69). Variable q(t) is called
the dynamic transmission error  of  the gear-pair  system [32].  Upon assuming that  when
φ̇1 =ω1 =const , φ̇2 =ω2 =const ,  cz =0, kz(t)=k0,  the transmission error q  is equal to the static
tooth deflection under constant load q0 as q = rb1φ1 + rb2φ2 =q0. Eq. (69) yields the following
relation

F (t)≈F0(t)=k0q0 + k0e(t). (71)
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Eq. (69) can then be rewritten in the form

mred q̈ + kz(t)q + czq̇ − f (t)=0, (72)

where f (t)=k0q0− kz(t)−k0 e(t)−cz ė(t).

In steady state motion of the gear system, the mesh stiffness k z(t) can be approximately rep‐
resented by a truncated Fourier series [33]

kz(t)=k0 +∑
n=1

N
kncos(nωzt + γn). (73)

where ωz is the gear meshing angular frequency which is equal to the number of gear teeth
times the shaft angular frequency and N is the number of terms of the series.

In general, the error components are no identical for each gear tooth and will produce dis‐
placement excitation that is periodic with the gear rotation (i.e. repeated each time the tooth
is in contact). The excitation function e(t) can then be expressed in a Fourier series with the
fundamental frequency corresponding to the rotation speed of the faulted gear. When the
errors are situated at the teeth of the pinion, e(t) may be taken in the form

e(t)=∑
i=1

I
eicos(iω1t + αi). (74)

Parameters Pinion Wheel

Gear type helical, standard involute

Material steel

Module (mm) 4.50

Pressure angle (o) 20.00

Helical angle (o) 14.56

Number of teeth z 14 39

face width (mm) 67.00 45.00

base circle radius (mm) 30.46 84.86

Table 3. Parameters of the test gears.

Therefore, the vibration equation of gear-pair system according to Eq. (72) is a differential
equation with the periodic coefficients.

According to the experimental setup which will be described later, the model parameters in‐
clude J1= 0.093 (kgm2), J 2 = 0.272 (kgm2) and nominal pinion speed of 1800 rpm (f 1 = 30 Hz).
The mesh stiffness of the test gear pair at particular meshing position was obtained by
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means of a FEM software [29]. The static tooth deflection is estimated to be q0 = 1.2×10-5 (m).
The values of Fourier coefficients of the mesh stiffness with corresponding phase angles are

given in Table 4. The mean value of the undamped natural frequency ω̄0 = k0 / mred ≈5462s-1,
corresponding to f̄ 0 = ω̄0 / 2π ≈869 (Hz). Based on the experimental work, the mean value of
the Lehr damping ratio ζ̄ =0.024 is used for the dynamic model. The damping coefficient cz

can then be determined by cz =2ω̄0ζ̄mred .

n kn(N/m) γn(radian)

0 8.1846108

1 3.2267107 2.5581

2 1.3516107 -1.4421

3 8.1510106 -2.2588

4 3.5280106 0.9367

5 4.0280106 -0.8696

6 9.7100105 -2.0950

7 1.4245106 0.9309

8 1.5505106 0.2584

9 4.6450105 -1.2510

10 1.4158106 2.1636

Table 4. Fourier coefficients and phase angles of the mesh stiffness.

i
Case 1 Case 2

ei(mm) αi(rad) ei(mm) αi(rad)

1 0.0015 -0.049 0.010 1.0470

2 0.0035 -1.7661 0.003 -1.4521

3 0.0027 -0.7286 0.0018 0.5233

4 0.0011 -0.5763 0.0011 1.4570

5 0.0005 -0.7810 0.0009 -0.8622

6 0.0013 1.8172 0.0003 1.1966

Table 5. Fourier coefficients and phase angles of excitation function e(t) .

Using the obtained periodic solutions of Eq. (72), the calculated dynamic transmission errors
are shown in Figures 9 and 10 corresponding to different excitation functions e(t) given in
Table 5. The spectra in Figures 10(a) and 10(b) show clearly the meshing frequency and its
harmonics with sideband structures. As expected, the sidebands are spaced by the rotational
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frequency f 1 of the pinion. By comparing amplitude of these sidebands in both spectra, it
can be concluded that the excitation function e(t) caused by tooth errors is responsible for
generating sidebands.

Figure 9. . Modelling result: dynamic transmission error q(t).

