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1. Introduction 

Autoantibodies are characteristic features of autoimmune diseases (Table 1). In organ or 

tissue-specific autoimmune diseases, autoantibodies against cell-surface molecules are 

usually observed. These antibodies (Abs) stimulate or damage the target cells and cause 

organ- or tissue-specific diseases. In systemic autoimmune diseases, in addition to anti-cell-

surface molecule Abs, Abs against intracellular molecules are frequently observed although 

B cell tolerance to intracellular molecules is strictly enforced in normal subjects. Some 

indicate high disease specificity with a high incidence rate. Therefore, such Abs may be 

closely associated with development of the disease as well as with disease activity. 

However, it is not known how or why Abs against intracellular molecules are generated. 

2. Role of cell death in the generation of anti-intracellular molecule 

antibodies 

Cell death, including apoptosis and necrosis, represents a possible source of exposure of 

intracellular molecules outside the cell. For example, low – intermediate doses (< 35 mJ/cm2) 

of ultraviolet B (UVB) induce apoptosis of keratinocytes, resulting in translocation of native 

DNA, Ku, and Sm to the cytoplasmic membrane, while a high dose (80 mJ/cm2) of UVB 

induces necrosis, resulting in discharge of all of the cell compartments [1]. Intracellular 

molecules are exposed on the surface blebs of apoptotic cells (apoptotic blebs) [2]. Apoptotic 

blebs contain fragmented endoplasmic reticulum (ER), ribosomes, ribonucleoprotein, 

nucleosomal DNA, Ro, La, small nuclear ribonucleoproteins, etc. Autoantigens receive 

various epigenetic modifications (acetylation, methylation, phosphorylation, 

dephosphorylation, ADP-ribosylation, ubiquitination, oxidation, transglutamination, 

citrullination, SUMOylation, etc) during apoptotic cell death [3]. In the case of cytotoxic 

granule-mediated cell death, granzymes plays an important role in cleavage of autoantigens 

[4].  These epigenetic  modifications  may alter preexisting epitopes, expose cryptic epitopes,  
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Anti- Target molecule Disease

1. Organ or tissue-specific autoimmune diseases 

a. Anti-cell-surface molecules 

TSH receptor* TSH receptor Graves’ disease 

NMDA N-methyl-D-aspartate receptor Encephalitis 

GAD glutamic acid decarboxylase Diabetes mellitus type I 

Ach* Acetylcholine Myasthenia gravis 

myelin associated protein myelin Multiple sclerosis 

ganglioside ganglioside Neuropathy 

b. Anti-intracellular molecules 

mitochondria mitochondria PBC 

thyroid microsomal  thyroid microsomal Hashimoto’s thyroiditis 

thyroid peroxidase thyroid peroxidase Hashimoto’s thyroiditis 

thyroglobulin thyroglobulin Hashimoto’s thyroiditis 

2. Systemic autoimmune diseases 

a. Anti-cell-surface molecules 

PDGF receptor PDGF receptor Systemic sclerosis 

phospholipid* phospholipid APS 

b. Anti-intracellular molecules 

 dsDNA* dsDNA SLE 

 Sm Smith SLE 

 SS-B La/SS-B Sjögren’s syndrome 

 centromere centromere Systemic sclerosis 

 topoisomerase-I topoisomerase-I Systemic sclerosis 

 Jo-1 histidyl-tRNA synthetase DM 

 PR3-ANCA* proteinase 3 WG 

 MPO-ANCA* myeloperoxidase MPA, AGA 

TSH: thyroid stimulating hormone; PBC: Primary biliary cirrhosis; PDGF: Platelet-derived growth factor; APS: Anti-

phospholipid syndrome; dsDNA: double-stranded DNA; SLE: systemic lupus erythematosus; DM: dermatomyositis; 

WG: Wegener's granulomatosis; MPA: microscopic polyarteritis; AGA: allergic granulomatous angiitis (Churg–Strauss 

syndrome). 

*: The titer of the Ab is correlated with the disease activity in a proportion of patients. 

Table 1. Examples of autoantibodies. 

or form novel epitopes, and may contribute to bypassing tolerance to autoantigens [5]. 

