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1. Introduction

Most of the members of engineering structures operate under loading conditions, which
may cause damages or cracks in overstressed zones. The presence of cracks in a structural
member, such as a beam, causes local variations in stiffness, the magnitude of which mainly
depends on the location and depth of the cracks. These variations, in turn, have a significant
effect on the vibrational behavior of the entire structure. To ensure the safe operation of
structures, it is extremely important to know whether their members are free of cracks, and
should any be present, to assess their extent. The procedures often used for detection are di‐
rect procedures such as ultrasound, X-rays, etc. However, these methods have proven to be
inoperative and unsuitable in certain cases, since they require expensive and minutely de‐
tailed inspections [1]. To avoid these disadvantages, in recent decades, researchers have fo‐
cused on more efficient procedures in crack detection using vibration-based methods [2].
Modelling of a crack is an important aspect of these methods.

The majority of published studies assume that the crack in a structural member always re‐
mains open during vibration [3-7]. However, this assumption may not be valid when dy‐
namic loadings are dominant. In this case, the crack breathes (opens and closes) regularly
during vibration, inducing variations in the structural stiffness. These variations cause the
structure to exhibit non-linear dynamic behavior [8]. The main distinctive feature of this be‐
havior is the presence of higher harmonic components. In particular, a beam with a breath‐
ing crack shows natural frequencies between those of a non-cracked beam and those of a
faulty beam with an open crack. Therefore, in these cases, vibration-based methods should
employ breathing crack models to provide accurate conclusions regarding the state of dam‐
age. Several researchers [9-11] have developed breathing crack models considering only the
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fully open and fully closed crack states. However, experiments have indicated that the tran‐
sition between these two crack states does not occur instantaneously [12]. In reference [13]
represented the interaction forces between two segments of a beam, separated by a crack,
using time-varying connection matrices. These matrices were expanded in Fourier series to
simulate the alternation of a crack opening and closing. However, the implementation of
this study requires excessive computer time. In references [14, 15] considered a simple peri‐
odic function to model the time-varying stiffness of a beam. However, this model is limited
to the fundamental mode, and thus, the equation of motion for the beam must be solved.

A realistic model of a breathing crack is difficult to create due to the lack of fundamental
understanding about certain aspects of the breathing mechanism. This involves not only the
identification of variables affecting the breathing crack behavior, but also issues for evaluat‐
ing the structural dynamic response of the fractured material. It is also not yet entirely clear
how partial closure interacts with key variables of the problem. The actual physical situation
requires a model that accounts for the breathing mechanism and for the interaction between
external loading and dynamic crack behavior. When crack contact occurs, the unknowns are
the field singular behavior, the contact region and the distribution of contact tractions on the
closed region of the crack. The latter class of unknowns does not exist in the case without
crack closure. This type of complicated deformation of crack surfaces constitutes a non-line‐
ar problem that is too difficult to be treated with classical analytical procedures. Thus, a suit‐
able numerical implementation is required when partial crack closure occurs.

In reference [16] constructed a lumped cracked beam model from the three-dimensional for‐
mulation of the general problem of elasticity with unilateral contact conditions on the crack
lips. The problem of a beam with an edge crack subjected to a harmonic load was consid‐
ered in [17]. The breathing crack behavior was simulated as a frictionless contact problem
between the crack surfaces. Displacement constraints were applied to prevent penetration of
the nodes of one crack surface into the other crack surface. In reference [18] studied the
problem of a cantilever beam with an edge crack subjected to a harmonic load. The breath‐
ing crack behavior was represented via a frictionless contact model of the interacting surfa‐
ces. In [19] studied the effect of a helicoidal crack on the dynamic behavior of a rotating
shaft. This study used a very accurate and simplified model that assumes linear stress and
strain distributions to calculate the breathing mechanism. The determination of open and
closed parts of the crack was performed through a non-linear iterative procedure.

This chapter presents the vibrational behavior of a beam with a non-propagating edge crack.
To treat this problem, a two-dimensional beam finite element model is employed. The breath‐
ing crack is simulated as a full frictional contact problem between the crack surfaces, while the
region around the crack is discretized into a number of conventional finite elements. This non-
linear dynamic problem is solved using an incremental iterative procedure. This study is ap‐
plied for the case of an impulsive loaded cantilever beam. Based on the derived time response,
conclusions are extracted for the crack state (i.e. open or closed) over the time. Furthermore, the
time response is analyzed by Fourier and continuous wavelet transforms to show the sensitivi‐
ty of the vibrational behavior for both a transverse and slant crack of various depths and posi‐
tions. Comparisons are performed with the corresponding vibrational behavior of the beam
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when the crack is considered as always open. To assess further the validity of this technique,
the quasi-static problem of a three-dimensional rotating beam with a breathing crack is also
presented. The formulation of this latter problem is similar to the former one. The main differ‐
ences are: the inertia and damping terms are ignored, any possible sliding occurs in two di‐
mensions and the  iterative  procedure is  applied to  load instead of  time increment.  The
flexibility of the rotating beam and the crack state over time are presented for both a transverse
and slant crack of various depths. The validation of the present study is demonstrated through
comparisons with results available from the literature.