Figure 10. Modelling result: frequency spectrum of dq/dt corresponding to (a) excitation function e(t) of Case 1 and
b) excitation function e(t) with larger coefficients (Case 2).

The experiment was done at an ordinary back-to-back test rig (Figure 11). The major param‐
eters of the test gear-pair are given in Table 3. The load torque was provided by a hydraulic
rotary torque actuator which remains the external torque constant for any motor speed. The
test gearbox operates at a nominal pinion speed of 1800 rpm. (30 Hz), thus the meshing fre‐
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quency f z is 420 Hz. A Laser Doppler Vibrometer was used for measuring oscillating parts
of the angular speed of the gear shafts (i.e. oscillating part of φ̇1 and φ̇2) in order to deter‐
mine experimentally the dynamic transmission error. The measurement was taken with two
non-contacting transducers mounted in proximity to the shafts, positioned at the closest po‐
sition to the test gears. The vibration signals were sampled at 10 kHz. The signal used in this
study was recorded at the end of 12-hours total test time, at that time a surface fatigue fail‐
ure occurred on some teeth of the pinion.

Figure 11. Gearbox test rig.

Figure 12. Experimental result: frequency spectrum of dq/dt.

Figure 12 shows a frequency spectrum of the first derivative of the dynamic transmission
error q̇(t) determined from the experimental data. The spectrum presents sidebands at the
meshing frequency and its harmonics. In particular, the dominant sidebands are spaced by
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the rotational frequency of the pinion and characterized by high amplitude. This gives a
clear indication of the presence of the faults on the pinion. By comparing the spectra dis‐
played in Figures 13 and 14, it can be observed that the vibration spectrum calculated by nu‐
merical methods (Figure 13) and the spectrum of the measured vibration signal (Figure 14)
show the same sideband structures.

Figure 13. Calculating result: frequency spectrum of dq/dt.

Figure 14. Experimental result: zoomed frequency spectrum of dq/dt from Figure 12.

The calculations required a large number of time steps to ensure that the frequency resolu‐
tion in vibration spectra is fine enough. In comparison with the numerical procedure based
on Runge-Kutta method, the computation time by the Newmark-based numerical procedure
is greatly reduced for large number of time steps as shown in Figure 15, for that the same
computer was used as in the previous example.
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Figure 15. Comparison of the computation time for the gear-pair model.

4.3. Periodic vibration of the transport manipulator of a forging press

The most common forging equipment is the mechanical forging press. Mechanical presses
function by using a transport manipulator with a cam mechanism to produce a preset at a
certain location in the stroke. The kinematic schema of such mechanical adjustment unit is
depicted in Figure 16.

Figure 16. Kinematic schema of the transport manipulator of a forging press: 1- the first gearbox, 2- driving shaft, 3-
the second gearbox, 4- cam mechanism, 5- operating mechanism (hammer).
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The dynamic model of this system shown in Figure 17 is used to investigate periodic vibra‐
tions which are a commonly observed phenomenon in mechanical adjustment unit during
the steady-state motion [18, 23]. The system of the driver shaft, the flexible transmission
mechanism and the hammer can be considered as rigid bodies connected by spring-damp‐
ing elements with time-invariant stiffness ki and constant damping coefficients ci, i =1, 2.
The rotating components are modeled by two rotating disks with moments of inertia I0 and
I1. The cam mechanism has a nonlinear transmission function U (φ1) as a function of the ro‐
tating angle φ1 of the cam shaft, the driving torque from the motor M(t) and the external
load F(t) applied on the system.

Figure 17. Dynamic model of the transport manipulator.

When the angular velocity Ω of the driver input is assumed to be constant in the steady state

φ0 =Ωt , (75)

one leads to the following relation

φ1 =Ωt + q1 (76)

where q1 is the difference between rotating angles φ0 and φ1 due to the presence of elastic
element k1 and damping element c1,  resulted from the flexible transmission mechanism.

