
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 10 

 

 

 
 

© 2012 Wang  et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Immunohistochemistry of Neuronal Apoptosis  

in Fatal Traumas: The Contribution of Forensic 

Molecular Pathology in Medical Science 

Qi Wang, Tomomi Michiue and Hitoshi Maeda 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/50225 

1. Introduction 

The most important part of forensic pathology is investigation of the cause and process of 

death, especially in violent and unexpected sudden deaths, which involve social and 

medicolegal issues of ultimate, personal and public concern. Forensic pathologists are 

expected to respond to social requests by reliable interpretation of these issues in routine 

casework on the basis of research activities to develop, improve and sophisticate the 

procedures as well as to establish an autopsy database within the framework of social and 

legal systems. Systematic investigations are needed for comprehensive assessment of 

pathological findings, making full use of the available procedures; while classical 

morphology remains a core procedure to investigate deaths in forensic pathology, a 

spectrum of ancillary procedures has been developed and incorporated to detail the 

pathology. In addition to postmortem biochemistry, experimental and practical 

investigations using molecular biological procedures in the context of forensic pathology 

(molecular forensic pathology) have suggested the usefulness of detecting dynamic 

functional changes involved in the dying process that cannot be detected by morphology 

(pathophysiological vital reactions) (Maeda et al., 2010; Maeda et al., 2011). These 

procedures may effectively be included in routine casework as part of forensic laboratory 

investigations (forensic molecular pathology). The purpose of forensic molecular pathology 

is to provide a general explanation of the process or pathophysiology of human death 

caused by insults involving forensic issues as well as the assessment of individual deaths on 

the basis of biological molecular evidence; in forensic investigation of death, the genetic 

background, dynamics of gene expression (up-/down-regulation), and vital phenomena, 

involving biological mediators and degenerative products, are detected by DNA analysis, 

relative quantification of mRNA transcripts using real-time reverse transcription-PCR (RT-
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PCR), and immunohisto-/immunocytochemistry combined with biochemistry, respectively. 

These observations will also contribute to understanding life-threatening events after 

traumas in the clinical management of critical patients. 

In forensic and clinical medicine, head injury is a major trauma, and primary or secondary 

brain damage, e.g. due to ischemic, hypoxic and toxic insults, is involved in most fatal 

traumas and diseases; thus, the investigation of brain damage after such insults is essential 

to assess the etiology and evaluate the severity of brain impairment relevant to central 

nervous system (CNS) dysfunction (Oehmichen et al., 2006). Necrosis and apoptosis are 

involved in morphological deterioration of the brain, involving cell and tissue decay 

(Fawthrop et al., 1991). Neuronal apoptosis is involved in both early and delayed responses 

after insults; however, this type of neuronal degeneration and cell death is of greater 

importance in connection with delayed or intermittent CNS dysfunction (Martin et al., 1998). 

This chapter reviews neuronal apoptosis and related pathologies in the brain after fatal 

traumas and diseases as demonstrated in forensic autopsy casework, summarizing previous 

observations (Michiue et al., 2008; Wang et al., 2011a; Wang et al., 2012a; Wang et al., 2012b). 

2. Brain neuronal apoptosis in human death 

Apoptosis is programmed cell death, regulated by specific ‘death genes.’ The process 

involves active protein synthesis, initiated by changes in the microenvironment and 

impaired metabolic and tropic supply (Alison & Sarraf, 1992), with the participation of 

immediate early gene transcription factors (e.g. c-jun, jun-B, jun-D, c-fos, AP-1, ATF and 

nuclear factor (NF)-κB), proteases (e.g. calpains and caspases), and glutamate-mediate 

toxicity, including free radicals, protein kinases, Ca2+ homeostasis, and second messenger 

systems (Vaux & Strasser, 1996). It is known that microglial cells have an anti-apoptotic 

function to protect neurons from apoptotic death (Polazzi et al., 2001). Mechanical brain 

injury is accompanied by the apoptosis of neurons and glial cells surrounding the site of 

contusion and hemorrhage, which undergoes cell degeneration and necrosis (Oehmichen et 

al., 2006). Apoptosis begins hours after a traumatic event, and remains demonstrable for 

about 3 days (Yakovlev & Faden, 2001). These survival time-dependent changes are useful 

for timing brain contusions and hemorrhages in forensic pathology (Hausmann et al., 2004); 

however, apoptosis has been detected in the white matter as long as 1 year after injury 

(Williams et al., 2001). Apoptosis is also induced by other insults, including cerebral 

ischemia and hypoxia/asphyxia (Rosenblum, 1997), carbon monoxide (CO) intoxication 

(Piantadosi et al., 1997) and drug toxicity (Cadet & Krasnova, 2009). It is of particular 

importance that apoptosis may be involved in delayed neuronal loss (Becker & Bonni, 2004), 

which may contribute to delayed death or posttraumatic neurological disorders and 

sequelae. 

Neuronal apoptosis is usually detected by in situ labeling of DNA fragments, e.g. terminal 

deoxynucleotidyl-transferase-mediated dUDP nick end-labeling (TUNEL) or in situ nick 

translation (ISNT) (Clark et al., 2001; Gavrieli et al., 1992; Rink et al., 1995). However, 

experimental studies have shown that single-stranded DNA (ssDNA) degradation precedes 
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DNA double-strand breaks (DNAdsb) during a delayed neuronal death process caused by 

reperfusion after transient brain ischemia or intracerebral hemorrhage, possibly due to 

oxidative stress (Chen et al., 1997; Gong et al., 2001; Love, 1999; Nakamura et al., 2005). 

Thus, ssDNA can be used as an earlier marker of apoptosis and programmed cell death, 

which causes neuronal loss (Chen et al., 1997; Frankfurt et al., 1996; Michiue, 2008). This 

marker may contribute to the investigation of neuronal damage in acute death and also the 

timing of brain injury in the early phase (Chen et al., 1997; Hausmann et al., 2004). 

Animal experimentation has shown that ssDNA positivity could be detected after as little as 

1 min of reperfusion following transient brain ischemia, showing a progressive increase, and 

exclusively in neurons exhibiting normal nuclear morphology within the first hour of 

reperfusion before the appearance of DNAdsb, whereas DNAdsb was first detected after 1 h 

of reperfusion. Thereafter, at 16–72 h of reperfusion, both ssDNA and DNAdsb positivity 

were found in many neurons and astrocytes, showing morphological changes consistent 

with apoptosis (Chen et al., 1997). Alternatively, ssDNA-positive neurons may be decreased 

after several hours of reperfusion, possibly due to active DNA repair. These findings 

suggest that damage to nuclear DNA is an early event after neuronal ischemia and that the 

accumulation of unrepaired DNA single-strand breaks due to oxidative stress may 

contribute to delayed ischemic neuronal death by triggering apoptosis. Other experimental 

studies have suggested that oxidative stress contributes to DNA damage and brain injury 

after intracerebral hemorrhage (Gong et al., 2001; Nakamura et al., 2005). These observations 

indicate that neuronal ssDNA positivity can be a marker of early brain damage, possibly 

within the first hour after an insult involving oxidative stress, including reperfusion and 

hemorrhage (Michiue et al., 2008). The detection of neuronal ssDNA may depend on the 

cause of death and survival time after a fatal insult. Brain reperfusion during 

cardiopulmonary resuscitation (CPR) may also contribute to positivity. 