Normally, apoptotic cells are quickly eliminated by professional phagocytes. Delay of 

apoptotic cell clearance not only increases the time of exposure of intracellular molecules to 

the immune system but also changes the degree of modification of these molecules, which 

alters their antigenicity. When clearance fails, apoptotic cells enter the stage of secondary 

necrosis. The ability to cause inflammation depends on the stage of cell death [6]. Damage-

associated molecular patterns (DAMPs), such as HMGB1, SAP130, etc., are released from 

late apoptotic/necrotic cells into the extracellular space [7-9]. DAMPs activate Toll-like 

receptors and act as intrinsic adjuvants, resulting in inflammation and initiation of the host 

immune system. Thus, delay of apoptotic cell clearance increases the risk of an autoimmune 

response. 



 
Cell Death and Anti-DNA Antibodies 51 

3. Abnormalities related to apoptosis in SLE 

There are many lupus autoantibodies that bind to autoantigens of apoptotic cells [10]. In 

SLE, defective clearance of apoptotic cells has been reported. As a result, high levels of 

circulating early apoptotic cells are found in SLE [11]. T-lymphocytes [12], 

macrophages/monocytes [13,14], neutrophils [15], and endothelial cells [16] are included 

among the increased numbers of apoptotic cells. Monocytes and granulocytes, which take 

up autoantibody remnants of secondary necrotic cell complex, secrete inflammatory 

cytokines in SLE [17]. These phenomena threaten self-tolerance and are likely involved in 

the production of lupus autoantibodies [18,19]. The reason for defective apoptotic cell 

clearance in SLE has yet to be elucidated. It has been suggested that the efficacy of clearance 

is affected by the cell death trigger, but there have been no reports related to SLE from this 

viewpoint [20]. Anti-class A scavenger receptor autoantibodies from patients with SLE 

impair the clearance of apoptotic debris by macrophages [21]. However, the mechanism of 

autoantibody production is not yet known. 

In SLE, the response to early apoptotic cells is also abnormal. Under normal conditions, 

macrophages secrete antiinflammatory cytokines (IL-10, TGF-, PGE2, etc.) to send “tolerate 

me” signals after ingestion of apoptotic cells [22]. Monocytes from healthy controls showed 

prominent TGF- secretion and minimal TNF- production, but monocytes from SLE patients 

show prominent TNF- production and diminished TGF- secretion [23]. The authors 

speculated that this abnormal response may be an intrinsic property of lupus monocytes. 

Recent studies have highlighted the role of neutrophils in the pathogenesis and manifestations 

of SLE [24]. NETosis is a process characterized by the formation of neutrophil extracellular 

traps (NETs) [25]. NETs become not only a source of intracellular molecules but also 

immunogens for lupus autoantibodies [26]. Low-density granulocytes (LDGs), an abnormal 

subset of neutrophils, were identified among the PBMCs derived from patients with SLE [27]. 

LDGs secrete type I interferons (INFs), have endothelial cytotoxicity, and have higher capacity 

to form NETs [28]. Degradation of NETs is impaired in patients with SLE [29]. NETs activate 

complement and deposited C1q inhibits NET degradation [30]. These phenomena increase 

NETs and may contribute to the production of autoantibodies, including anti-DNA Abs. 

It has recently been demonstrated that the source of intracellular molecules is microparticles 

(MPs), which are small membrane-bound vesicles [31]. MPs, which emerge from the cell 

membrane during cell activation and apoptosis, contain a variety of cellular components, 

including nucleic acids [32]. MPs become antigenic targets of anti-DNA Abs, form huge immune 

complexes in the plasma of patients with SLE, and induce complement activation [33,34]. 

4. Anti-dsDNA Abs 

4.1. Brief historical aspects of anti-dsDNA Abs 

SLE is characterized by the production of a variety of autoantibodies. Especially, anti-

dsDNA Abs are the most characteristic of SLE and contribute to the pathogenesis of lupus 
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nephritis. In general, anti-dsDNA Abs are specific for SLE and the anti-dsDNA Abs titer is 

closely correlated to the activity of lupus nephritis [35]. A proportion of anti-dsDNA Abs are 

directly involved in immune complex-mediated glomerulonephritis [36]. Thus, the trigger of 

anti-DNA response may be closely related to the pathogenesis of SLE. However, 

mammalian native dsDNA is not immunogenic, suggesting that DNA itself does not act as a 

triggering or driving antigen [37]. The origin of anti-DNA Abs is a long-standing enigma. 