2. Finite element formulation

In the following, both a two and three-dimensional beam models with a non-propagating
surface crack are presented. For both models the crack surfaces are assumed to be planar
and smooth and the crack thickness negligible. The beam material properties are considered
linear elastic and the displacements and strains are assumed to be small. The region around
the crack is discretized into conventional finite elements. The breathing crack behavior is si‐
mulated as a full frictional contact problem between the crack surfaces, which is an inherent‐
ly non-linear problem. Any possible sliding is assumed to obey Coulomb’s law of friction,
and penetration between contacting areas is not allowed. The non-linear dynamic problem
is discussed for the two-dimensional model and the corresponding quasi-static for the three-
dimensional model. Both problems are solved utilizing incremental iterative procedures. For
completeness reasons, the contact analysis in three dimensions and the formulation and sol‐
ution of the non-linear dynamic problem are presented below.

a. Two-dimensional model

Figure 1 illustrates a two-dimensional straight cantilever beam with a rectangular cross-sec‐
tion b ×h  and length L  . A breathing crack of depth a exists at position L c . The crack is located
at the upper edge of the beam and forms an angle θ with respect to the x −  axis of the global co‐
ordinate system x, y . An impulsive load is applied transversally at point A (Figure 1).

Figure 1. Cracked two-dimensional beam model.
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In the finite element method (FEM) framework, the equilibrium equation governing the dy‐
namic behavior of the model is:

MÜ + CU̇ + KU =R (1)

where M  , C , and K  are the mass, damping, and stiffness matrices, respectively. The time-de‐
pendent vectors Ü  , U̇  , U  , and R denote the nodal accelerations, velocities, displacements,
and external forces, respectively, in terms of a global Cartesian coordinate system x, y .

b. Three-dimensional model

Figure 2 depicts a three-dimensional cantilever beam with length 2L  and circular cross-sec‐
tion of radius R . A breathing crack of depth a exists at the middle of the beam. The crack
has either straight or curved front (Figures 2b and 2c). The slant crack forms angles θy , θz

with respect to (x, y) and (x, z) planes, respectively. Two different load cases are separately
applied at the tip of the cantilever beam, i.e., twisting moment T  and bending moment M  ,
respectively. The bending moment is applied in several aperture angles M =M (φ) , in order
to simulate a rotating load on a fixed beam. The components My =My(φ) and Mz =Mz(φ) of
the bending moment M (φ) , along the directions of axes y and z , respectively, are functions
of the aperture angle.

Figure 2. Cracked three-dimensional beam; (a) cracked beam subjected to bending and twisting moments; (b)
straight-front crack, and (c) curved front crack.
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The equilibrium equation governing the quasi-static behavior of the model is:

KU =R (2a)

where K  is the stiffness matrix, U  denotes the nodal displacements and R represent the ex‐
ternal forces, respectively, in terms of a global Cartesian coordinate system x, y, z .

The equilibrium equation governing the quasi-static behavior of the model is:

KU =R (2b)

where K  is the stiffness matrix, U  denotes the nodal displacements and R represent the ex‐
ternal forces, respectively, in terms of a global Cartesian coordinate system x, y, z .

c. Crack modelling

Considering the three-dimensional model, the crack is composed of two surfaces, which in‐
tersect on the crack front. Parts of these two surfaces may come into contact on an interface.
The size of the interface can vary during the interaction between the load and the structure,
but the interface is usually comprised of two parts, i.e., an adhesive part and a slipping part,
depending on the friction conditions maintained between the contacting surfaces. In the
open crack state, the corresponding part of the crack surface is subjected to traction-free con‐
ditions. The so-called slave–master concept that is widely used for the implementation of
contact analysis is adopted in this work for prediction of the crack-surface interference. One
of the two crack surfaces is considered as the master surface, with the other as the slave.
Both master and slave crack surfaces are defined by the local coordinate systems
( xJ

1
, xJ

2
, xJ

3
) , with J= I for master surface and J= II for slave surface. The axes xJ

3
 define the

direction of the unit outward normal vector of the corresponding surfaces. The nodes that
belong to the master and slave surfaces are called the master and slave nodes, respectively.
Contact segments that span master nodes cover the contact surface of the structure. There‐
fore, the above problem can be regarded as contact between a slave node and a point on a
master segment. This point may be located at a node, an edge, or a point of a master seg‐
ment. A slave node makes contact with only one point on the master segment, but one mas‐
ter segment can make contact with one or more slave nodes at each time. For each contact
pair, the mechanical contact conditions are expressed in a local coordinate system in the di‐
rection of the average normal to the boundaries of the bodies. Symbols ui and Ri , i =1, 2, 3
denote nodal displacement and force components, respectively, defined on the local coordi‐
nate systems ( xJ

1
, xJ

2
, xJ

3
) , j = I, II . The subscripts that indicate nodal numbers are dropped

for simplicity from this point forward.