Astrocytes are essential for the structural integrity of neurons and also for maintaining their 

physiological environment, involving electrolyte and water homeostasis, pH and osmotic 

regulation, and elimination of transmitter amino acids and plasma proteins, as well as the 

control of vascular tone and intercellular transport of molecules from the vessel to the 

neuron, supporting the blood-brain barrier (BBB) (Nag, 2011). In forensic neuropathology, 

glial fibrillary acidic protein (GFAP) and S100β, as specific markers of differentiated 

astrocytes in the brain, are used to detect their morphological and functional alterations 

involved in brain damage (Liedtke et al., 1996; Stroick et al., 2006). GFAP is normally 

detected in fibrous astrocytes in the white matter and molecular layer of the cerebral cortex, 

but is usually not detectable in protoplasmatic astrocytes in the cerebral cortex by a routine 

immunohistochemical procedure (Li et al., 2009b; Oehmichen et al., 2006). GFAP is essential 

for fibrous astrocyte functions, including maintenance of the integrity of CNS white matter 

and the blood-brain barrier (Liedtke et al., 1996), and can therefore be used to detect the 

morphological and functional alterations of astrocytes due to brain damage; the decrease of 

white matter GFAP immunopositivity indicates the disruption of astrocytes, while reactive 

astrogliosis involves an increase in the gray matter (Wang et al., 2011a; Wang et al., 2012a). 

S100β is a calcium-binding peptide and is used as a clinical parameter of glial activation 
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and/or death in a spectrum of CNS disorders (Stroick et al., 2006); S100β levels in serum and 

cerebrospinal fluid (CSF) can be used as a marker of brain damage in clinical and 

postmortem investigations (Korfias et al., 2006; Li et al., 2006a; Li et al., 2009a). Basic 

fibroblast growth factor (bFGF) is closely involved in neuronal protection and repair after 

ischemic, metabolic or traumatic brain injury, and has emerged as a central player in acute 

brain damage (Bikfalvi et al., 1997); the increase of glial bFGF positivity indicates a self-

protective response (Wang et al., 2011a; Wang et al., 2012a; Wang et al., 2012b). Thus, bFGF 

can be used to monitor the self-protective capacity of the brain after injury. 

Previous studies of neuronal apoptosis in forensic pathology have mostly focused on the 

healing process at the site of brain injury for wound timing in the forensic context 

(Hausmann et al., 2004; Tao et al., 2006); however, it is of great forensic and clinical 

importance to investigate overall brain damage to evaluate the severity of insults. 

Immunohistochemistry of neuronal apoptosis and related molecular pathology using 

biological markers, including ssDNA, bFGF, GFAP and S100β, demonstrated various type of 

brain damage due to head injury, ischemia/hypoxia or asphyxia, intoxication, burns, and 

extreme ambient temperatures (hyperthermia and hypothermia) (Wang et al., 2011a; Wang 

et al., 2012a; Wang et al., 2012b). Details are described below. 

3. Brain injury 

3.1. General considerations 

Mechanical brain injury is a major trauma in both forensic and clinical medicine and is 

caused by various insults, resulting in various types of brain damage, often accompanied by 

secondary brain dysfunction, involving brain edema, swelling and compression; these are 

subdivided into focal and diffuse brain injury (Greenfield & Ellison, 2008; Knight & Saukko, 

2004; Oehmichen et al., 2006). Classic concepts of CNS dysfunction due to mechanical brain 

injury comprise the disruption of brain structures by laceration and contusion, subarachnoid 

hemorrhage (SAH), compression by space-occupying intracranial hematoma or increased 

intracranial pressure due to edema, axonal injury, ischemic brain damage and primary acute 

brain swelling, especially in infancy. Brain compression or swelling accompanied by 

increased intracranial pressure is critical for survival in the early phase after brain injury in 

most cases. Previous studies have made great strides in investigating the morphology and 

causal mechanism of brain injury and dysfunction; forensic neuropathological case studies 

have demonstrated findings useful for establishing practical investigation procedures. 

Estimation of the age of brain injury and hematomas at the site or in the area adjacent to the 

injury has especially important criminological implications (Bratzke, 2004; Dressler et al., 

2007; Hausmann & Betz, 2001; Hausmann et al., 1999; Hausmann et al., 2000; Oehmichen et 

al., 2003; Takamiya et al., 2007); however, some patients may survive for months or years 

after severe brain injury, while it may be difficult to explain the causal relationship between 

a focal brain injury and death in some fatalities. Cerebral edema/swelling alone may be a 

distinct finding of brain injury at autopsy, with mild or even no other structural lesions, to 

explain the cause of death, involving increased intracranial pressure affecting vital centers in 
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the brainstem. Animal experiments have demonstrated the rapid onset of brain edema 

following injury (Byard et al., 2009). Considering the anatomical and metabolic species 

differences, however, it is necessary to investigate human materials. Moreover, human brain 

injury is rarely as simple as in experimental models; thus, the changes to the whole human 

brain after injury should be clarified to establish the relationship to death. Brain damage to a 

part distant from primary lesions may provide more significant information about the 

whole brain condition. In particular, the evaluation of human brain damage with regard to 

parahippocampal herniation or secondary brainstem hemorrhage of Duret as a macroscopic 

sign of brain swelling and compression is important since they are believed to be closely 

related to a fatal outcome, causing brainstem dysfunction. 

Immunohistochemical investigation of the expressions of bFGF and GFAP in glial cells as 

well as ssDNA positivity in the neurons as a sign of neuronal apoptosis at sites distant from 

the primary injury to detect survival time-dependent changes in forensic autopsy cases of 

fatal mechanical brain injury demonstrated characteristic posttraumatic glial and neuronal 

changes in regions that were not involved in the primary injury, with regard to the influence 

of brain swelling and compression (Fig. 1 and Table 1). These changes involved early glial 

changes in peracute to subacute death with survival time within 12 h and neuronal loss in 

prolonged death after 3 days, which depended on brain swelling and compression, 

irrespective of the type of primary brain injury, as follows. 

 

Figure 1. Immunohistochemistry of single-stranded DNA (ssDNA), basic fibroblast growth factor 

(bFGF) and glial fibrillary acidic protein (GFAP) in the parietal cortex of mechanical brain injury cases: 

1) early death without Duret hemorrhage (2-day survival), showing low ssDNA (a) and high bFGF (b) 

positivity with unaffected GFAP positivity (c); 2) prolonged death with Duret hemorrhage (9 days 

survival), showing high ssDNA (d), and low bFGF (e) and GFAP (f) positivity 
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Macropathology Peracute death

ST, minutes 

Acute death 

ST <0.5 h 

Subacute death 

ST, 0.5–12 h 

Early death 

ST, 12 h–3 days 

Prolonged death 

ST >3 days 

      

Open skull 

fractures with 

brain lacerations 

Decreased 

white matter 

astrocyte 

GFAP 

positivity 

    

      

Brain contusions/ 

SAH/SDH 

without brain 

swelling or 

compression sign 

 Decreased 

white matter 

astrocyte 

GFAP positivity

---------- Increased 

cortical and 

white matter 

bFGF positivity 

with 

hippocampal 

involvement 

----------- 

+ partial cortical 

neuronal loss 

      

