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1. Introduction 

The Confederation Bridge, which was opened for traffic in June 1997, is 12,910 m long and is 

one of the longest reinforced concrete bridges built over water in the world. The bridge 

crosses the Northumberland Strait in eastern Canada and connects the province of Prince 

Edward Island and the province of New Brunswick. 

The bridge is located in a region known for very harsh environmental conditions. The Strait 

is covered by ice approximately three to four months in a year. Heavy storms with winds in 

excess of 100 km/h are often experienced at the bridge site. Given the importance of the 

Confederation Bridge, its length, and the environmental conditions, special criteria were 

imposed in the design and construction of the bridge in order to provide a high degree of 

safety during its operational life. The bridge was designed for a service life of 100 years, 

which is twice the service life considered in the Canadian codes for highway bridges that 

were in use during the design of the Confederation Bridge, i.e., the CSA Standard 

CAN/CSA-S6-88 [1], and the Ontario Highway Bridge Design Code (OHBDC) [2]. A safety 

index of 4.0 was used in the design, compared with 3.5 specified in CAN/CSA-S6-88 and 

OHBDC. Load combinations and load resistance factors were developed specifically for the 

design of the bridge, as described in [3]. A number of assumptions had to be made in the 

design, particularly for the long-term properties of the materials in the specific 

environmental conditions and for the effects of various dynamic loads on the performance 

of the bridge. Given these assumptions, a comprehensive research program was undertaken 

to monitor and study the behaviour of the bridge. As part of this program, a study was 

conducted to investigate the dynamic performance of the bridge under seismic loads. The 

objective of the study was to compare the responses of the bridge for seismic actions 

representative of the seismic hazard at the bridge location with those used in the design. 

There are two major reasons for undertaking this study. First, significant advancements in 
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the understanding of the eastern Canadian seismicity and in the methods for seismic hazard 

computations have been made since the design of the bridge in the mid 1990s, and therefore, 

a more accurate estimate of the seismic hazard at the bridge location can now be made. 

Second, recorded vibrations of the bridge are available which enable the development of an 

accurate analysis model of the as-built bridge. 

This paper describes the main findings from the study. It includes: (i) a brief description of 

the bridge; (ii) an overview of the seismic parameters used in the design of the bridge; (iii) 

development of a finite element model of the bridge for use in the seismic analysis; (iv) 

selection of seismic ground motions representative of the seismic hazard at the bridge 

location; and (v) dynamic analysis of the bridge model and comparison of the analytical 

results with the design values. 

2. Description of the bridge 

The Confederation Bridge consists of two approach bridges at its ends and a main bridge 

between them (Fig. 1). The approach bridge at the Prince Edward Island end (i.e., the east 

end) is 555 m long and has 7 piers, and that at the New Brunswick end (i.e., the west end) is 

1,275 m long and has 14 piers. The longest span of the approach bridges is 93 m. The main 

bridge is 11,080 m long and has 44 piers, designated P1 to P44 in Fig. 1. Of the 45 spans of 

the main bridge, 43 spans are 250 m long and the two end spans are 165 m long. The cross 

section of the bridge girder is a single-cell trapezoidal box. The depth of the girder of the 

main bridge varies from 4.5 m at mid spans to 14 m at piers. The width of the bridge deck is 

11 m. 

 

Figure 1. Elevation of the Confederation Bridge. 

As shown in Fig. 1, the bridge deck of most of the main bridge is at elevation of 40.8 m 

above mean sea level (MSL). The height of the columns of this part of the bridge ranges from 

38 to 62 m. In the middle portion of the main bridge, between piers P17 and P26, the 

elevation of the deck increases from 40.8 m at P17 and P26 to the highest elevation of 59.06 

m at the central span P21-P22. This span is called the navigation span. The elevation of 59.06 

m above MSL provides a 49 m vertical clearance for marine vessel traffic. The height of the 

piers of the navigation span is approximately 75 m.  

Both the approach bridges and the main bridge were built of precast concrete segments 

which were assembled using post-tensioned tendons. A detailed description of the bridge 
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and the construction methods is given in [4]. Because this study is associated with typical 

spans of the main bridge, the discussion in the rest of this section will be focussed on 

structural features of the main bridge. 

The structural system of the main bridge consists of a series of rigid portal frames connected 

by simply supported girders, which are called drop-in girders (Fig. 1). Every second span is 

constructed as a portal frame, and all other spans are constructed using drop-in girders. In 

total, there are 21 portal frames in the main bridge. This structural system was selected to 

prevent progressive collapse of the bridge due to extreme effects of wind, ice, seismic, and 

traffic loads, and ship collisions. 