Anti-dsDNA responses can be evoked by dsDNA with the aid of a carrier, such as the 27-

amino acid nucleic acid-binding Fus1 peptide [38], polyoma BK virus large T Ag [39], or 

DNaseI-dsDNA complex [40] which have been shown to induce production of anti-dsDNA 

Abs in mice, suggesting a possible role of excess amounts of DNA – protein complex in 

disruption of tolerance to DNA. Nucleosomes have been suggested as possible Ags 

responsible for triggering of anti-dsDNA Abs [41,42]. Crude nucleosomes or crude histones 

[41] have been shown to induce production of anti-dsDNA Abs in mice. Mononucleosome-

reactive Th clones augment the production of IgG autoantibodies to dsDNA, histones, and 

histone – DNA complex. However, immunization of SNF1 mice with pure 

mononucleosomes did not elicit production of IgG anti-dsDNA Abs [43]. HMGB1 – 

nucleosome complexes derived from apoptotic cells, but not HMGB1-free nucleosomes, 

elicited IgG anti-dsDNA Abs in BALB/c mice although their titer was not high, suggesting 

that adjuvants such as HMGB1 are necessary to break tolerance to dsDNA in non-

autoimmune mice [44]. 

Another possible mechanism is molecular mimicry. Some mouse or human monoclonal 

anti-DNA Abs have been shown to cross-react with non-nucleic acid self-Ags, such as 

extracellular matrix protein HP8 [45], heterogeneous nuclear ribonucleoprotein A2 [46], NR2 

glutamate receptor [47], -actinin [48,49], ribosomal protein S1 [50], and phospholipids, 

including cardiolipin [51]. However, it is not yet known whether these molecules can elicit 

anti-DNA responses. 

The peptide, DWEYSVWLSN, is recognized by the R4A mouse monoclonal anti-dsDNA Ab 

[52]. Immunization with this peptide elicited anti-dsDNA Ab production and caused 

deposition of IgG in glomeruli in normal mice [53]. These observations indicate that a non-

nucleic acid Ag can elicit production of anti-DNA Abs and cause renal disorder in normal 

animals. However, no proteins containing this peptide sequence have been reported to date. 

It should be noted that immunization with recombinant EBNA-1 protein elicited anti-

EBNA-1 Abs that cross-react with dsDNA, suggesting molecular mimicry between the viral 

antigen and dsDNA [54]. However, nephritogenicity of the anti-EBNA-1/dsDNA Abs has 

not been reported. 

4.2. Cross-reactive antigen of the O-81 human nephritogenic anti-DNA mAb 

We prepared human monoclonal anti-DNA Ab, O-81, which binds strongly to single-

stranded DNA (ssDNA) and moderately to dsDNA, and demonstrated that the O-81 

idiotype (Id) is distributed among IgG anti-DNA Abs of circulating immune complexes as 
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well as lupus glomerular deposits [55-58]. The intravenous infusion of IgG isotype anti-

DNA Abs expressing O-81 Id also caused glomerular IgG deposition in SCID mice [59]. The 

VH region of O-81 Ab contains many somatic mutations [60]. Similarly, the VH regions of 

O-81 Id-positive B cells in patients with SLE were shown to already contain somatic 

mutations [61]. These observations prompted us to explore the triggering Ags for human 

nephritogenic anti-DNA Abs using the O-81 Ab. 

 

Figure 1. The expression of Herp in peripheral blood mononuclear cells (PBMCs) or the cells in a 

cervical lymph node (LN) from a patient who developed SLE and had yet to receive treatment. 

[Methods] The cells were fixed in 50% acetone/50% methanol for 20 min at –20°C and 

blocked with 5% normal goat serum and 3% BSA in PBS overnight at 4°C. The cells were 

then incubated with HT2 mouse monoclonal IgG1 anti-Herp Ab or mouse IgG1 as an isotype 

control for 1 h at room temperature followed by incubation with FITC-conjugated goat 

F(ab') 2 anti-mouse IgG Ab (KPL, Gaithersburg, MD) for 1 h at room temperature [63]. 