Brain contusions/ 

SAH/SDH 

with brain 

swelling and 

compression sign 

without 

craniotomy 

 

 

Increased 

cortical astrocyte

bFGF positivity 

 

 

Increased 

cortical and 

white matter 

astrocyte 

bFGF positivity 

 

---------- 

 

 

 

+ hippocampal 

involvement and

partly low GFAP

positivity 

Diffuse 

astrocyte loss 

with decreased 

GFAP positivity 

and 

neuronal loss 

with increased 

ssDNA 

positivity 

      

Brain contusions/ 

SAH/SDH 

with brain 

swelling and 

compression sign 

with craniotomy 

   Cortical and 

white matter 

astrocyte loss 

with decreased 

GFAP positivity

and neuronal 

loss 

with increased 

ssDNA 

positivity 

 

      

ST, survival time; SAH, subarachnoid hemorrhage; SDH, subdural hemorrhage or hematoma; ssDNA, single-stranded 

DNA, bFGF, basic fibroblast growth factor; GFAP, glial fibrillary acidic protein 

Table 1. Immunohistochemical findings of apoptosis-related biomarkers in mechanical brain injury 

with regard to the survival time 
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3.2. Diffuse brain injury 

Diffuse mechanical brain injury clinically involves primary and secondary CNS dysfunction, 

which may result in permanent disability or fatal outcome. This type of mechanical brain 

injury is morphologically associated with specific white matter injury, usually termed 

diffuse axonal injury (DAI); however, other non-specific factors, including disrupted BBB, 

ischemia and vascular injury, also contribute to posttraumatic CNS dysfunction (Oehmichen 

et al., 2006). The macropathology may present with brain swelling and hemorrhages in the 

deep part of white matter, for which histology often involves focal edema and 

demyelination, accompanied by axonal injury, along the junction of gray and white matter, 

but these findings cannot be detected in very short survival cases. In such cases of peracute 

or instantaneous death within minutes, involving severe open head injury and apparently 

fatal structural brain damage, immunohistochemistry detected decreased glial GFAP 

positivity in the parietal white matter without glial or neuronal loss; however, this finding 

was not evident in the cerebral cortex (Wang et al., 2012b). GFAP as a marker of fibrous 

astrocytes in the white matter and molecular layer of the cerebral cortex is usually not 

detectable in protoplasmatic astrocytes or neurons in the cerebral cortex by routine 

immunohistochemistry (Li et al., 2009b). An increase in GFAP immunoreactivity in the 

cerebral cortex may be detected in classic astrocytic activation or astrogliosis; however, 

GFAP immunopositivity in the cerebral cortex showed no difference among all mechanical 

brain injury and control groups, irrespective of survival times, indicating a morphologically 

intact cerebral cortex. In peracute death, however, a significant decrease of white matter 

GFAP immunopositivity indicated the immediate, diffuse disruption of brain white matter; 

such findings were not detected in the hippocampus. Similar findings were detected in 

acute and subacute deaths (survival time <12 h) due to closed head injury without 

parahippocampal hernia as a brain compression sign, irrespective of the type of brain injury. 

This glial change in the parietal white matter may represent damage to the whole brain 

white matter immediately due to mechanical brain injury, suggesting fatal CNS dysfunction 

without brain swelling (Graham et al., 1988). 

3.3. Brain swelling and compression 

Brain swelling and compression, which cause brainstem dysfunction, are critically life-

threatening events in clinical trauma care. In patients with a brain compression sign, 

accompanied by increased brain weight, glial bFGF positivity in the parietal cerebral cortex 

was increased in acute death (survival time <0.5 h), followed by an increase of glial bFGF 

positivity in the parietal white matter in subacute death (survival time of 6–8 h). Such a 

finding was not detected in the hippocampus in acute–subacute deaths. The bFGF has been 

well documented as a neuroprotective and neurotrophic factor, both in vitro and in vivo 

(Bikfalvi et al., 1997; Dietrich et al., 1996; Louis et al., 1993); thus, the increase of glial bFGF 

positivity in these cases suggests a self-protective response to maintain BBB function in the 

early phase of brain swelling after trauma (Deguchi et al., 2002), which may start in the 

cerebral cortex and spread into the white matter, despite the fatal brain compression, as 



 
Apoptosis and Medicine 254 

suggested by parahippocampal herniation. However, in some cases of acute death with or 

without the brain compression sign, the above-mentioned findings were not detected, 

suggesting other mechanisms of acute death, including rapid cardiorespiratory failure 

induced by SAH around the brainstem (Macmillan et al., 2002). 

In early and prolonged death cases (survival time >12 h), parahippocampal hernia may not be 

identified because of brain softening (encephalomalacia) around the hippocampus, but Duret 

hemorrhage in the brainstem as a sign of advanced descending transtentorial herniation can be 

used as an indicator of fatally severe high intracranial pressure (Graham et al., 1987; Parizel et 

al., 2002). In early deaths (survival time of 12 h–3 days), cases without Duret hemorrhage, 

irrespective of craniotomy, as well as those with Duret hemorrhage without depression 

craniotomy had increased glial bFGF positivity in the parietal cortex and white matter as well 

as the hippocampus, without significant glial loss; however, GFAP positivity in parietal white 

matter began to decrease in cases with the sign of brain compression (Fig. 1) (Wang et al., 

2012b). The up-regulation of bFGF in these cases may reflect the self-protective responses of 

the brain after brain injury. Furthermore, the bFGF may be involved in the anti-apoptosis 

pathways; exogenous application of bFGF could prevent apoptosis (Ay et al., 2001; Tamatani 

et al., 1998). In these early death cases, mostly involving subdural hemorrhage/hematoma 

(SDH), high glial bFGF positivity accompanied by low neuronal ssDNA expression is 

consistent with the function of endogenous bFGF as an anti-apoptosis factor in traumatized 

brains (Wang et al., 2011a); self-protective activity in the cerebrum is maintained despite a fatal 

outcome, even in patients with Duret hemorrhage as a sign of fatal brainstem compression. In 

patients without such a brain compression sign, death may be attributed to overall brain 

damage without brain swelling, accompanied by SDH (Graham et al., 1988). 

Early deaths with Duret hemorrhage and decompressive craniectomy (survival time of 12–

60 h), often involving massive contusions, presented quite different findings, involving glial 

and neuronal losses in the parietal cortex and/or hippocampus, accompanied by decreased 

glial GFAP positivity in the parietal white matter and hippocampus, with overall low glial 

bFGF positivity and high neuronal ssDNA positivity (Fig. 1) (Wang et al., 2012b). These 

findings suggest that the brain failed to generate sufficient bFGF to prevent apoptosis as a 

consequence of serious brain damage involving uncontrollable progressive brain edema and 

swelling, which developed fatal brainstem compression and Duret hemorrhage. 