Recalling the equilibrium condition, the force between the components is always expressed
by the following equations:

RI
i
+ RII

i
=0, i =1, 2, 3 (3)
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In the open crack state, the following traction-free conditions are held between the com‐
ponents:

RI
i
= RII

i
=0, i =1, 2, 3 (4)

From the definition of adhesion, the displacement components on the corresponding crack
surfaces are interconnected by the equations:

uI
i
+ uII

i
=0, i =1, 2 (5)

When an initial gap g 0 exists in the normal direction between the master and slave nodes of
the corresponding node pair, the displacement component along the normal direction is:

uI
3

+ uII
3
= g 0 (6)

The slip state does not prohibit the existence of a gap between the crack surfaces, so equa‐
tion (5) is still valid in this case. However, the tangential force component is defined in
terms of friction as:

RI
i
± μ RI

3
=0, i =1, 2 (7)

where μ is the coefficient of Coulomb friction. Concerning the corresponding two-dimen‐
sional contact analysis, the aforementioned approach is straightforwardly used neglecting
one of the three directions.

d. Incremental iterative procedure

The simulation of the breathing crack behavior as a full frictional contact problem consti‐
tutes the present study as a non-linear dynamic problem. In the FEM framework, a non-line‐
ar dynamic problem described by an equation such equation (1) is solved using an implicit
direct integration scheme [20]. According to this method, the solution time interval of inter‐
est 0, T  is subdivided into N  equal time increments Δt  , where Δt =T / N  . The variation of
accelerations, velocities, and displacements within the time increment has a certain form
and depends on the type of time integration scheme. Approximate solutions of equation (1)
are sought at times 0, Δt , 2Δt , …, t , t + Δt , …, T  . The calculations performed to obtain the
solution at time t + Δt  require that the solutions at previous times 0, Δt , 2Δt , …, t  are
known. The initial conditions of accelerations, velocities, and displacements at time zero are
also required. Thus, equation (1) is evaluated at time t + Δt  as:

M Üt+Δt + C U̇t+Δt + K Ut+Δt = Rt+Δt (8)

where the left-hand subscripts denote the time.
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The solution to this non-linear problem requires an iterative procedure. Employing the
modified Newton-Raphson iteration method [20], the displacement vector Ut+Δt (k ) at time
t + Δt  and iteration k  is given by:

Ut+Δt (k ) = Ut+Δt (k−1) + ΔU (k ) (9)

while equations (8) are written as:

M Üt+Δt (k ) + C U̇t+Δt (k ) + Kt
T

ΔU (k ) = Rt+Δt − Ft+Δt (k−1) (10)

where the right-hand subscripts in brackets represent the iteration number, with
k =1, 2, 3, … . The symbols Kt

T
 , Ft+Δt (k−1) and ΔU (k ) denote the tangent stiffness matrix,

the nodal force vector, which is equivalent to the element stresses, and the incremental no‐
dal displacement vector, respectively. The iterative method is called the modified Newton–
Raphson method, since the tangent stiffness matrix is not calculated in every iteration,
which is the case for the full method [20].

Employing  for  example  an  implicit  time  integration  scheme,  formulas  are  implemented
that  relate  the nodal  accelerations,  velocities,  and displacement  vectors  at  time t + Δt  to
those at previous times. Considering these formulas,  equation (10) can be written in the
following form [20]:

K
⌢t

T
ΔU (k ) =ΔR

⌢(k−1)
(11)

where the matrix K
⌢t

T
 is a function of the tangent stiffness matrix, mass matrix, and damping

matrix, while the vector ΔR
⌢(k−1)

 contains the nodal force vector and contributions from the in‐

ertia and damping of the system. In the first iteration, the vectors ΔR
⌢(0)

 and Ut+Δt (0) are equal to
the corresponding vectors of the last iteration at the previous time. In each iteration, the latest

estimates of displacements are used to evaluate the vector ΔR
⌢(k−1)

 . Then, the incremental dis‐
placements ΔU (k )  are obtained by solving equations (11),  while the nodal displacements

Ut+Δt (k ) are derived from equations (9). The iteration proceeds until the nodal displacements
vector of the last iteration Ut+Δt (k ) are approximately equal to the corresponding vector of the
previous iteration Ut+Δt (k−1) . This convergence criterion is expressed as

| Ut+Δt (k )− Ut+Δt (k−1)

Ut+Δt (k )
| ≤ε (12)
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where ε is a small numerical quantity.

Considering that the problem has been solved for time t , and consequently, vectors Ut  and Rt

are known for the entire structure. To determine the corresponding displacement and forces
vectors at time t + Δt , the equations (3)-(7) are written in incremental form as following:

( ΔI Ri)
t+Δt + ( ΔII Ri)

t+Δt =0, i =1, 2 (13)

( ΔI Ri)
t+Δt = − ( RII

i
)t , i =1, 2 (14)

( uI
1
)t + ( ΔI u1)

t+Δt = ( uII
1
)t + ( ΔII u1)

t+Δt (15)

( uI
2
)t + ( ΔI u2)

t+Δt = ( uII
2
)t + ( ΔII u2)

t+Δt − g 0 (16)

( RI
1
)t + ( ΔI R1)

t+Δt = ± μ( ( RI
2
)t + ( ΔI R2)

t+Δt ) (17)