By the analogous way as in Section 3.1, we obtain the linear differential equations of vibra‐
tion for the system in the compact matrix form as

M (Ωt)q̈ + C(Ωt)q̇ + K (Ωt)q =d (Ωt) (77)
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where

M (Ωt)=
I1 + m2Ū

′2 m2Ū
′

m2Ū
′ m2

, C(Ωt)=
c1 + 2m2ΩŪ ′Ū ″ 0

2m2ΩŪ ″ c2

K (Ωt)=
k1 + F Ū ″ + m2Ω

2(Ū ′Ū ‴ + Ū ″2) 0

m2Ω
2Ū ‴ k2

, d =
−F Ū ′−m2Ω

2Ū ′Ū ″

−F −m2Ω
2Ū ″ , q =

q1

q2

In steady state motion of the cam mechanism, function U ′(φ) takes the form [18, 23]

U ′(φ)=∑
k=1

K
(akcoskφ + bksinkφ) (78)

The functions Ū ′, Ū ′′, Ū ‴ in Eq. (77) can then be calculated using Eq. (78) for φ =Ωt .

The following parameters are used for numerical calculations: Rotating speed of the driver

input n=50 (rpm) corresponding to Ω =5.236(1 / s),  stiffness k1 =7692 Nm; k2 =106 N/m,

damping coefficients c1 =18.5 Nms; c2 =2332 Ns/m, I1 =1.11 kgm2 and m2 =136 kg.

Figure 18. Calculating result of q2 for case 1, (a) time curve, (b) frequency spectrum.
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Figure 19. Calculating result of q2 for case 2, (a) time curve, (b) frequency spectrum.

The Fourier coefficients ak  in Eq. (78) with K = 12 are given in Table 2 for two different cases
and coefficients bk =0. We consider only periodic vibrations which are a commonly observed
phenomenon in the system. The periodic solutions of Eq. (77) can be obtained by choosing
appropriate initial conditions for the vector of variables q.

To verify the dynamic stable condition of the vibration system, the maximum of absolute
value |ρ |

max
 of the solutions of the characteristic equation, according to Eq. (10), is now

calculated. The obtained values for both cases are |ρ |
max

=0.001992 (case 1) and

|ρ |
max

=0.001623 (case 2). It can be concluded that the system is dynamically stable for both

two cases since |ρ |
max

<1.

Calculating results of periodic vibrations of the mechanical adjustment unit, i.e. periodic sol‐
utions of Eq. (77), are shown in Figures 18-19 for two cases of the cam profile. Comparing
both time curves, the influence of cam profiles on the vibration level of the hammer can be
recognized. In addition, the frequency spectrums show harmonic components of the rotat‐
ing frequency at Ω, 3Ω, 5Ω. These spectrums indicate that the considered system performs
stationary periodic vibrations only.
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Figure 20. Dynamic moment acting on the driving shaft of the mechanical adjustment unit

To verify the calculating results using the numerical methods, the dynamic load moment of
the mechanical adjustment unit was measured on the driving shaft (see also Figure 16). A
typical record of the measured moment is plotted in Figure 20, together with the curves
calculated from the dynamic model by using the WKB-method [18, 34], the kinesto-static
calculation and the proposed numerical procedures based on Newmark method and Runge-
Kutta method. Comparing the curves displayed in this figure, it can be observed that the
calculating result using the numerical methods is more closely in agreement with the experi‐
mental result than the results obtained by the WKB-method and the kinesto-static calculation.

5. Concluding remarks

The  calculation  of  dynamic  stable  conditions  and  periodic  vibrations  of  elastic  mecha‐
nisms and machines is an important problem in mechanical engineering. This chapter deals
with the problem of dynamic modelling and parametric vibration of transmission mecha‐
nisms with elastic components governed by linearized differential equations having time-
varying coefficients.

Numerical procedures based on Runge-Kutta method and Newmark integration method are
proposed and applied to find periodic solutions of linear differential equations with time-
periodic coefficients. The periodic solutions can be obtained by Newmark based procedure
directly and more conveniently than the Runge-Kutta method. It is verified that the compu‐
tation time with the Newmark based procedure reduced by about 60%-65% compared to the
procedure using the fourth-order Runge-Kutta method (see also Figures 7 and 15). Note that
this conclusion is only true for linear systems.

The numerical methods and algorithms are demonstrated and tested by three dynamic
models of elastic transmission mechanisms. In the last two examples, a good agreement is
obtained between the model result and the experimental result. It is believed that the pro‐
posed approaches can be successfully applied to more complicated systems. In addition, the
proposed numerical procedures can be used to estimate approximate initial values for the
shooting method to find the periodic solutions of nonlinear vibration equations.
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