In prolonged deaths (survival time >3 days), patients without Duret hemorrhage as a brain 

compression sign, irrespective of craniotomy, had increased glial bFGF positivity in the 

parietal cortex and white matter as well as the hippocampus without glial loss; however, 

neuronal loss without a significant increase of neuronal ssDNA positivity was detected in 

the parietal cortex, showing no neuronal loss in the hippocampus. This suggests gradual 

cortical neurodegeneration after trauma despite anti-apoptotic neuroprotective activity, as 

indicated by increased glial bFGF positivity, and different mechanisms of cell death 

involved in mechanical brain injury besides apoptosis (Castejon & Arismendi, 2006; Stoica & 

Faden, 2010). The fatal complication of secondary pneumonia was more frequent in these 

cases than in deaths with Duret hemorrhage; secondary complications may play an 



Immunohistochemistry of Neuronal Apoptosis in Fatal Traumas:  
The Contribution of Forensic Molecular Pathology in Medical Science 255 

important role in patients without a brain compression sign. Prolonged deaths with Duret 

hemorrhage, however, showed advanced glial and neuronal losses in the parietal cortex and 

hippocampus, accompanied by decreased GFAP positivity in the parietal white matter and 

hippocampus, overall low glial bFGF positivity, and high neuronal ssDNA positivity in the 

parietal cortex and hippocampus, which were more evident than in the early deaths with 

Duret hemorrhage and decompressive craniectomy described above. These findings 

suggested fatal CNS dysfunction due to posttraumatic progressive deterioration of whole 

brain involving the hippocampus, lacking glial bFGF and GFAP activation for 

neuroprotection and repair, as a consequence of unimproved brain swelling. 

Of note, there were significantly different findings depending on the survival time in cases of 

brain compression, as mentioned above. Acute and subacute death cases (survival time <12 h) 

as well as early death cases without decompressive craniectomy had higher glial bFGF and 

GFAP, and lower neuronal ssDNA positivity without glial and neuronal losses, whereas glial 

and neuronal losses, accompanied by lower glial bFGF and GFAP, and higher neuronal 

ssDNA positivity, were evident in early death despite decompressive craniectomy and 

prolonged death, suggesting different pathologies and mechanisms of brain edema/swelling, 

depending on the time after brain injury (Wang et al., 2012b). In a classic concept, brain edema 

is divided into two types based on its pathogenesis (Klatzo, 1994; Unterberg et al., 2004): a) 

‘vasogenic (extracellular)’ edema due to BBB disruption, resulting in extracellular water 

accumulation, and b) ‘cytotoxic (intracellular)’ edema due to sustained intracellular water 

collection. However, brain edema after mechanical brain injury is considered to be a mixed 

form; vasogenic edema may be predominant in the acute phase, followed by prolonged 

cytotoxic edema (Barzo et al., 1997). In acute and subacute phases, the mechanical/physical 

impact on the brain may injure blood vessels with subsequent disruption of endothelial 

membranes (Hellal et al., 2004) and minor damage to astrocytes, leading to BBB opening. 

Thereafter, in longer survival cases, increased intracranial pressure may be involved with 

diffuse cytotoxic brain edema (Marmarou et al., 2000; Unterberg et al., 2004), in which glial 

swelling is a major mediator (Kimelberg, 1995). The activation of glial bFGF in acute and 

subacute death cases and decreased glial GFAP positivity in longer survival cases with brain 

swelling suggest a self-protective response to maintain BBB function in the early phase after 

mechanical brain injury and the structural damage of astrocytes caused by cytotoxic edema, 

respectively. Furthermore, astrocyte damage can in turn deteriorate the extracellular 

microenvironment (e.g. persistent increase of extracellular glutamate levels), which causes 

both glial and neuronal damage (Barbeito et al., 2004; Matute et al., 2006). 

To summarize, characteristic immunohistochemical findings were detected with regard to the 

influence of cerebral compression and survival time in mechanical brain injury (Table 1) 

(Wang et al., 2012b). Peracute deaths with severe open head injury without brain swelling 

presented with glial injury in the parietal white matter. Other fatalities without a brain 

compression sign did not show a significant loss of glial cells; however, glial injury in the 

parietal white matter was seen during a survival time of <12 h, while glial responses involving 

bFGF positivity were detected overall after 12 h–3-day survival, and delayed neuronal loss 
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without an increase of neuronal ssDNA positivity was seen after 3 days at the time of death, 

mostly due to complications. Fatalities with signs of brain swelling and compression showed 

gradual losses of glial cells and neurons with an early increase of glial bFGF positivity in the 

parietal cerebral cortex, which was followed by an increase of glial bFGF positivity in the 

parietal white matter and hippocampus, and final decreases of glial bFGF and GFAP positivity 

with increased neuronal ssDNA positivity in the parietal lobe and hippocampus, suggesting 

the involvement of neuronal apoptosis in progressive brain damage after injury. Such findings 

were detected earlier in death despite decompression craniotomy. These observations 

suggested different mechanisms of whole brain damage in the death process, depending on 

the severity of brain compression. ssDNA, bFGF and GFAP immunohistochemistry is useful to 

investigate such different death processes after brain injury with regard to the survival time. 

These findings may also contribute to wound timing when the pathology of the primary injury 

involving brain contusion and hematoma is considered. 

4. Cerebral ischemia and hypoxia/asphyxia 

4.1. General considerations 

Ischemia implies a local loss of blood supply due to arterial occlusion/disruption or 

vasoconstriction, or as part of systemic circulatory insufficiency or blood loss, resulting in 

a lack of oxygen (ischemic hypoxia), while other causes are also involved in hypoxia 

(oxygen deficiency), for which ischemic hypoxia is the simplest model (Table 2). Brain 

ischemia and hypoxia are common consequences of trauma or disease involving severe 

cardiac and peripheral vascular injury; the brain is more susceptible to ischemia/hypoxia 

than other viscera. Asphyxia in the forensic context implies systemic hypoxia associated 

with carbon dioxide retention due to a mechanical insult, causing acidosis, which 

aggravates tissue damage involving the brain; however, a lack of atmospheric oxygen 

(suffocation) is also included. Susceptibility of neurons in the brain to oxygen deficiency 

depends on the vasculature and the vulnerability of individual neurons; ischemic hypoxia 

first affects the watershed/arterial border zone of the frontal gyri, the globus pallidus, the 

Ammon horn (hippocampus), and the cerebral cortex (Oehmichen et al., 2006). These site-

dependent susceptibilities of the brain to ischemia/hypoxia present with various 

pathologies of neurons and glial cells following cardiac arrest and asphyxia, depending 

on the survival time. 

4.2. Cerebral ischemia 

It is known that transient cerebral ischemia induces neuronal apoptosis (Chan, 2004); 

however, the usual feature of global ischemia involves neuronal necrosis in the cerebral 

cortex (watershed/arterial border zone of the frontal gyri), the globus pallidus, the 

hippocampus and the celebellar Purkinje cells. Immunohistochemistry detected no evident 

changes of the brain in sudden death due to acute heart attack (simple cerebral ischemia); 

however, prolonged deaths under intensive medical care, possibly involving reperfusion, 
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showed higher parietal glial bFGF positivity and neuronal loss with low ssDNA positivity, 

indicating incomplete necrosis or selective neuronal necrosis without positive evidence of 

apoptosis (Table 3) (Wang et al., 2011a). 