Assumption
Decision

Open Contact

Open ΔII u3m− ΔI u3m uI
3m−1− uII

3m−1 + g 0 ΔII u3m− ΔI u3m≤ uI
3m−1− uII

3m−1 + g 0

Contact fI
3m−1 + ΔI f 3m≥0 fI

3m−1 + ΔI f 3m0

Adhesion Slip

Adhesion | fI
im−1 + ΔI f im | |μ( fI

3m−1 + ΔI f 3m) | , i = 1, 2 | fI
im−1 + ΔI f im | ≥ |μ( fI

3m−1 + ΔI f 3m) | , i = 1, 2

Slip ( fI
im−1 + ΔI f im)( ΔI f im− ΔII f im)0, i = 1, 2 ( fI

im−1 + ΔI f im)( ΔI f im− ΔII f im)≤0, i = 1, 2

Table 1. Definition of contact status.

For reasons of simplicity, the iteration number has been omitted from equations (13)-(17).
However, the formulation given below is repeated for all iterations. These equations are
transformed to the global Cartesian coordinate system x, y, z and are then embedded and
rearranged into equation (11). To determine the corresponding nodal displacements at time
t + Δt  , the contact conditions must first be satisfied. Therefore, the iterative procedure em‐
ployed must be applied by initially using the convergent contact status (union of the adhe‐
sive, slipping and open parts of the crack surface) of the previous time t  . The procedure
initially assumes that the coplanar and normal incremental force components for a master
surface at time t + Δt  are zero. Accurate values of the incremental forces can be estimated via
the iterative procedure. The contact state for every node pair is examined according to Table
1. This table describes criteria to check whether violations involving geometrical compatibil‐
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ity and force continuity have occurred. Where necessary, appropriate changes from open to
contact or from adhesion to slip states and vice versa are made to identify the equilibrium
state of the contact conditions. The new contact condition is applied to the node pair closest
to the change. If the change is from the open to the contact state, then the adhesion condition
is adjusted. When the iterative procedure converges, the incremental nodal values Δt+Δt U
and Δt+Δt R are known for the entire structure. After calculating the total nodal values, the
procedure goes to the next step of the time increment and continues until the final time in‐
crement is reached. The problem solution is then attained.

3. Local flexibilities in cracked beams

A crack introduces local flexibilities in the stiffness of the structure due to strain energy con‐
centration. Although local flexibilities representing the fracture in stationary structures are
constant for open cracks, the breathing mechanism causes their time dependence. In a fixed
direction, local flexibilities of rotating beams change also with time due to the breathing
mechanism. Evidently, the vibrational response of a rotating cracked beam depends on the
crack opening and closing pattern in one cycle.

Since the torsional and bending vibrations are dominant in rotating beams, in this chapter it is
assumed that the corresponding local flexibilities are also dominant in the local flexibility ma‐
trix, neglecting the cross-coupling terms. Numerical results showed that the off-diagonal coef‐
ficients of this matrix are at least two orders of magnitude lower than the diagonal ones, and
thus are considered negligible. Therefore, the presence of the crack can equivalently represent‐
ed by a diagonal local flexibility matrix, independent of the crack contact conditions.

The exact relationship between the fracture characteristics and the induced local flexibilities
is difficult to be determined by the strain energy approach, because, stress intensity factor
expressions for this complex geometry are not available. For the computation of the local
crack compliance, a finite element method was used. According to the point load displace‐
ment method, if at some node preferable lying on the tip of the beam is applied the external
load vector {Q}= {T My Mz}Τ , then at the same node the resulting rotations
{Θ}= {Θx Θy Θz}Τ are:

cx 0 0
0 cy 0
0 0 cz

{ T
My

Mz

}= {Θx

Θy

Θz

} (18)

In equation (18), cr  , r = x, y, z are the diagonal coefficients of the local flexibility matrix. Un‐
der the application of a particular load component Qr  at the r  - direction, the above equation
is then simplified as follows:

Vibration Analysis of Cracked Beams Using the Finite Element Method
http://dx.doi.org/10.5772/51173

189



Θr =crQr (19)

where Θr  , r = x, y, z is the induced rotation, and cr  is the local flexibility component that
corresponds to the particular loading mode Qr  . Equation (19) can be used for the computa‐
tion of the local flexibility coefficients, as described in the following. When the original non-
cracked beam is uploaded until the load Qro , a rotation is imposed in r  - direction, such that
equation (19) gives:

qro =croQro (20)

where cro is the flexibility of the original structure. The deformation of the cracked beam
when loaded at the same node gives:

Θrc = crcQrc (21)

where crc is the flexibility of the cracked beam, and Qrc , Θrc the applied load and the result‐
ing rotation, respectively. Between the flexibilities of the original and the fractured structure
holds the condition

crc = cr + cro (22)

where cr  is the local flexibility due to the crack itself. Assuming that the applied load levels
are of the same magnitude, i.e. Qrc =Qro =Qr  , after some manipulation, equations (19)-(23)
yield the local flexibility coefficient in the r  - direction

cr =
Θrc −Θro

Qr
(23)

Equation (23) is used to compute the coefficients of the local flexibility matrix c  utilizing
the FEM results. Tip loads Qr  , r = x, y, z are applied independently, and the resulting rota‐
tions Θr  are evaluated. The rotations of the original structure Qro , are evaluated for FEM
models that do not present crack but have similar meshing with the cracked models. When
fractured models are examined, FEM results are computed for several values of crack depth
and different loading conditions.