We found that the O-81 Ab specifically cross-reacts with human homocysteine-induced 

endoplasmic reticulum protein (Herp) [62]. Anti-dsDNA Abs purified from the sera of SLE 

patients bound to Herp, and anti-Herp Abs purified from the sera of SLE bound to dsDNA 

[62]. The production of Herp is induced by endoplasmic reticulum (ER) stress. The PBLs 

from subjects in active SLE, especially at the time of onset or flare-up of the disease, tended 

to show Herp expression [62]. The expression of Herp was also observed in the lymph node 

of an untreated patient with active SLE, indicating that Herp can be exposed to the immune 

system in lymph nodes where Ag recognition occurs (Figure 1). 
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Excessive ER stress is known to induce apoptosis [64,65]. Herp can be exposed on apoptotic 

blebs of ER stress-induced apoptotic cells [62]. Many apoptotic cells expressing Herp were 

observed in the peripheral blood mononuclear cells (PBMCs) of patients with active SLE, 

but not normal control subjects [62]. This observation is compatible with those reported 

previously [11]. These results suggest that Abs against Herp on ER stress-induced apoptotic 

cells may become anti-Herp/dsDNA cross-reactive Abs, i.e., initial anti-dsDNA Abs. 

4.3. Antigenicity of Herp for anti-dsDNA Ab production in mice 

Immunization of normal BALB/c mice with Herp elicited anti-dsDNA Abs and caused 

glomerular IgG deposition [62]. However, urinary protein level did not increase and overt 

nephritis did not develop. The pathological changes in the kidneys in Herp-immunized 

BALB/c mice went no further than silent lupus nephritis. 

Nucleosomes, which are major autoantigens in SLE, are exposed at the apoptotic cell surface 

[66,67]. Anti-nucleosome Abs are present in SLE at a rate of more than 50% and they have 

been linked to lupus nephritis [68]. Nucleosomes and histones are present in glomerular 

deposits [69]. Nucleosomes bind to glomerular endothelial cells and serve as targets for anti-

nucleosome Abs [70]. Therefore, a portion of anti-nucleosome Abs may be involved in lupus 

nephritis [71]. However, even oligonucleosomes are much less effective than Herp in 

inducing anti-nucleosome Abs as well as anti-dsDNA Abs [62]. Therefore, to reproduce 

overt lupus nephritis, BALB/c mice were immunized with Herp followed by immunization 

with oligonucleosomes. In this procedure, both anti-dsDNA Ab and anti-nucleosome Ab-

producing clones induced by Herp may be able to recognize oligonucleosomes easily. The 

production of anti-dsDNA Abs and glomerular IgG deposition were observed in all mice. In 

addition, overt nephritis with significant proteinuria occurred in one mouse (Figure 2). 

Although further investigations are in progress to define the mechanisms, it was speculated 

that (i) the Herp-induced anti-dsDNA Abs efficiently bound to nucleosomes and formed 

pathogenic immune complexes, and (ii) affinity maturation and epitope spreading of Herp-

induced anti-dsDNA Abs occurred by nucleosomes. 

 

 
 

Figure 2. Overt nephritis in a BALB/c mouse immunized with Herp followed by immunization with 

oligonucleosomes. Left: Periodic acid Schiff (PAS) staining. Right: Immunofluorescence staining with 

fluorescein isothiocyanate (FITC)-conjugated anti-mouse IgG Ab. 
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[Methods] Five 6-week-old female BALB/c mice were immunized intraperitoneally with 100 

g of Herp on days 0 and 10 and 50 g of Herp on day 20, followed by immunization with 

10 g of oligonucleosomes on days 30, 40, and 50. Preparation of Herp and 

oligonucleosomes was described previously [62]. Fresh-frozen tissue sections 4 m thick 

were fixed in 100% acetone for 10 min at 4°C and blocked with 5% normal goat serum and 

3% BSA in PBS overnight at 4°C. Sections were stained with FITC-conjugated goat F(ab')2 

anti-mouse IgG Ab (KPL) for 1 h at room temperature. 

4.4. Antigenicity of Herp for anti-dsDNA Ab production in humans 

To examine whether Herp can be an antigen for anti-dsDNA Ab production in humans, 

ELISPOT was performed using PBMCs (representative cases are shown in Figure 3). The 

number of spots increased when the PBMCs were incubated with Herp, but not with 

dsDNA, in 4 of 6 untreated active SLE patients (Figure 3A); in 2 of these 4 positive cases, a 

few spots were observed even in wells without stimulation (Figure 3B). The remaining two 

cases showed no spots (Figure 3C). On the other hand, no spots were detected in the PBMCs 

from nine treated active SLE patients, eight inactive SLE patients, and five normal control 

subjects (data not shown). These results suggest that Herp can stimulate anti-dsDNA 

antibody-producing clones but this stimulation is cancelled by immunosuppressive therapy. 