 

I Hypoxia: 1. Ischemic hypoxia – diminished blood supply 

  2. Hypoxic hypoxia – reduced blood oxygenation in the lung 

  3. Others: e.g. anemic, stagnant, oxygen affinity and histotoxic hypoxia 

II Asphyxia: 1. Neck compression – hanging and ligature/manual strangulation 

  2. Smothering – obstruction of the airway orifices (nose and mouth) 

  3. Choking – foreign body in the airway 

  4. Suffocation – lack of atmospheric oxygen 

Table 2. Major causes of hypoxia and asphyxia in the forensic context 

4.3. Cerebral hypoxia – Asphyxia 

The classification of asphyxia in the forensic context is not uniform (Byard, 2011; 

Sauvageau & Boghossian, 2010). From a practical point of view, however, the causes of 

mechanical asphyxia can grossly be divided into types with and without neck 

compression; the former (strangulation) involves lethal factors including brain 

ischemia/congestion due to closure of the blood vessels and/or air passages of the neck, 

whereas the latter (choking and smothering) causes hypoxia due to obstruction of the air 

passages. In addition, neurogenic cardiac suppression may be involved in both types 

(Oehmichen et al., 2006). The diagnosis of mechanical asphyxia as a cause of death is one 

of the most difficult tasks in forensic pathology, especially in cases lacking significant 

pathological evidence, even when ‘classic signs of asphyxia’ are apparent; for example, a 

very careful examination is needed to discriminate between smothering and sudden 

cardiac attack in cases without bruises or abrasions around the nose and mouth. The 

diagnosis of choking may also be obstructed when a foreign body has been removed in 

resuscitation measures. Furthermore, it is difficult to determine whether a food bolus in 

the air passages was the cause of death or a result of agonal or postmortem spillage; 

therefore, various procedures have been developed to detect and explain the 

pathophysiology of asphyxial death (Ishida et al., 2002; Zhu et al., 2000). In prolonged 

death cases, however, it is difficult to differentiate asphyxia from heart attack. With 

respect to this, immunohistochemistry of the brain detected no specific findings in acute 

asphyxial death, compared with sudden cardiac death; however, prolonged asphyxial 

death showed lower parietal glial GFAP positivity and neuronal loss with increased 

ssDNA positivity as a sign of apoptosis following advanced brain hypoxia, which was 

usually not detected in cardiac death (Table 3) (Wang et al., 2011a). 
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Traumatic insult Acute/subacute death Prolonged death

 

Asphyxia Poor glial and neuronal changes in

acute death 

Low parietal glial bFGF positivity 

and neuronal loss with high 

ssDNA positivity 

 

Fire fatality 

   Burns High parietal neuronal ssDNA

Positivity 

Parietal neuronal loss and 

increased glial cells with 

increased cortical and white 

matter bFGF positivity, and higher 

cortical GFAP and lower white 

matter GFAP positivity; overall 

low neuronal ssDNA positivity 

 

   CO intoxication High parietal neuronal ssDNA

Positivity 

Parietal neuronal loss without 

glial activation; overall low glial 

bFGF and GFAP positivities; high 

neuronal ssDNA positivity 

 

CO intoxication High neuronal ssDNA positivity in

the pallidum 

 

Drug abuse High neuronal ssDNA positivity in

the cerebral cortex, pallidum and 

midbrain substantia nigra 

 

Hypothermia (cold 

exposure) 

 

Increased glial bFGF positivity in

the cerebral cortex and white 

matter, and high S100β positivity 

in the cerebral cortex 

 

Hyperthermia 

(heatstroke) 

Low glial GFAP and S100β 

positivities in the white matter, and 

high neuronal ssDNA positivity in 

the cerebral cortex and 

hippocampus, with high glial bFGF 

and S100β positivities in 

the cerebral cortex 

 

Cardiac attack Poor glial and neuronal changes in

acute death 

Increased parietal glial bFGF 

positivity and neuronal loss with 

low ssDNA positivity 

 

CO, carbon monoxide; ssDNA, single-stranded DNA, bFGF, basic fibroblast growth factor; GFAP, glial fibrillary 

acidic protein 

Table 3. Immunohistochemical findings of apoptosis-related biomarkers in non-injury traumas with 

regard to the survival time 
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5. Intoxication 

5.1. General considerations 

Numerous chemical substances are involved in accidental, suicidal and even homicidal 

intoxication; it is a very difficult task to screen and identify individual intoxication in 

forensic and clinical routine work, especially in cases where anamnesis or circumstantial 

evidence is obscure or absent, since intoxication often presents with non-specific signs and 

symptoms, or poor morphological findings. It is also important for forensic pathologists to 

discriminate other insults as the cause of death or contributory factor even when drugs or 

poisons are detected. Previous studies showed systemic deterioration in fatal intoxication, 

involving CNS, using biochemical markers (Maeda et al., 2011). Some drugs and poisons 

primarily affect the nervous system, and secondary brain damage is almost inevitable in any 

kind of intoxication; however, CO intoxication and drug abuse are most frequent in forensic 

routine work. 

5.2. Carbon monoxide 

The histo-/cytotoxicity of CO is due to its high affinity to iron-containing structures such as 

hemoglobin and myoglobin, as well as to specific sites of the brain, including the globus 

pallidus and the midbrain substantia nigra, which is different from cyanide, sulfide and azide 

(Knight & Saukko, 2004; Oehmichen et al., 2006). CO also depresses myocardial function, 

resulting in severe hypotension and subsequent global cerebral ischemia and hypoxia. 

Bilateral necrosis of the globus pallidus and the pars reticulata of the midbrain substatia nigra 

are known as non-specific alterations (Oehmichen et al., 2006); however, neuronal apoptosis in 

the pallidum has been suggested as an early change due to CO intoxication in an animal 

experiment (Piantadosi et al., 1997). With respect to this, immunohistochemistry of ssDNA 

demonstrated high positivity as a sign of apoptosis in the pallidum of the human brain in fatal 

CO intoxication (Table 3) (Michiue et al., 2008; Wang et al., 2011a). Similar findings were 

detected in acute and delayed fire fatalities having a fatal level of blood carboxyhemoglobin 

(COHb) saturation, different from those with lower COHb level, as described below. These 

findings indicate the specific neurotoxicity of CO to the pallidum. 

5.3. Drug abuse 

A variety of psychostimulants, narcotics and hallucinogens are involved in drug abuse, which 

results in brain damage and functional impairment. Among these drugs, animal experiments 

have shown that amphetamine and its derivatives, such as methamphetamine and ecstasy, 

induce apoptosis of cortical and striatal neurons, and cerebellar granular cells via various 

pathways (Cunha-Oliveira et al., 2008). Neuronal apoptosis has also been suggested with 

cocaine and opiates (Cunha-Oliveira et al., 2008). In forensic autopsy materials, 

immunohistochemistry also detected high neuronal ssDNA positivity as a sign of apoptosis in 

the cerebral cortex, pallidum and substantia nigra in fatal abuse of sedative hypnotics as well 

as methamphetamine, suggesting selective neuronal damage (Table 3) (Michiue et al., 2008). 
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5.4. Others 

Very little knowledge is available with regard to the contribution of apoptosis to the 

neurotoxicity of other drugs and poisons at present; however, drug-related hyperthermia 

may induce neuronal apoptosis in a similar manner to that in heatstroke, described below. 

Various chemicals that trigger oxidative stress can induce neuronal apoptosis. Animal 

experiments showed that organophosphorus compounds caused acute necrosis of neurons 

in the brain at toxic doses, but induced apoptotic neuronal death at sublethal doses (Abou-

Donia, 2003). 