4. Response analysis

The response derived from equations (9) and (11) cannot be examined directly to distinguish
the breathing crack effects. For this reason, fast Fourier and continuous wavelet transforms
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are employed. These two popular transforms in signal analysis are briefly discussed below
for reasons of completeness, and more information can be found in references [21, 22].

The fast Fourier transform (FFT) is a perfect tool for finding the frequency components in
a signal of stationary nature. Unfortunately, FFT cannot show the time point at which a
particular frequency component occurs. Therefore, FFT is not a suitable tool for a non-sta‐
tionary signal, such as the impulsive response of the cracked cantilever beam considered
in this  study,  which requires  time-frequency representation.  To overcome this  FFT defi‐
ciency, the short time Fourier transform (STFT) could be adopted, which maps a signal in‐
to a two-dimensional function of time and frequency. This windowing technique analyzes
only a small section of the signal at a time. However, the information about time and fre‐
quency that is obtained has a limited precision that is determined by the size of the win‐
dow, which is the same for all frequencies.

Wavelet transforms are a novel and precise way to analyze signals and can overcome the
problems that other signal transforms exhibit. The most important advantage of wavelet
transformations is that they have changeable window dimensions. For low frequencies, the
window is wide, while for high frequencies, it is narrow. Thus, maximum time frequency
resolution is provided for all frequency intervals.

The continuous wavelet  transform (CWT),  as employed in this  study,  is  defined mathe‐
matically as:

W f s ,u =
1
s ∫−∞
∞

f (t)ψ ∗(
t −u

s )dt (24)

where f (t) is the signal for analysis, ψ ∗(t) is the complex conjugate of the mother wavelet
ψ(t) and s and u are real-valued parameters used to characterize the dilation and translation
features of the wavelet.

The CWT has an inverse that permits recovery of the signal from its coefficient W f s ,u and is
defined as:

f (t)=
1

Cψ
∫
−∞

∞

∫
−∞

∞

W f s ,uψ(
t −u

s )
1
s 2 dsdu (25)

5. Results and discussions

a. Accuracy study

i. Two-dimensional model

To demonstrate the accuracy of the presented study, a two-dimensional beam is considered
with length L =1.5m , cross-section a / R =1.0 , modulus of elasticity E =2.06×1011Pa , mass
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density ρ =7650kg/m3 and Poisson’s ratio ν =0.29 . It is assumed that the beam contains a
breathing crack of θ =90  , L c / L =0.5 and a / h =0.5 . A transverse impulse loading is ap‐
plied at point A of the beam (Figure 1). Based on the FFT of the transverse acceleration at
point L r / L =1 (Figure 1), the three lower dimensionless natural frequencies f ic / f in of the
cantilever beam are evaluated and quoted at Table 2. Subscript i =1, 2, 3 denotes the order of
natural frequency, while the subscript j represents the crack state of the beam. In particular,
for j =c the beam is cracked, while for j =n the beam is non-cracked. It is derived from Table
2, that the results of the present study are generally close to the results of references [23] and
[24]. It is noteworthy that the study of reference [23] has applied for a Timoshenko beam.
Furthermore, the results from the work in [24] correspond to an internal crack of the same
severity with the studied crack case. The internal crack constitutes a good approximation of
a fully closed crack.

f 1c / f 1n f 2c / f 2n f 3c / f 3n

Nandwana and Maiti [23] 1.000 0.992 1.014

Present study 0.986 0.992 0.998

% difference of natural frequency 1.41 -0.04 1.60

Kisa and Brandon [24] 0.980 0.925 0.999

Present study 0.986 0.992 0.998

% difference of natural frequency -0.58 -6.71 0.08

Table 2. Three lower natural frequencies of the cantilever beam with a crack of θ= 90°, L c / L = 0.5 and a /h = 0.5 .

ii. Three-dimensional model

Figure 3. Flexibility of a transverse straight front crack under subjected to traction-free conditions; (a) bending flexibil‐
ity coefficient Cz , and (b) torsional flexibility coefficient Cx .
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To demonstrate further the accuracy of the presented study, a three-dimensional beam with
length L =1.0m ,  radius R =0.05m ,  modulus of  elasticity E =2.06×1011Pa ,  mass density
ρ =7650kg/m3 and Poisson’s ratio ν =0.29 is considered. The beam has a gaping straight front
crack of various depths (Figure 3). The beam undergoes either pure bending Mz , i.e. ϕ =90o or
twisting moment T  . For both loading cases, the dimensionless local flexibility coefficients,
Cr=(E R 3 / (1−ν 2))cr  with r = x, y, z  , are calculated for various values of dimensionless crack
depth a / h  . The application of bending moment for this transversely fractured structure im‐
poses the bending mode local flexibility Cz (Figure 3a), while the twisting moment imposes on‐
ly the twisting coefficient is Cx (Figure 3b). As shown from Figures 3, the presented results are
in good agreement with semi-analytical and experimental ones [25-27].