[Methods] Approximately 1106 PBMCs in 20% fetal calf serum (FCS)-supplemented RPMI 

1640 (20% FCS-RPMI 1640) were cultured for 5 days with or without 2 g/mL Herp, or 10 

g/mL dsDNA. For preparation of dsDNA, calf thymus DNA (Invitrogen, Carlsbad, CA) 

was pretreated with S1 nuclease (Takara Bio, Otsu, Japan) to remove single-stranded DNA 

(ssDNA) according to the manufacturer’s instructions. Multiscreen 96-well filtration plates 

(Millipore, Billerica, MA) were coated with 10 mg/mL protamine overnight at 4°C, and 

washed with PBS followed by coating with 10 g/mL dsDNA in PBS for 2 h at room 

temperature. Following blocking with 20% FCS-RPMI 1640, the cultured PBMCs in 20% 

FCS-RPMI were plated at 1×105 cells/well and cultured for 24 h. After washing the cells with 

PBS, goat alkaline phosphatase-conjugated anti-human IgG antibodies (diluted 1:10000; 

Sigma-Aldrich, St. Louis, MO) were added and the wells were incubated for 1 h at room 

temperature. Following a further wash, the spots were visualized using NBT-5-bromo-4-

chloro-3-indolyl phosphate substrate (Sigma-Aldrich).  

5. Anti-single-stranded DNA (ssDNA) Abs 

The mechanism involved in the production of anti-ssDNA Abs has yet to be elucidated. As 

ssDNA can have multiple conformational epitopes and all Abs that bind to ssDNA are 

called anti-ssDNA Abs, these Abs are highly heterogeneous and display low disease 

specificity. However, the susceptibility of lupus-inducing drugs to anti-ssDNA Ab 

production is very high. In such cases, there may be a unique mechanism of anti-ssDNA Ab 

production, as the chemical structures and pharmacological actions of lupus-inducing drugs 

are known to be highly diverse [72,73]. As higher risk drugs include procainamide and 

hydralazine, which inhibit DNA methylation, hypomethylation may be one of the causes of 

anti-ssDNA Ab production, but its precise mechanism remains unknown [74-76]. 
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Figure 3. Herp can stimulate anti-dsDNA Ab-producing B cells in untreated patients with active SLE. 

The PBMCs were stimulated with Herp or dsDNA. Anti-dsDNA Ab-producing PBMCs were detected 

with ELISPOT. Three representative cases (A, Case M. S.; B, Case S. S.; C, Case R. S.) are shown. The 

lowest row is the positive control (P. C.: human serum with anti-dsDNA Abs, diluted 1:200) and 

negative control (N. C.; second antibody only). 

Immunization with Herp elicits production of not only anti-dsDNA antibodies but also anti-

ssDNA antibodies in BALB/c mice. Among several anti-Herp mAbs established in our 

laboratory, the HT4 anti-Herp mAb cross-reacts specifically with ssDNA [77]. The epitope of 

the HT4 mAb on Herp, EPAGSNR, was identified by screening a synthetic peptide library. 

The binding of HT4 mAb to the peptide was competitively inhibited by ssDNA. 

Immunization of the epitope peptide elicited anti-ssDNA Abs in BALB/c mice. Treatment 

with chlorpromazine, procainamide, and hydralazine induced Herp expression and 

apoptosis in HeLa cells. These findings suggest that (i) ER stress and apoptosis by drugs and 



 
Cell Death and Anti-DNA Antibodies 57 

(ii) molecular mimicry between Herp and ssDNA are involved in anti-ssDNA antibody 

production in drug-induced lupus. 

6. Postulated mechanism of anti-DNA Ab generation 

Autoimmunity is associated with both genetic predisposition and environmental factors 

[78]. The monozygotic disease concordance rate ranges from 24% to 57% (and not 100%) for 

SLE [79]. Most patients with SLE are non-familial sporadic cases. That is, environmental 

etiologies of SLE may be common. It is well known that environmental factors such as viral 

infection, UV exposure, chemicals, etc., can trigger clinical onset or flare of SLE [80,81]. 

However, little is known regarding how those factors elicit anti-DNA antibody production 

in vivo. These factors, i.e., cell stressors, affect the expression patterns of cellular proteins, 

resulting in ER stress in some cases. 

What is a practical model of this hypothesis? Natural infection with viruses can cause ER 

stress on a large scale in vivo [80]. ER stress has been shown to increase when viral proteins 

are produced at high levels, e.g., in virion formation during the active lytic cycle of infection. 