6. Fire fatality 

6.1. General considerations 

Fire fatality involves complex causes of death; major lethal factors involved in fire death are 

burns and inhalation of toxic gases, including CO and cyanide, which are produced by 

combustion, accompanied by smoke and ambient oxygen depletion (Stefanidou et al., 2008). 

Despite recent advances in clinical burn and CO intoxication care measures (Ipaktchi & 

Arbabi, 2006; Prockop & Chichkova, 2007), most fire victims are found dead, and in those 

found alive, severe burns or brain damage from CO intoxication can cause death despite 

intensive clinical care. In such cases, it is necessary to clarify the cause and process of death 

in a fire. In forensic casework, however, it may be difficult to determine the predominant 

cause of death due to fire or to exclude other causes of death, for which acute heart attack 

and asphyxiation are of particular interest, especially when clinical toxicological data are not 

available in cases of prolonged death without severe burns. In this respect, previous studies 

showed pulmonary pathology, and systemic hematological and biochemical disorders due 

to burns (Zhu et al., 2001a; Zhu et al., 2001b), while brain immunohistochemistry suggested 

specific findings of CO intoxication (Michiue et al., 2008). Thus, immunohistochemical 

markers in the brain that are involved in neuronal damage, apoptosis, degeneration and 

repair, including ssDNA, GFAP and bFGF, are useful to detect the specific neuropathology 

of CO intoxication for differentiation from fatal burns as well as other fatal insults. 

6.2. Burns 

Severe burns in a fire cause systemic disorders involving hypovolemic shock accompanied 

by hypoalbuminemia (burn shock), and hemolysis and skeletal muscle injury due to deep 

burns, followed by systemic inflammatory responses and hypoxia (Jeschke et al., 2008), 

which are usually detected by pathomorphology and biochemistry in postmortem 

investigation (Bohnert et al., 2010; Quan et al., 2009; Zhu et al., 2001b). Macro- and 

microscopic signs of vitality in fire death include soot deposits and thermal injury in the 

upper airways, but these findings may partly be sparse or even absent, especially in 

peracute deaths, making the diagnosis difficult (Bohnert et al., 2003). Recent 

immunohistochemical studies of the respiratory tract and lungs demonstrated intravital 

reactions in fatal burns (Boehm et al., 2010; Bohnert et al., 2010; Marschall et al., 2006); 
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however, the pathophysiological process leading to death is still unclear. In particular, the 

influences of toxic gases usually do not leave significant pathology that is detectable after 

death, except that bilateral pallidum necrosis is occasionally seen in CO intoxication. With 

respect to this, previous studies detected specific neuronal damage in the pallidum due to 

CO intoxication by immunohistochemistry (Michiue et al., 2008; Piantadosi et al., 1997); 

immunohistochemical markers in the brain may be used to differentiate pathological 

conditions of the neurons and glial cells due to ischemic, metabolic, toxic and traumatic 

brain injury (Chen et al., 1997; Piantadosi et al., 1997; Zhang et al., 2010). 

In acute fire fatality, immunohistochemistry demonstrated higher neuronal ssDNA 

immunopositivity in the parietal cortex than in acute cardiac and asphyxial deaths, 

suggesting the induction of neuronal apoptosis, irrespective of the blood COHb level; 

however, such findings were not seen in cases of postmortem burns (Wang et al., 2011a). 

These suggest that brain damage due to a fire is not simply caused by ischemia or hypoxia, 

but also involves cytotoxic factors, including massive thermal tissue injury and hemolysis, 

which can induce systemic oxidative stress involving the brain (Gatson et al., 2009). 

However, neuronal ssDNA immunopositivity in the pallidum was lower in cases of a low 

level of blood COHb saturation than in those with a fatal level of blood COHb saturation 

(>60%). Therefore, increased neuronal ssDNA immunopositivity in the parietal cortex and 

pallidum can be used as a vitality finding in acute fire deaths, with consideration of other 

pathological findings; these findings can be used to interpret death due to burns or CO 

intoxication in a fire. Furthermore, the topographical distribution of neuronal ssDNA 

immunopositivity in the brain may be helpful for determining the immediate cause of death 

in cases of other potentially fatal traumas or diseases, e.g. strangulation, drug abuse and 

acute cardiac attack. However, higher neuronal ssDNA immunopositivity was sporadically 

detected in other cases, suggesting the partial contribution of unspecific neuronal damage 

due to reperfusion, possibly involved with cardiopulmonary resuscitation measures (Li et 

al., 2010); this should be carefully considered when determining the cause of death, 

especially in cases where the vitality findings are sparse. 

In prolonged deaths, the macro- and microscopic signs of vitality in fire death, described 

above, may become obscure, making the pathological diagnosis quite difficult. In 

immunohistochemical study of the brain, however, there were significant differences 

between fatal burns and CO intoxication in prolonged fire deaths under critical clinical care 

(Fig. 2). Neuronal loss was seen in those with burns and CO intoxication as well as in 

patients with a fatal ischemic heart attack and prolonged asphyxial deaths, while glial cells 

were increased in burns and heart attack; the glial cell number was larger in fatality due to 

burns than in CO intoxication and asphyxiation, regardless of temporary cardiopulmonary 

arrest (CPA) after insult, suggesting glial activation. The increase in glial cells in cases of 

fatal burns was accompanied by higher glial bFGF immunopositivity in the parietal cortex 

and white matter, and higher and lower glial GFAP immunopositivity in the cortex and 

white matter, respectively, showing low neuronal ssDNA immunopositivity. The above-

mentioned findings differed from those in prolonged death due to heart attack or 

mechanical asphyxiation involving simple cerebral ischemia or hypoxia, regardless of 
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temporary CPA after insult. These observations suggest neuronal loss accompanied by 

active glial responses after severe burns regardless of CPA after insult. Lower glial GFAP 

immunopositivity in the white matter in prolonged deaths due to burns may be related to 

BBB damage, as discussed below. 

Both in vitro and in vivo, bFGF has been well established as a neuroprotective and 

neurotrophic factor (Dietrich et al., 1996; Louis et al., 1993). Severe trauma, including burn 

injury, can result in whole body tissue damage, for which an important early sign is 

systemic inflammatory response syndrome (SIRS), which may lead to multiple organ 

dysfunction syndrome (MODS). The early appearance of inflammatory cytokines in the 

systemic circulation has been demonstrated following thermal injury both in humans 

(Cannon et al., 1992) and animals (Kataranovski et al., 1999). Systemic inflammatory 

responses also develop in the brain (Reyes et al., 2006), which may induce, enhance or 

accompany astrogliosis (Balasingam et al., 1994). Thus, the up-regulation of bFGF and GFAP 

as well as increased numbers of glial cells in the parietal cerebral cortex in prolonged death 

due to burns may reflect self-protective responses of the brain. In acute death, such glial 

responses may not be apparent due to the shorter survival time. Furthermore, bFGF may be 

involved in anti-apoptotic pathways; the exogenous application of bFGF prevented 

apoptosis in both in vitro and in vivo studies (Ay et al., 2001; Tamatani et al., 1998). High 

cerebral cortex glial bFGF immunopositivity accompanied by low neuronal ssDNA 

expression suggests that endogenous bFGF is an anti-apoptosis factor in the brain. 