Figure 2 shows a typical portal frame of the main bridge. The girder consists of two 192.5 

m double cantilevers and a 55 m long segment between them. The connections between 

this segment and the cantilevers are detailed to behave as rigid joints. The drop-in girders 

that connect the frames are also shown in Fig. 2, in the spans adjacent to the portal frame 

span. The length of the drop-in girders is 60 m. Each of the drop-in girders sits on the 

overhangs of the two adjacent portal frames. Four specially designed elastomeric bearings 

are used as supports. One of the bearings is fixed against translations and the remaining 

three allow translations of the girder only in the longitudinal direction. All four bearings 

allow rotations about all axes. This configuration of the bearings provides a hinge 

connection at one end, and longitudinal sliding connection at the other end of the drop-in 

girder. 

 
 

 
 

Figure 2. Typical portal frame. 

The piers are constructed of two precast concrete units each, i.e., the pier base and the pier 

shaft (Fig. 2). The pier base is a hollow unit and has a circular cross section in plan with an 

outer diameter of 8 m at the top and 22 m at the footing. The pier shaft is also a hollow unit 

and consists of a shaft at the upper portion and an ice shield at the bottom portion of the 

pier. The cross section of the pier shaft varies from a rectangular section at the top to an 

octagonal section at the bottom of the shaft. Both the pier base and the pier shaft have very 

complex shapes. Detailed explanations for these and the geometrical properties of the piers 

can be found in [4]. 
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3. Seismic design parameters and seismic hazard for the bridge 

3.1. Seismic design parameters  

The design life of 100 years and the safety index of 4.0 were the basic design requirements 

for the Confederation Bridge. These requirements were much higher than those prescribed 

in the highway bridge design codes available at the time when the bridge was designed. The 

specified design life and safety index for the Confederation Bridge required special studies 

in order to determine the seismic ground motion parameters at the bridge location. 

The seismic ground motion parameters used in the design of the bridge were given in the 

design criteria specified by J. Muller International – Stanley Joint Venture Inc. [5]. These 

included the peak ground acceleration, the peak ground velocity, the peak ground 

displacement, and the seismic design spectrum for the bridge location. The methods for 

determining these parameters were described by [6]. Two methods were used for the 

estimation of the peak ground acceleration of the expected seismic motions at the bridge 

location. The first method was based entirely on probabilistic considerations. According to 

this method, the peak ground acceleration for the design service life of 100 years and the 

design safety index of 4.0 corresponded to an annual probability of exceedance of 0.00027. 

The value of the peak ground acceleration for this probability of exceedance was found to be 

A=0.136 g. 

The second method was primarily based on engineering considerations. In this method, 

first, the peak ground acceleration was determined for a probability of exceedance of 10% 

during the design service life of 100 years. The background for this was to keep the same 

probability of exceedance during the service life as that required by the 1990 edition of the 

National Building Code of Canada (NBCC) [7]. Then, the acceleration value corresponding 

to 10% in 100 years probability of exceedance was increased by applying a factor of 1.43 

representing the product of the commonly used importance factor of 1.3, and an additional 

importance factor of 1.1 because of the unusual importance of the bridge. The resulting peak 

ground acceleration was 0.12 g, and this value was adopted for the design. Using the same 

approach, the peak ground velocity was found to be 10.8 cm/s. Having the values for the 

peak ground acceleration (A) and the peak ground velocity (V), a value for the peak ground 

displacement (D) of 5.9 cm was obtained using the relationship between A, V, and D, 

proposed by [8]. 

The 5% damped elastic seismic design spectrum for horizontal seismic motions was 

developed using the foregoing values for the peak ground acceleration, velocity and 

displacement, and applying the corresponding spectral amplification factors proposed by 

[8] for the mean plus one standard deviation level. This level corresponds to a probability of 

84% that the spectral amplification factors will not be exceeded. The parameters for the 

construction of the horizontal design spectrum are given in Table 1, adopted from the 

design criteria. It can be seen that the spectrum was defined assuming a constant spectral 

acceleration in the short period range (T<0.5 s), a constant spectral velocity in the 

intermediate period range (0.5 s < T< 3.0 s), and a constant spectral displacement in the long 
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period range (T > 3.0 s), which is a common approach for constructing design spectra based 

on peak ground motions and spectral amplification factors [8]. The vertical design spectrum 

was taken as 2/3 of the horizontal spectrum [5], which is also a common practice for defining 

vertical design spectra, based on the findings reported in [9]. 

 

Period, T(s)  Governing parameter Spectral acceleration (g) 

< 0.5 Acceleration = 0.326 g 0.326 

0.5 – 3.0 Velocity = 24.8 cm/s 0.1589 / T 

> 3.0 Displacement = 11.8 cm 0.48 / T 2 

Table 1. Parameters of the design spectrum for horizontal seismic motion; 5% damping [5]. 

Figure 3 shows the horizontal seismic design spectrum. The other spectrum in the figure, 

designated "uniform hazard spectrum" is discussed below. 

 

Figure 3. Design and uniform hazard spectra; 5% damping. 