Epstein–Barr virus (EBV) infection has been suggested to have a causative role in SLE 

[82,83]. The titers of anti-EBV Abs in SLE patients are higher than those of healthy controls 

[84]. Kang et al. reported that: (i) patients with SLE had an approximately 40-fold increase in 

EBV viral load compared with controls; (ii) the frequency of EBV-specific CD69+ CD8+ T 

cells producing IFN- was higher in patients with SLE than in controls, but the frequency of 

EBV-specific CD69+ CD4+ T cells producing IFN- was lower in patients with SLE than in 

controls; and (iii) the EBV viral loads were positively correlated with the frequency of EBV-

specific CD69+ CD8+ T cells but inversely correlated with the frequency of EBV-specific 

CD69+ CD4+ T cells [85]. Larsen et al. reported that EBV-specific CD8+ T cell responses in 

patients with SLE are functionally impaired [86]. The defective control of latent EBV 

infection in patients with SLE may result in recurrent reactivation of EBV. In fact, aberrant 

expression of BZLF1, which is a hallmark of EBV lytic infection, has been detected in the 

PBMCs of SLE patients [87]. In primary EBV infection, EBV infects tonsillar B cells in which 

lytic replication occurs, and differentiation of latently EBV-infected B cells to plasma cells in 

lymphoid tissues is associated with induction of the EBV lytic cycle [88]. Herp is expressed 

in BZLF1-positive EBV-infected B cells (Figure 4). 

[Methods] EBV-transformed B cells were fixed in 50% acetone/50% methanol for 20 min at –

20°C and blocked with 5% normal goat serum and 3% BSA in PBS overnight at 4°C. The 

cells were stained with DAPI. The cells were then co-stained with HT4 mouse IgG2a anti-

human Herp mAb and mouse IgG1 anti-BZLF1 mAb (Dako, Glostrup, Denmark) for 1 h at 

room temperature followed by co-staining with rhodamine-conjugated goat anti-mouse 

IgG2a Ab (Santa Cruz Biotechnology, Santa Cruz, CA) and FITC-conjugated goat anti-

mouse IgG1 Ab (Santa Cruz Biotechnology) for 1 h at room temperature. 

ER stress, which is induced by the production of viral proteins, causes EBV lytic replication, 

resulting in the release of virions and intracellular molecules [89]. The Herp produced in 

cells entering the lytic phase of EBV infection can be recognized by the immune system in  
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Figure 4. Herp protein is expressed in BZLF1 positive EBV infected B cells. 

lymphoid tissues. In addition, EBV-encoded latent membrane protein 2A (LMP2A) induces 

hypersensitivity to TLR stimulation, leading to activation of autoreactive B cells through the 

BCR/TLR pathway [90]. Immunization with the membrane fraction of EBV-transformed B 

cells elicited anti-dsDNA Abs as well as anti-Herp Abs and causes glomerular IgG 

deposition in BALB/c mice [62]. These observations support the hypothesis that EBV 

infection may be a trigger of SLE. 

 

Figure 5. Hypothetical mechanism of anti-dsDNA Ab induction. 
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The results of the present study led to the following hypothesis in which cell stress triggers 

an anti-DNA response via Herp in normal individuals: ER stress by environmental factors 

 Herp expression  recognition by the immune system of minor epitope(s) mimicking 

ssDNA|or dsDNA  anti-Herp/ssDNA or dsDNA cross-reactive Abs (initial anti-ssDNA or 

anti-dsDNA Abs)  anti-DNA Ab – DNA complex, anti-DNA Ab – nucleosome complex  

? tissue injury (Figure 5). After the initial production of anti-Herp/DNA Abs, the 

production of the Abs is stimulated whenever ER stress-induced apoptosis occurs, and the 

cause of ER stress is not restricted. Repeated cell stress during daily life may strengthen this 

pathway. Herp is a good candidate as a link between common environmental factors and 

the etiology of SLE. 

7. Conclusions 

As dead cells are not only a source of intracellular antigens but also a source of 

proinflammatory molecules, it is likely that they play an important role in the generation of 

nephritogenic anti-dsDNA Abs. Herp was identified as a molecule directly involved in cell 

stress/death as the cause of anti-dsDNA Ab production. Further investigations are therefore 

needed to clarify the relationship between cell stress/death and the etiology of SLE. 
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