Figure 4. Dimensionless bending compliance variation of a transversely cracked beam as function of the aperture an‐
gle; (a) straight front crack, and (b) curved front crack.

Figure 4 presents the variation of the flexibility coefficient Cy when the transversely cracked
beam is subjected to bending moment M =M (ϕ) . The numerical results are plotted for a pe‐
riod that corresponds to one revolution of the beam. For better reasons of understanding,
the local flexibility is plotted with phase lag π / 2 that corresponds to the application only of
the Mz component of bending moment or φ=90o . That is, the evolution of the local flexibili‐
ty is progressing from the full open condition of the crack. The same figure illustrates theo‐
retical [28], experimental [29] and numerical [30] results from the literature for straight-
fronted edge crack and crack depth a / R =1.0 . As it is shown, the values of local flexibility
for crack depth a / R =1.0 , from FEM analysis are smaller than the other methods, when the
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crack is open. The experimental results are obtained for notched beam which is more flexi‐
ble than the cracked beam. As the crack closes the FEM results are greater than the others.
This is explained by the crack contact area (Figure 5), which differs and is generally smaller
than the area assumed by the theoretical approaches for the same edge orientation. The im‐
possibility of these approximations to predict the crack closure correctly is the main reason
that these yield comparable results with the present ones only on the regions of partially
opening portion of the crack, i.e., between L c / L =0.5 or a / h =0.75 . The variation of the co‐
efficient Cy depends significantly on the crack depth. For small crack depths, the crack does
not open regularly once per revolution, but contact is observed twice per revolution. The
second contact state yields smaller compliance than the regular contact.

b. Crack contact state

Figure 5 illustrates predictions of the crack closure portion for a transverse crack with depth
a / R =0.8 , when the three-dimensional beam is loaded in bending moment only, versus the
aperture angle. Figure 5a shows the crack closure evolution for a straight front crack, and
Figure 5b for a curved front crack, respectively. As the aperture angle increases, the crack
closure portion increases in both cases examined. On full load reversal, a very small portion
of the crack surface along the crack front remains always open. The shape of the contact sur‐
face and its portion clearly depends on the shape of the crack. This fact is expected to im‐
pose differences between the local flexibilities of different crack shapes. When the crack is
slant, smaller portions of the crack surfaces are in contact.

Figure 5. Evolution of contact area between the crack surfaces of a transverse crack under bending loading; (a)
straight front crack, and (b) curved front crack.

Figure 6 depicts this situation for cracks having slope θz with respect to the z-axis ( θy =0o ),

loaded in bending Mz (or φ=90o ). The crack slope θz seems to affect slightly the size and
shape of the contact area between the crack surfaces for both of the crack fronts under inves‐
tigation. The cases of crack orientation subjected to bending load that are not illustrated here
present similar behavior with respect to the crack surface contact. For cracks subjected to
twisting moment, the contact area does not generally change during the shaft rotation. Fig‐
ure 7 depicts this fact when the crack slope is defined by the angles θy =45o and θz =0o .
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Figure 6. Contact area between crack surfaces for different crack slopes when the shaft is loaded in bending ( θy = 0 ,

φ = 90o ); (a) straight front crack, and (b) curved front crack.

Figure 7. Contact area between crack surfaces when the shaft is loaded in torsion; (a) straight-fronted crack, and (b)
penny shaped crack.

Further knowledge regarding the crack contact state can be also derived studying a strip un‐
der reversing loadings. Figure 8a illustrates the distinction between the open and partially
closed crack configurations as defined by the crack opening displacements (CODs). In this
figure the normalized displacements of the crack surface over the strip height h, close to the
crack tip is shown. It is apparent that direct bending opens the crack, although load revers‐
ing causes partial crack closure. Solid lines represent crack opening mode and dashed lines
partial crack closure, respectively. Negative values in this figure represent sign convention
between the axes and not penetrating crack surfaces. Numerical results show that open
crack displacements are two orders of magnitude higher than those corresponding to parti‐
ally closed cracks. Figure 8b shows the transverse to crack line CODs, for two cracks with
θ=135° and depths a / h =0.8 and a / h =1 , respectively. Under load reversing conditions and
in the region close to crack tip, opening displacements develop, as in previous case. Crack
orientation affects the deformation mode, yielding smaller displacements than those devel‐
oped in transverse cracks. In the case of slant cracks, tangential stresses are shown to play a
significant role in the crack surface interference process, producing small opening ligaments
and destroying symmetry of displacements. CODs observed in slant cracks under load re‐
versing are two orders of magnitude smaller than the corresponding displacements ob‐
served on normal loading inducing stress intensification.
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Figure 8. CODs for (a) transverse cracks, and (b) slant cracks.

c. Time Response

Figure 9. Time response when a crack is present at L c / L = 0.25 with depth a /h = 0.75 and angle θ= 90∘ .