3.2. Seismic hazard for the bridge location 

Since the development of the design parameters for the Confederation Bridge in early 1990s, 

there have been significant advances in the understanding of the seismic hazard in Canada. 

New source models, and most updated software have been used for the assessment of the 

seismic hazard. It should be mentioned, however, that there are still significant uncertainties 

in the estimation of seismic hazard. As pointed out by [10], the ground motion attenuation 

relations for eastern Canada are the major source of uncertainty in the seismic hazard 

estimations. This is because of lack of recordings of ground motions from strong 

earthquakes in eastern Canada for use in the calibration of the attenuation relations. It is 

noted that the ground motion attenuation relations for eastern Canada may change 

significantly as new events are recorded as reported in [10]. 

The seismic hazard in Canada is currently represented by uniform hazard spectra rather 

than by peak ground motions. A uniform hazard spectrum represents an acceleration 
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spectrum with spectral ordinates that have the same probability of exceedance. Uniform 

hazard spectra can be computed for different probabilities and different confidence levels. 

Confidence levels of 50% (median) and 84% are typically used for uniform hazard spectra. 

These levels represent the confidence (in %) that the spectral values will not be exceeded for 

the specified probability. 

For the purpose of this study, Geological Survey of Canada (GSC) computed the uniform 

hazard spectrum for the bridge location for an annual probability of exceedance of 0.00027 

and confidence levels of 50% and 84%. Among the two confidence levels, the uniform 

hazard spectrum at the 84% confidence level was used in this study. The 84% (rather than 

50%) level was chosen since the spectral amplification factors used in the development of 

the design spectrum are for that level. The 84% level uniform hazard spectrum (UHS) is 

shown in Fig. 3. The spectral values for periods below 2.0 s were provided by GSC. For 

periods between 2.0 s and 4.0 s, the spectrum was extended assuming a constant spectral 

velocity with the same value as that at 2.0 s. This is the same as assumed in the defining of 

the spectral values in the intermediate period range of the design spectrum. 

It can be seen in Fig. 3 that the uniform hazard spectrum is somewhat higher than the 

design spectrum for periods below 1.5 s. As will be discussed later, this difference does not 

have significant effects on the seismic response of the bridge. 

3.3. Scenario earthquakes for the bridge location 

The seismic hazard at a given site represents the sum of the hazard contributions of different 

earthquakes at different distances from the site. For each site, however, there are a few 

earthquakes that have dominant contributions to the hazard. These earthquakes are 

normally referred to as scenario or predominant earthquakes. The shape of the uniform 

hazard spectrum for a given site, representing the seismic hazard for the site, depends on 

the magnitudes of the scenario earthquakes and the distances of these earthquakes from the 

site. In general, the dominant contribution to the short period ground motion hazard is from 

small to moderate earthquakes at small distances, whereas larger earthquakes at greater 

distance contribute most strongly to the long period ground motion hazard. 

For the purpose of the selection of earthquake ground motions for use in the seismic 

analyses, it is necessary to determine the scenario earthquakes for the Confederation Bridge. 

This can be done by computing the seismic hazard contributions of selected magnitude- 

distance ranges that cover all possible magnitude-distance combinations. Figure 4, provided 

by Geological Survey of Canada, shows the magnitude-distance contributions for the 

Confederation Bridge for annual probability of exceedance of 0.000404 (i.e., 2% in 50 years). 

Such graph could not be produced for a probability of exceedance of 0.00027 because of the 

uncertainties in the hazard analysis due to the extrapolations relative to the current hazard 

models. However, it was reported by [11] that the predominant magnitude increases very 

slowly as probability decreases. Also, results reported in [12] indicated that the lowering of 

the probability has small effects on the predominant magnitude and distance values. Given 

this, the magnitude-distance contributions shown in Fig. 4 were considered to be 

representative of those for probability of exceedance of 0.00027. 
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Figure 4. Magnitude-distance contributions to the seismic hazard of the Confederation Bridge, (a) for 

spectral acceleration at period of 0.2 s, and (b)for spectral acceleration at period of 2.0 s. 

Figure 4(a) shows the contributions to the seismic hazard for period of 0.2 s, representing 

the short period ground motion hazard, while Fig. 4(b) shows the contributions for period of 

2.0 s, representing the long period ground motion hazard. The contributions are computed 

for magnitude increments of 0.25, and distance increments of 20 km. It can be seen in Fig. 

4(a) that the scenario earthquakes that have predominant contributions to the short period 

ground motion hazard are with magnitude ranging from 6 to 6.75 at distances of 60 km to 80 

km. Similarly, Fig. 4(b) shows that the scenario earthquakes that have predominant 

contributions to the long period ground motion hazard are with magnitudes ranging from 

7.25 to 7.5 at distances of approximately 500 km. 
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4. Modelling of the bridge 

The structural system of the bridge allows the development of a model of a selected 

segment of the bridge rather than modelling the entire bridge. Because of the 

repetitiveness of the units of the structural system (i.e., portal frames and drop-in girders) 

along the bridge, a proper model of a selected segment would be quite representative of 

the whole bridge. 