The BBB between systemic circulation and the cerebral parenchyma is composed of 

interendothelial tight junctions, basal lamina and perivascular astrocytes, and may also be 

damaged by severe burns; thus, BBB permeability can be increased, causing advanced brain 

edema (Reyes et al., 2009). Low glial GFAP immunopositivity in the white matter in 

prolonged deaths due to severe burns suggests astrocyte damage related to BBB 

dysfunction. In addition, systemic inflammatory responses followed by hyperthermia may 

also induce BBB dysfunction, which is characterized by vasogenic brain edema (Sharma, 

2006). Further investigation is needed to clarify the mechanism of BBB dysfunction in 

prolonged deaths due to severe burns. Meanwhile, high bFGF positivity in the white matter, 

which was detected in prolonged deaths due to severe burns, suggests that the self-

protective system involving bFGF is activated to maintain BBB function (Deguchi et al., 

2002); the damaged brain does not lose its self-protective capacity after severe burns. 

To summarize, typical pathologies in the brain after fatal burns are: 1) in acute deaths, 

increased neuronal ssDNA immunopositivity in the cerebral cortex, irrespective of the 

severity of the burns and CO intoxication; 2) neuronal loss in prolonged death; 3) increase in 

glial cells in prolonged death, accompanied by higher glial bFGF immunopositivity in the 

cerebral cortex and white matter, higher and lower glial GFAP immunopositivity in the 

cortex and white matter, respectively, with low neuronal ssDNA immunopositivity (Table 3) 

(Wang et al., 2011a). These findings suggest that: 1) increased neuronal ssDNA positivity, 

together with other pathological findings, can be used as a vitality finding in acute fire 

death; 2) the brain retained self-protective response capacity in fire victims who died due to 
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severe burns. However, progressive systemic deterioration after severe burns, accompanied 

by preexisting disorders or physical predispositions, can cause fatality due to respiratory 

failure, hypoxic brain damage, hypovolemic shock and secondary infection involving sepsis, 

even under critical life support care (Barber et al., 2007; Williams et al., 2009). These death 

processes should be assessed based on individual evidence. 

6.3. Toxic gases 

A spectrum of toxic or asphyxiating gases produced by combustion, including CO, cyanide 

and carbon dioxide, can contribute to death in a fire. CO has histo-/cytotoxicity due to its 

high affinity to specific sites of the brain, including the globus pallidus and the midbrain 

substantia nigra, but cyanide did not have such neurotoxicity (Oehmichen et al., 2006). In 

fire fatality with a fatal level of blood COHb saturation (>60%), immunohistochemistry 

detected higher neuronal ssDNA immunopositivity in the pallidum than in cases of a lower 

COHb level (<60%), as described above, suggesting CO-specific neuronal damage (Michiue 

et al., 2008; Tofighi et al., 2006; Wang et al., 2011a). Cyanide did not appear to contribute to 

neuronal ssDNA immunopositivity. 

In prolonged deaths, neuron and glial cell number was decreased in CO intoxication as well 

as asphyxiation, regardless of temporary CPA after insult, suggesting reduced glial 

reactivity due to CO intoxication and asphyxiation. Glial bFGF and GFAP immunopositivity 

was low at each site, but neuronal ssDNA immunopositivity was high in prolonged deaths 

due to CO intoxication (Fig. 2) (Wang et al., 2011a). These findings differed from those in 

prolonged death due to heart attack or mechanical asphyxiation involving simple cerebral 

ischemia or hypoxia regardless of temporary CPA after insult. These observations suggest 

neuronal loss and progressive apoptosis without glial responses after CO intoxication. 

When the crucial functions of glial bFGF and GFAP in the self-protective responses of the 

brain are considered, high neuronal ssDNA immunopositivity accompanied by low glial 

bFGF and GFAP expressions in prolonged deaths due to CO intoxication, as indicated 

above, suggests that the brain has failed to generate sufficient bFGF to prevent apoptosis, 

which may indicate serious damage to the brain due to CO intoxication; CO can exert direct 

damage on cells by inducing apoptosis (Tofighi et al., 2006). Low bFGF and GFAP positivity 

in the white matter in prolonged death due to CO intoxication suggests delayed effects of 

CO, characterized by bilateral, confluent lesions that reflect diffuse demyelination (Lo et al., 

2007). Such injury may also be caused by slowly progressive cytotoxic edema related to the 

direct toxic effect of CO. These findings suggest persistent and irreversible damage to the 

brain white matter due to CO intoxication. Similar findings suggesting damage to the BBB in 

the white matter were partly seen in prolonged asphyxial deaths, but were milder in 

ischemic heart attack. Such white matter damage may be responsible for delayed CNS 

deterioration due to CO intoxication and asphyxiation (Lo et al., 2007; Strackx et al., 2008). 

To summarize, typical pathologies in the brain of fire fatality with a fatal level of blood 

COHb saturation are: 1) in acute deaths, increased neuronal ssDNA immunopositivity in the 

cerebral cortex, irrespective of the severity of CO intoxication, and higher neuronal ssDNA 
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positivity in the pallidum due to CO intoxication; 2) neuronal loss in prolonged death; 3) 

overall low glial bFGF and GFAP immunopositivities with high neuronal ssDNA 

immunopositivity in prolonged death due to CO intoxication (Table 3) (Wang et al., 2011a). 

These findings suggest neuronal loss and progressive apoptosis without glial responses 

after CO intoxication; the brain sustained serious damage involving the loss of self-

protective capacity in CO intoxication, thus causing delayed death. 

 

Figure 2. Immunohistochemistry of single-stranded DNA (ssDNA), basic fibroblast growth factor 

(bFGF) and glial fibrillary acidic protein (GFAP) in the parietal cortex of prolonged fire death cases: 1) a 

case of fatal burns and low blood cardoxyhemoglobin (COHb) saturation (72 h survival), showing low 

ssDNA (a), and high bFGF (b) and GFAP (c) positivity; 2) a case of a fatal level of blood COHb 

saturation (48 h survival), showing high ssDNA (d), and low bFGF (e) and GFAP (f) positivity 

7. Extreme ambient temperature 

7.1. General considerations 

In forensic practice, the diagnosis of death due to extreme environmental temperatures 

involving hypothermia (cold exposure) and hyperthermia (heat stroke) is often difficult 

because of poor or nonspecific gross and microscopic findings, although hypothermia may 

present with typical pathologies, including frost erythema and hemorrhagic gastric erosions 

(Wischnewski spots) (Green et al., 2001; Nixdorf-Miller et al., 2006; Schuliar et al., 2001; 

Turk, 2010). Besides diagnosis by exclusion, histology, immunohistochemistry, biochemistry 

and molecular biology can be used for detailed investigation of functional deaths (Madea & 
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Saukko, 2010; Madea et al., 2010); previous studies have suggested that postmortem 

biochemistry, immunohistochemistry and molecular biology can detect systemic functional 

alterations in these fatalities (Fineschi et al., 2005; Ishikawa et al., 2008; Jakubeniene et al., 

2009; Maeda et al., 2011; Yoshida et al., 2011). Immunohistochemistry of the brain using 

ssDNA, bFGF, GFAP and S100 can also demonstrate functional alterations in fatalities due 

to extreme ambient temperature, involving glial responses and neuronal apoptosis (Wang et 

al., 2012a). 