Figure 9 depicts the impulsive displacement response in the transverse direction versus time
t  for the two-dimensional beam with a breathing crack of θ =90  , L c / L =0.25 and
a / h =0.75 . Consider a time period of response that spans from t =0sec to t =0.05sec . From
the deformed mesh, it is assumed that during approximately the first half of the time period
(from t =0sec to t =0.02sec ) where the response sign is positive, the crack opens and closes
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continuously. On the contrary, during the second half of the period (from t =0.02sec to
t =0.05sec ) where the sign of the response is negative, the crack is open. For this period, the
response is composed of a sinusoidal waveform that corresponds to that of the non-cracked
beam, and several disturbances that correspond to lower frequencies than those of the non-
cracked beam. For the first part of the indicated period (where the displacement is positive),
these disturbances correspond to the existence of partial closure and contact along the crack
surfaces, while the second part of the period (where the displacement is negative) corre‐
sponds to crack opening deformations. The same conclusions apply for the part of the re‐
sponse to the right of the considered time period. As it is deduced from Figure 9, the
breathing of crack causes the beam to exhibit a highly nonlinear vibrational response. As a
result, the portions of the beam on the left and right of the crack vibrate with different ways
at the same time. In an attempt to clarify the intricacies involved in the response, Figure 10
illustrates the deformed shape and the detail of the corresponding crack opening deforma‐
tion for a beam with either a small ( a / h =0.25 ) or a deep ( a / h =0.75 ) crack of angle θ =45
at position L c / L =0.25 for time t =0.013sec at which the crack is instantaneously open.
Apart from the instantaneous deformed shapes of the fractured beams, Figure 10a shows al‐
so the undeformed shape of the non-cracked beam (dotted lines) for comparison. The dis‐
placements in Figure 10a are magnified with a scale 104 , while in Figures 10b-10c are
magnified with a scale 6×104 . It seems from Figure 10a that the instantaneous deformed
shapes for the small and the deep crack approach mainly the fundamental and the second
mode shapes of the non-cracked beam, respectively.

Figure 10. (a) Instantaneous deformed shape of a beam with an inclined crack ( θ= 45∘ , L c / L = 0.25 ) at time
t = 0.013sec and detail of the corresponding crack opening deformation for (b) a small ( a /h = 0.25 ) and (c) a deep
( a /h = 0.75 ) crack.
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It is also visible from Figure 10a that for the deep crack the beam portion located on the left
of the crack is nearly undeformed due to the dominance of the support conditions in the vi‐
brational behavior of the beam at the considered time. Based on the Figures 10b-10c, it is ob‐
served that the distance between crack surfaces increases as the crack depth increase. This is
reasonable since the small crack reduces slightly the local stiffness at crack position. This
slight change of local stiffness matrix is time dependent and varies from zero to a maximum
value depending on the breathing mechanism. On the contrary, for the deep crack the range
of local stiffness change is wider than that of the small crack cases. For this reason, the effect
of the crack is more important. The deformed shape of beam and the corresponding detail of
the crack opening deformation for the two considered crack cases are also presented in Fig‐
ure 11, which is magnified as Figure 10, for time t =0.023sec at which the crack is instantane‐
ously closed. It seems from Figure11a that the instantaneous deformed shape for the small
crack approaches mainly the fundamental mode of the non-cracked beam. In contrast, the
instantaneous deformed shape for the deep crack approaches mainly the second mode
shape of the non-cracked beam. It is noticeable from Figures 11b-11c that the crack surfaces
are not completely closed due to the presence of the friction, which causes the development
of shear stresses along crack surfaces. This stress component causes deformation of crack
surfaces and develops a mechanism of energy absorption.

Figure 11. (a) Instantaneous deformed shape of a beam with an inclined crack ( θ= 45∘ , L c / L = 0.25 ) at time
t = 0.013sec and detail of the corresponding crack opening deformation for (b) a small ( a /h = 0.25 ) and (c) a deep
( a /h = 0.75 ) crack.

d. Frequency Response

Figure 12 depicts the FFT of the transverse acceleration response for the two-dimensional
beam with a breathing crack of θ =30  , L c / L =0.25 , and a / h =0.75 . The corresponding
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FFT of transverse acceleration response with the crack always open is also plotted in this fig‐
ure for comparison in frequency domain. For reasons of clarity, in this and the other figure
of this subchapter, the corresponding response for the non-cracked beam is not plotted in
this figure. The four vertical dash-dot lines represent the loci of the first four natural bend‐
ing frequencies of the non-cracked beam. These natural frequencies are evaluated from the
FFT of the transverse acceleration response and are 0.028, 0.174, 0.472 , and the 0.873kHz .
The dash-dot-dot vertical lines in the figures represent the third natural bending frequency
of the beam portion located on the right of the crack. For the present crack case, this portion
of the beam has a length of 0.75L  , and its third natural bending frequency is 0.810kHz .
This latter frequency is evaluated from the FFT of the transverse acceleration response. Fig‐
ure 12 shows that the FFT of the open crack model exhibits five peaks at
0.026, 0.172, 0.448, 0.784 , and 0.850kHz . The fourth peak corresponds to the third natural
bending frequency of the beam portion with length 0.75L  , while the remaining peaks cor‐
respond to the first four natural bending frequencies of the non-cracked beam. Correspond‐
ing peaks appear for the breathing crack model (Figure 12). The two FFTs illustrated in
Figure 12 show that the first two frequencies of the open and breathing crack models are
very close and are lower than those corresponding to the non-cracked beam. Shifts are ob‐
served for the remaining three frequencies. In particular, the third, fourth, and fifth frequen‐
cies of the breathing crack model are between the frequencies of the open cracked model
and the non-cracked beam, as expected [8]. The absolute percentage differences for these
three frequencies are 2.40% , 2.61% , and 0.93% , respectively.