 

Figure 5. Model of two portal frames and one drop-in span using 3-D beam elements. 

Figure 5 shows the model used in this study. It is a three-span frame model consisting of 3-D 

beam elements. The modelling was conducted using the computer program SAP 2000 [13]. 

The model represents the bridge segment between piers P29 and P32 (Fig. 1), which consists 

of two rigid portal frames (P29-P30 and P31-P32), and one drop-in span (P30-P31). This 

segment was modelled since it is the instrumented portion of the bridge, and recorded data 

is available for use in the calibration of the model. Also, the height of the piers of this 

segment is quite representative of the main bridge. 

The model consists of 179 beam elements and 180 joints. The bridge girder is modelled by 

123 elements, and each pier is modelled by 14 elements. The interaction with the adjacent 

drop-in girders (left of P32, and right of P29) was modelled by adding masses at the ends of 

the overhangs, as shown in Fig. 5. A half the mass of each drop-in girder was added at the 

end of the supporting overhang in transverse and vertical directions, full mass was added in 

the longitudinal direction for a hinge connection, and no mass was added in the 

longitudinal direction for a sliding connection. Similarly, vertical forces from a half the 

weight of each drop-in girder were applied at the ends of the overhangs. 

In addition to the three-span model (Fig. 5), a single-span model consisting of a single portal 

frame (P31-P32), and a five-span model with three portal frames and two spans with drop-in 

girders (between P29 and P34; Fig. 1) were also considered. While the natural periods and 

mode shapes of these three models were quite comparable, the three-span model was 

chosen for the analysis in this study because it provides results for both the portal frame 

spans and the spans with drop-in girders, and requires an acceptable computation time for 

the analysis. The single-span model does not provide results for the drop-in girder, and the 

five-span model requires an excessive computation time. Note that the segment shown in 

Fig. 5 is normally used as a typical segment in studies on the behaviour of the Confederation 

Bridge [e.g., 14,15]. 
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5. Calibration of the model using data of full scale test 

The model shown in Fig. 5 was calibrated using records of vibrations and tilts of the bridge 

obtained during a full scale tests of the bridge were conducted on April 14, 1997, about two 

months before the official opening of the bridge. The objectives of the tests were: (i) to 

measure the deflection of the bridge pier under static loads, and (ii) to measure the free 

vibrations of the pier due to a sudden release of the static load. The instrumentation of the 

bridge (Fig. 6) was used to measure the bridge response during the pull tests. It consists of 

76 accelerometers and 2 tiltmeters. The accelerometers were used to measure acceleration 

time histories of the response of the bridge. The two tiltmeters installed at locations 3 and 4 

of pier P31 were used to measure the tilts of the pier. 

 

Figure 6. Locations of accelerometers: (a) instrumented sections of the bridge girder and piers, and (b) 

locations of accelerometers in the girder. 

The first pull test was a static test. Using a steel cable, a powerful ship pulled pier P31 in the 

transverse direction of the bridge. The pulling was at the top of the ice shield, approximately 

6 m above the mean sea level. The force was increased steadily up to 1.43 MN, and then 

released slowly.  

The second pull test was a dynamic test. In this test, the load was applied at a slow rate up 

to 1.40 MN and then suddenly released. This triggered free vibrations of the bridge, which 

were recorded by several accelerometers. The acceleration time history of the transverse 

vibrations recorded at the middle of span P31-P32 (location 9 in Fig. 6) along with the 

recorded tilts at locations 3 and 4 were used in the calibration of the model. 

The parameter that was varied in the calibration process was the foundation stiffness. 

Rotational springs in the longitudinal and transverse directions were introduced in the 

model, at the bases of the piers, to represent the foundation stiffness. A trial value of the 

stiffness of the springs was initially selected, and a number of iterations of static and 

dynamic elastic analyses were performed in order to determine the stiffness that provides a 

close match between the computed and the measured tilts and free vibrations of the bridge. 

In each iteration, the tilts and the response were computed by using a load function closely 

representing the actual loading during the test. A modulus of elasticity of the concrete of 

40,000 MPa was used in the analyses. This value was based on experimental data for the 

bridge [14], and is representative of the modulus of elasticity at the time when the test was 

conducted.  
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Figure 7. Acceleration time histories of transverse vibrations at midspan between piers P31 and P32  

(a) measured, (b) computed. 

It was found that the model with a rotational stiffness of 3.35x109 kN·m/rad provides the 

best matching of the computed and measured responses. Figure 7 shows the measured and 

the computed acceleration time histories of the transverse vibrations of the bridge girder at 

the mid-span between piers P31 and P32, and Fig. 8 shows the Fourier amplitude spectra of 

these time histories. It can be seen in Fig. 7 that the computed response of the bridge is very 

similar to the measured response. Also, Fig. 8 shows that the Fourier amplitude spectra of 

the computed and the measured responses are quite close. Note that the first two 

predominant frequencies of the computed response of 0.51 Hz and 1.28 Hz correspond 

respectively to the 7th and the 18th modes of the model. 