7.2. Hypothermia (Cold exposure) 

When the human body cannot compensate for heat loss in an extremely cold environment, 

the body temperature decreases progressively, resulting in cerebral and cardiorespiratory 

dysfunction, and finally fatal arrhythmia and asystole. Metabolic deterioration involves 

dehydration, acidosis, azotemia and enhanced fat metabolism with ketonemia/ketouria, but 

myocardial and brain tissue damage are usually mild (Maeda et al., 2011). 

In immunohistochemcal investigation of the brain, hypothermia cases showed higher glial 

bFGF immunopositivity in the cerebral cortex and white matter, and higher S100β 

immunopositivity in the cerebral cortex with a lower CSF S100β concentration, without glial 

or neuronal loss (Fig. 3 and Table 3) (Wang et al., 2012a). The up-regulation of glial bFGF 

and S100β in the cerebral cortex suggests the self-protective responses of the brain and 

possible neurotrophic properties, respectively (Gomide & Chadi, 1999). Furthermore, since 

bFGF may be involved in the anti-apoptotic pathways (Ay et al., 2001; Tamatani et al., 1998), 

high glial bFGF immunopositivity accompanied by low neuronal ssDNA expression in 

hypothermia cases can indicate the activation of endogenous bFGF as an anti-apoptosis 

factor in the brain, which is similar to previous findings in prolonged fire fatality due to 

burns (Wang et al., 2011a). As above, the brain may retain self-protective response capacity 

without marked glial or neuronal damage in fatal hypothermia. The mechanism of death 

may mainly involve cardiac dysfunction, including ventricular fibrillation or asystole, 

resulting from myocardial ischemia, hypoxia, electrolyte abnormalities and elevated 

catecholamine levels (Turk, 2010), although there have been few postmortem investigations 

(Ishikawa et al., 2010; Wang et al., 2011b). To summarize, fatal hypothermia cases showed 

neuroprotective glial responses without marked neuronal or glial damage, which can serve 

as a condition for possible recovery and survival by means of adequate resuscitation and 

life-supporting measures. 

7.3. Hyperthermia (Heatstroke) 

A high ambient temperature in combination with predisposing factors and individual 

susceptibility ultimately impairs thermoregulation, and the body temperature rises 

precipitously; the main pathophysiology of heatstroke consists of hyperpyrexia involving 

impaired thermoregulation, accompanied by dehydration and profound systemic 

hypoxia, which is followed by further complications of pulmonary edema, renal tubular 

necrosis, adrenal hemorrhage, hepatic necrosis, myocardial necrosis, rhabdomyolysis, 
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systemic inflammatory response syndrome (SIRS), disseminated intravascular coagulation 

(DIC), and ultimately MODS. Clinical diagnosis of heatstroke and related syndromes is 

usually not difficult, considering hyperpyrexia and laboratory findings, and excluding 

other causes of hyperpyrexia; however, postmortem diagnosis is obstructed by a lack of 

specific findings. The diagnosis should be established by collecting pathological findings 

compatible with heatstroke, related to the predisposition, drug abuse, and physical abuse 

or neglect, and to differentiate other insults, in combination with toxicology and 

biochemistry (Maeda et al., 2011). Circumstantial evidence may also be considered when 

available. 

In immunohistochemcal investigation of the brain, characteristic findings in 

hyperthermia cases were lower glial GFAP and S100β immunopositivity in the white 

matter, and higher neuronal ssDNA immunopositivity in the cerebral cortex and 

hippocampus, accompanied by high glial bFGF and S100β immunopositivity in the 

cerebral cortex, without glial or neuronal loss (Fig. 3 and Table 3) (Wang et al., 2012a). 

Survival in hospital for days under a clinical diagnosis of heatstroke showed similar 

findings. Increased cortical glial bFGF and S100β may indicate self-protective responses 

of the brain, as described above for hypothermia; however, these findings were milder in 

hyperthermia than in hypothermia, involving neuronal and glial damage described 

below, and may also be related to the initiation of inflammatory processes involved in 

the systemic inflammatory response leading to MODS, in which encephalopathy 

predominates (Bouchama & Knochel, 2002). 

Hyperthermia can exert direct damage on tissue cells by inducing apoptosis (Basile et al., 

2008; Vogel et al., 1997); increased neuronal ssDNA expression can be used as evidence of 

brain dysfunction involving apoptosis as part of MODS from hyperthermia. These 

observations suggest diffuse neuronal apoptosis despite initiation of neuroprotective 

cortical astrocyte reactions in hyperthermia. Furthermore, the BBB, composed of endothelial 

tight junctions, basal lamina and perivascular astrocytes, may be damaged by hyperthermia, 

characterized by vasogenic brain edema (Sharma, 2006; Sharma & Hoopes, 2003). Low glial 

GFAP and S100β immunopositivity in the white matter in hyperthermia cases suggests that 

astrocyte damage may be involved in BBB dysfunction. In addition, low bFGF 

immunopositivity in the white matter in hyperthermia cases indicates that white matter 

loses the capacity for a compensatory response. 

These observations suggest characteristic brain responses in the death process due to an 

extreme environmental temperature; hyperthermia as well as hypothermia involved higher 

glial bFGF positivity in the cerebral cortex, indicating activation of neuroprotective 

processes. To summarize, fatal hyperthermia cases showed diffuse neuronal apoptosis 

despite the initiation of neuroprotective cortical astrocyte responses, accompanied by glial 

damage in the white matter; diffuse neuronal and glial deterioration in the brain may lead to 

a fatal outcome even under critical medical care. Further investigation is needed to clarify 

the underlying mechanisms. 
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Figure 3. Immunohistochemistry of single-stranded DNA (ssDNA), basic fibroblast growth factor 

(bFGF) and glial fibrillary acidic protein (GFAP) in the parietal cerebral cortex in fatalities due to 

extreme ambient temperatures: 1) hypothermia (cold exposure), showing low ssDNA (a) and high bFGF 

(b) positivity with unaffected GFAP positivity (c); 2) hyperthermia (heatstroke), showing high ssDNA 

(d) and bFGF (e) positivity with unaffected GFAP positivity (f) 

8. Limitations and outlook 

Different from animal experimentation, forensic and clinical materials are not homogenous 

owing to the complexity of insults and the consequent brain damage, varied susceptibility of 

subjects, and intensive clinical intervention. In addition, forensic autopsy materials partly 

include cases where the estimated survival time and/or postmortem interval depend on 

obscure circumstantial evidence. Therefore, it is difficult to elucidate the time course of 

cellular responses after individual specified insults in detail. It is important, however, to 

collect postmortem human data involving the whole brain pathology, which are not 

clinically or experimentally available. Further investigation is needed, including other 

markers involved in apoptotic pathways as well as in water homeostasis, BBB integrity and 

inflammatory responses, combined with the systematic analysis of related gene expressions. 

9. Conclusion 

A serial study of forensic autopsy cases suggested the involvement of neuronal apoptosis at 

specific sites of the brain, possibly contributing to CNS damage and dysfunction, which was 

characteristic of traumatic insults, including progressive or delayed brain damage due to 
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mechanical head injury, involving brain swelling and compression, as well as due to 

asphyxia, CO intoxication, fire fatality, and hyperthermia (heatstroke). Molecular 

pathological investigation of neuronal apoptosis and related biological responses in forensic 

materials can provide specific information in medical science for understanding the death 

process after traumatic insults. These studies will contribute not only in forensic casework 

but also to the clinical management of critically traumatized patients. 
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