Figure 12. Frequency response of the transverse acceleration when a crack of depth a /h = 0.25 and angle θ= 90∘ is
present at L c / L = 0.5 .
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Figure 13 shows the sensitivity of beam vibrational behavior in terms of crack position. It
seems that the crack position affects all but the first natural frequency. The absolute percent‐
age differences are 12.87% , 8.53% , 7.29% , and 1.47% for the second through fifth natural
frequencies, respectively.

Figure 13. Frequency response of the transverse acceleration when a breathing crack of angle θ= 45∘ and depth
a /h = 0.75 is present.

e. Time-Frequency Response

Figure 14a shows a contour map of the CWT for the transverse displacement response of the
two-dimensional beam with a breathing crack of θ =90  , L c / L =0.25 , and a / h =0.75 . In
this and following contour map, the color at each point of the s −u domain represents the
magnitude of the wavelet coefficients W f s ,u . A lighter color corresponds to larger coeffi‐
cients, and a darker color to smaller ones. The symbol s denotes the scale space that is inver‐
sely proportional to the frequency domain, and u stands for the time space. The contour
map of Figure 14a consists of three horizontal regions. The first region extends up to s ≈10 ,
the second one up to s ≈40 , and the third occupies the rest of the map. The third region is
unchanged for s128 . Each of these regions consists of a number of consecutive approximate‐
ly equal vertical ridges. The number of ridges differs according to region.

Higher numbers of ridges appear in the first region while there are fewer in the third. A
comparison of these three regions shows differences in the magnitude of the wavelet coeffi‐
cients. Figure 14b shows the contour map of the CWT for the transverse displacement re‐
sponse for a fully open crack. This contour map consists of three visible horizontal regions.
The first two regions are similar to those of the breathing crack model (Figure 14a) in respect
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to their extent and the number and extent of ridges. On the contrary, the magnitude of the
wavelet coefficients appears differences. The third region consists of fewer and wider ridges
than that of the breathing model (Figure 14a).

Figure 14. CWT of the transverse displacement history when (a) a breathing crack, (b) an open crack is present
( a /h = 0.75 , θ= 90∘ , and L c / L = 0.25 ).

Figure 15. CWT of the transverse displacement history when a breathing crack of angle θ= 45∘ is present at
L c / L = 0.5 ; (a) a /h = 0.25 , and (b) a /h = 0.75 .
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The higher number of ridges in the breathing model most likely represents changes to stiff‐
ness matrix due to the breathing of the crack. Similar conclusions regarding the magnitude
of the wavelet coefficients, the extent of the regions, and the number and shape of ridges per
region can be made from Figure 15, which shows the sensitivity analysis with respect to
crack depth. Although, the effect of the crack depth in the morphology of the Figure 15 is
visible, a qualitative analysis is required to correlate the natural frequencies obtained from
the FFT to the extent of the horizontal regions and the number and the extent of ridges per
region. Furthermore, the magnitude of the wavelet coefficients in the domain s −u can be ex‐
tracted. This analysis correlates the natural beam frequencies obtained by the FFT to the
scales of contour maps. The magnitude of the wavelet coefficients at these scales can then be
found from the contour maps for the entire time solution of interest, and conclusions for
crack detection techniques can be extracted.

6. Conclusions

In this chapter, finite element procedures able to approach the vibrations of a beam with a
breathing crack were presented. Although the developed models were discretized into a
number of conventional finite elements, the breathing was treated as a full frictional contact
problem between the crack surfaces. Quasi-static and non-linear dynamic analyses were per‐
formed aiming the prediction of vibration characteristics of cracked beams. The solutions
were obtained using incremental iterative procedures. The results show good agreement
with experimental or theoretical ones found in the open literature. The assesment of crack
contact state in the different phases of the breathing mechanism gives comprehesive an‐
swers for the local flexibility variations and concequently for the vibrational response of a
cracked beam. The derived time response of the two-dimensional beam was analyzed by
various integral transforms including FFT and CWT. This model was assessed for the case of
a cantilever beam subjected to an impulse loading. The results show the sensitivity of vibra‐
tional behavior with respect to crack characteristics. Although a qualitative analysis was re‐
quired to interpret the results exactly, this study proved that FFT and CWT can be used as
supplementary tools for crack detection techniques.
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