Table 2 shows the natural periods of the first ten modes obtained from dynamic analysis of 

the model. For illustration, the vibrations of the first five modes are presented in Fig. 9. It is 

necessary to mention that a similar model was developed by Lau et al. [15] using the 

computer program COSMOS [16]. The natural periods and mode shapes of that model are 

very close to those of the model developed in this study. 

It is useful to mention that certain variations of the dynamic properties of the model are 

expected due to different effects. For example, the modulus of elasticity increases with the 

age of concrete and varies due to temperature changes. Also, the responses used in the 

calibration of the model are substantially smaller than those from expected seismic motions 

at the bridge location. A comprehensive investigation of the possible variations of the 
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dynamic properties due to the foregoing effects conducted by [17] showed that these 

variations are insignificant from practical point of view,  therefore, the model developed as 

described above is considered appropriate for the seismic evaluation of the bridge. 

 

Figure 8. Fourier amplitude spectra of measured and computed acceleration time histories of vibrations 

at midspan between piers P31 and P32. 

 

Mode No. Period (s) Mode type 

1 3.13 Transverse 

2 2.99 Transverse 

3 2.72 Transverse 

4 2.48 Transverse 

5 2.22 Transverse 

6 2.13 Longitudinal 

7 2.08 Transverse 

8 2.01 Longitudinal 

9 1.54 Vertical 

10 1.43 Vertical 

Table 2. Natural periods of the first 10 modes of the bridge model. 

6. Seismic excitations for time-history analysis 

Given the uncertainties in the estimation of the seismic hazard for eastern Canada, a number 

of time-history analyses were conducted using excitation motions well beyond the scenario 

earthquake motions for the bridge location determined from the seismic hazard analysis as 

discussed in Section 3.3. In total, five groups of different seismic excitations were 

considered. 
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Figure 9. Mode shapes of the bridge model. 

Because of lack of strong seismic motion records in eastern Canada, two ensembles of 

ground motion records obtained during strong earthquakes around the world were used in 

this study. The ensembles are described in [18, 19] and are characterized by different peak 

ground acceleration to peak ground velocity ratios (A/V ratios). The average A/V ratio (A in 

g, and V in m/s) of the records of one of the ensembles is 2.06, and that of the other ensemble 

is 0.48. Based on the A/V ratios of the records, the ensembles are referred to as the high and 

low A/V ensembles. In general, high A/V ratios are characteristics of seismic motions from 

small to moderate earthquakes at short distances, and low A/V ratios are characteristics of 

seismic motions from large earthquakes at large distances. Regarding the frequency content, 

high A/V motions normally have a high frequency content, and low A/V motions have a low 

frequency content. Seismic motions with a high frequency content are characterized by 

predominant frequencies higher than approximately 2 Hz (i.e., periods lower than 0.5 s), 

and seismic motions with a low frequency content are characterized by predominant 

frequencies lower than 2 Hz (i.e.,periods longer than 0.5 s). 

In addition to the foregoing ensembles, ground motion records obtained during the 1988 

Saguenay, Quebec earthquake, and the 1982 Miramichi, New Brunswick earthquake were 

used as excitation motions. Also, stochastic seismic motions generated for eastern Canada 

were used.  
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6.1. High A/V excitations 

It is well known that seismic ground motions in eastern Canada are characterized by high 

frequency content and high A/V ratios [19, 20]. As discussed above, an ensemble of records 

with high A/V ratios from strong earthquakes around the world [19] was adopted for the 

analysis. The ensemble consisted of 13 pairs of horizontal and vertical records. The 

magnitudes of the earthquakes are between 5.25 to 6.9, the distances are between 4 km to 26 

km. The average A/V ratio of the records is 2.06. It is necessary to mention that the 

magnitudes of these earthquakes cover the magnitude range of 6.0 to 6.75 of the scenario 

earthquakes for the short period ground motion hazard for the bridge location as discussed 

in Section 3.3. 

The excitation motions for the time-history analysis were obtained by scaling the records to 

the peak ground velocity of 7.1 cm/s computed by GSC for an annual probability of 

exceedance of 0.00027. These excitations are referred to as high A/V excitations. Figure 10 

shows the acceleration response spectra of the scaled horizontal records of the ensemble. For 

comparison, the design spectrum is superimposed on the figure. It can be seen that the 

spectra of the records exceed significantly the design spectrum for periods shorter than 

approximately 0.5 s, and the spectra are well below the design spectrum for periods longer 

than 0.5 s. 

 

Figure 10. Design spectrum and scaled response spectra of high A/V excitations; 5% damping. 

6.2. Low A/V excitations 

The low A/V ensemble consisted of 15 pairs of horizontal and vertical records of seismic 

ground motions [18]. The records were taken during strong earthquakes around the world 

with magnitudes ranging from 6.3 to 8.1. The distances at which the records were taken 

were within the range from 38 km to 469 km. The average A/V ratio of the records is 0.48. 

Both the magnitudes and the distances cover the magnitude and distance ranges of the 

scenario earthquakes for short and long period ground motion hazards for the bridge 

location determined from the seismic hazard analysis (see Section 3.3).  
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Figure 11. Design spectrum and scaled response spectra of low A/V excitations; 5% damping. 

Figure 11 shows the acceleration response spectra of the horizontal records of the low A/V 

ensemble scaled to the peak ground velocity of 7.1 cm/s. The design spectrum is also included 

in the figure. It can be seen that the spectra for the low A/V records are all enveloped by the 

design spectrum. Given this, no time-history analyses were conducted for this ensemble. 

6.3. Saguenay earthquake excitations 

It was of special importance for this study to investigate the performance of the bridge when 

subjected to seismic motions from earthquakes in eastern Canada. On November 25, 1988, 

an earthquake of magnitude of 5.7 occurred in the Saguenay region of the province of 

Quebec. This was the most significant earthquake in the past 50 years in eastern North 

America. Ground motion records were obtained at 16 sites at distances ranging from 43 km 

to 525 km [21, 22]. The response spectra for all horizontal records were scaled to the peak 

ground velocity for the bridge location of 7.1 cm/s and were compared with the design 

spectrum. Based on the comparison, 5 horizontal records and the companion vertical 

records were selected for the analysis. The scaled spectra of the horizontal records together 

with the design spectrum are shown in Fig. 12.  

 

Figure 12. Design spectrum and scaled response spectra of Saguenay earthquake excitations;  

5% damping. 
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It can be seen in the figure that the scaled spectra of the Saguenay earthquake motions are 

significantly higher than the design spectrum for periods below 0.25 s. The highest spectra 

(i.e., spectra of records No. 2 and No. 3) exceed the design spectrum by a factor of 

approximately 5. 

6.4. Miramichi earthquake excitations 

In 1982, several earthquakes occurred in the Miramichi region of the province of New 

Brunswick [23]. The epicentres of earthquakes were approximately 150 km from the bridge 

site. By considering the response spectra, three records representing the strongest motions 

during the earthquakes were selected for this study. It was found that the A/V ratios of the 

records are very high (about 11). Consequently, the ground motions from the Miramichi 

earthquakes are dominated by very short period (i.e., very high frequency) motions. The 

selected records were scaled to the peak ground velocity of 7.1 cm/s for the bridge location, 

and the scaled response spectra of the horizontal records are shown in Fig. 13. It can be seen 

clearly in Fig. 13 that the ground motions of the Miramich earthquakes are dominated by 

very short period (i.e., about 0.04 s). Figure 13 also shows that for the period of 0.04 s, the 

spectral acceleration for the strongest motion (i.e., record. No. 1) is approximately 9 times 

larger than the value of the design spectrum. 

 

Figure 13.  Design spectrum and scaled response spectra of Miramichi earthquake excitations; 

 5% damping. 
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Since the seismic hazard based on the service life and the importance of the bridge 

corresponds to an annual probability of exceedance of 0.00027, it was necessary to scale the 

simulated accelerograms to be consistent with the uniform hazard spectrum (UHS) for a 

probability of exceedance of 0.00027 (Fig. 3). To determine the short-period hazard motions for 

the bridge, the simulated accelerograms for the M=6.0 event were scaled to have the same 

spectral values at the period of 0.2 s as that of the UHS for the bridge location. Similarly, the 

long-period hazard motions were obtained by scaling the simulated accelerograms for the 

M=7.0 event to have the same spectral values as that of the UHS at the period of 2.0 s.  

 

Figure 14. Design spectrum and scaled response spectra of simulated excitations; 5% damping  

(a) short-period hazard motions, (b) long-period hazard motions. 
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and 14(b) respectively. It can be seen in Fig. 14(a) that the spectra of the short-period hazard 

accelerograms exceed the design spectrum by a factor of approximately 2.5 for periods below 

0.2 s. On the other hand, the spectra of the long-period hazard accelerograms (Fig. 14(b)) are 

only about 20% higher than the design spectrum for periods below 0.3 s. Given these 

observations, only the short-period hazard accelerograms were used as excitation motions in 

the time-history analysis. 

7. Dynamic analysis and results 

For the purpose of the seismic evaluation of the bridge, dynamic analyses were conducted 

on the bridge model to determine the responses due to seismic actions represented by the 

uniform hazard spectrum and the selected sets of records. Elastic material properties of the 

model were assumed in the analyses. The dynamic analyses included both response-

spectrum analyses and time-history analyses. 

Response-spectrum analyses 

Response-spectrum analyses were performed for seismic actions represented by the uniform 

hazard spectrum. Separate response-spectrum analyses were carried out for the following 

two cases of seismic actions: (i) seismic actions in the longitudinal and vertical directions of 

the model; and (ii) seismic actions in the transverse and vertical directions. These two cases 

were considered appropriate since the longitudinal and the transverse modes are well 

separated, and the vertical modes are combined mainly with the longitudinal modes. The 

horizontal and the vertical actions were applied simultaneously at the bases of the piers. The 

horizontal seismic actions were represented by the horizontal uniform hazard spectrum 

(UHS) (Fig. 3), and the vertical actions were represented by a spectrum obtained by 

multiplying the horizontal UHS by 2/3. The factor of 2/3 is commonly used for defining 

vertical design spectra relative to horizontal spectra [9]. 

The analyses included the first 100 modes, which covered all natural periods above 0.02 s. A 

modal damping of 5% was used for all the modes. The response maxima at each joint of the 

models were computed by combining the modal responses using the complete quadratic 

combination (CQC) rule. 

As required by the Canadian Highway Bridge Design Codes [24], the mass participation of 

the modes considered in the analysis is larger than 90% in each of the three principal 

directions of the model. Namely, the amounts of the mass participation of the longitudinal, 

transverse and vertical modes used in the analysis are 95.3%, 95.5% and 93.6% respectively. 

Time-history analyses 

Time-history analyses were conducted to determine the responses of the model subjected to 

the records of the selected sets. As in the response-spectrum analysis, simultaneous seismic 

excitations in the longitudinal and vertical directions, and in the transverse and vertical 

directions of the model were used in the time-history analysis. In each analysis, the seismic 

excitations consisted of a pair of scaled horizontal and vertical acceleration time histories 

applied at the bases of the piers.  
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The mode-superposition method was used in the time-history analysis. As in the response-

spectrum analysis, the first 100 modes and modal damping of 5% for all the modes were 

considered in the time-history analysis. The response time histories were obtained at equal 

time interval of 0.005 s. 

8. Discussion of results 

The response quantities obtained from both the response-spectrum analysis and the time-

history analysis included bending moments, shear forces, axial forces, and displacements. A 

detailed review of the response results showed that the observations from the shear forces 

and the axial forces were the same as those from the bending moments. Given this, only the 

bending moments and the displacements were used for the evaluation of the seismic 

performance of the bridge. However only the results for bending moments are shown there, 

the results for deflections can be found in [17]. 

For simplicity in discussing the results, the simultaneous excitations in the longitudinal and 

vertical directions are referred to as excitations in the longitudinal direction (or longitudinal 

excitations), and those in the transverse and vertical directions are referred to as excitations 

in the transverse direction (or transverse excitations). This is the case for both the response-

spectrum and the time-history analyses. 

To assist in understanding the results from the analyses, it is useful to describe the 

convention for the moments, as used in this study. In reference to the coordinate system 

shown in Fig. 5, longitudinal moments in the bridge girder are those that act about the Y-

axis, and transverse moments are those that act about the Z-axis. For the piers, the moments 

that result from longitudinal excitations and act about the Y-axis are referred to as "moments 

in the longitudinal direction", and those that result from transverse excitations and act about 

the X-axis are referred to as "moments in the transverse direction". 

The moments at the joints of the model resulting from the response-spectrum analysis 

represent the maximum absolute values and by definition are positive. The time-history 

analysis provided a comprehensive set of results for each excitation motion. Time histories 

and maximum positive and negative values for the moments and displacements were 

obtained for the joints of the model. Moment and displacement envelopes for both the 

girder and the piers were determined using the largest absolute values of the computed 

(positive and negative) maxima for each of the selected sets of ground motions. 

The comparisons of bending moments are shown in Figs. 15 and 16. Figure 15(a) shows the 

envelopes of the longitudinal moments in the bridge girder for seismic actions in the 

longitudinal direction, and Fig. 15(b) shows the envelopes of the transverse moments for 

seismic actions in the transverse direction. The moment envelopes are plotted using the 

corresponding values at selected sections along the bridge girder. Similarly, Figs. 16(a) and 

16(b) present the moment envelopes for pier P31 for excitations in the longitudinal and 

transverse directions respectively. The moment envelopes for the other piers are similar to 

those for pier P31, and they are not shown here. The designation "Design" in Figs. 15 and 16 
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is for the design responses which were calculated by [7], and "UHS" is for the responses due 

to seismic actions represented by the uniform hazard spectrum. Furthermore, the 

designations "World-wide", "Saguenay", "Miramichi", and "Simulated" are respectively for 

the responses due to the selected world-wide records – short-period set (Fig. 10), the 

Saguenay records (Fig. 12), the Miramichi records (Fig. 13), and the simulated motions – 

short-period hazard set (Fig. 14(a)). 

For the purpose of clarity, the results from the response-spectrum analysis (i.e., the "Design" 

and the "UHS" results) are discussed first. It can be seen from Fig. 15(a) that for the seismic 

actions in the longitudinal direction, the UHS envelope of the moments in the bridge girder 

is somewhat higher than the design envelope. Also, the values of the UHS envelope for the 

pier (Fig. 16(a)) resulting from the longitudinal seismic actions are larger than those of the 

design envelope in the upper 25 m of the pier. The largest differences are approximately 

20%. These observations for the longitudinal seismic actions were expected because the 

periods of the predominant longitudinal and vertical modes of the bridge are shorter than 

1.5 s, i.e., these are within the range in which the uniform hazard spectrum is higher than 

the design spectrum (Fig. 3). For seismic actions in the transverse direction, the UHS 

envelopes of the moments in the bridge girder and in the pier (Figs. 15(b) and 16(b), 

respectively) are all smaller than the design values. This is because the uniform hazard 

spectrum is lower than the design spectrum for the periods of the predominant transverse 

modes, i.e., periods longer than approximately 2.0 s (Fig. 3).  

The 20% exceedance of the design responses by those from the UHS seismic actions in the 

longitudinal direction does not represent any concern regarding the seismic safety of the 

bridge. This is because of the following two reasons. First, conservative assumptions are 

involved in the design through the use of factored material strengths and specified safety 

factors, and therefore the actual capacity (i.e., resistance) of the bridge is substantially larger 

than the demands due to design loads. For example, considering only the resistance factors for 

concrete and reinforcing steel used in the design (i.e., φc=0.75 and φs=0.85, as specified in the 

Design Criteria [5]), the nominal flexural resistance of the bridge is about 20% larger than the 

design resistance. Other safety factors involved in the design, associated with the specified 

safety index [5], provide even larger resistances relative to the design resistance of the bridge. 

The second reason is related to the conservatism of the response resulting from the uniform 

hazard spectrum. By definition, the uniform hazard spectrum at the bridge location 

represents the envelope of the spectral contributions of all possible earthquakes in the 

surrounding area that affect the seismic hazard at the location. This implies that the seismic 

response resulting from the uniform hazard spectrum represents the envelope of the 

response contributions from earthquakes with different magnitudes and at different 

distances from the bridge location, assuming that all the earthquakes occur at the same time. 

Obviously, the response from such combined earthquake actions is much larger than the 

responses from each of the earthquakes considered separately. These considerations clearly 

show that the response-spectrum analysis using the uniform hazard spectrum provides 

significantly larger responses than those from expected seismic ground motions represented 

by that spectrum. 
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Figure 15. Moment envelopes for the bridge girder: (a) longitudinal moments, (b) transverse moments. 

Note: Piers P29 to P32 are indicated in the figures to identify the sections of the girder at the piers. 
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Figure 16. Moment envelopes for pier P31:(a) in longitudinal direction, (b) in transverse direction.     

In regard to the response results obtained from the time-history analysis of the model 

subjected to the selected sets of excitations, it can be seen in Figs. 15 and 16 that the 

maximum moments are all smaller than the design responses for both the longitudinal and 

transverse excitations. This was expected based on the spectral characteristics of the 

excitation motions. As described earlier, the response spectra of the excitation motions used 

in the analysis (i.e., the World-wide short-period set, the Saguenay set, the Miramichi set, 

and the simulated short-period set) are all lower than the design spectrum for periods 

longer than approximately 0.5 s (Figs. 10, 12-14), i.e., within the period range of the 

longitudinal and transverse modes that produce almost the entire response. The 

contributions of the modes with periods below 0.5 s, where the spectra of the excitation 

motions exceed the design spectrum, are very small. 

9. Conclusions 

The objective of this study was to investigate the performance of the Confederation Bridge 

due to seismic excitations expected at the bridge location. A finite element model of a typical 

segment of the bridge was subjected to selected seismic motions representative of the 

seismic hazard for the bridge location. The response results obtained from the dynamic 

analysis of the model were compared with the seismic design parameters. The following are 

the main conclusions from this study: 

 The responses from the linear time-history analyses (displacements and forces) were 

found to be smaller than those used in the design of the bridge. 

 The longitudinal responses of some sections of the bridge obtained from the response 
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uniform hazard spectra) were found to be about 20% larger than the design values. 

Considering the conservatism in the design through the use of factored material 

strengths and specified safety factors, as well as the characteristics of the uniform 

hazard spectra, the exceedance of the design responses by 20% does not represent any 

concern regarding the safety of the bridge. 

 The general conclusion is that the seismic effects considered in the design are 

appropriate for the required safety during the service life of the bridge. 

 A finite element model consisting of 3D beam elements is suitable for the Confederation 

Bridge provided that the foundation flexibility is taken into account in the modeling. 

 The modeling method used in this study is considered to be applicable to single-box 

girder bridges in general. 
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