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1. Introduction

The traditional methodology of Statistical Quality Control (SEQ) is based on a fundamental
supposition that the process of the data is independent statisticaly, however, the data not al‐
ways are independent. When a process follows an adaptable model, or when the process is a
deterministic function, the data will be autocorrelated.

Drawing the process of data is extremely valuable, however, under such circumstances, there
isn’t any scientific reason to use the traditional techniques of statistical control of quality, be‐
cause it will induce erroneous conclusions and facilitate a safety absence that the process is
under statistical control with flaw in the identification of systematic variation of the process.

Thus, the theme here proposed is to investigate the acting and the adaptation of the tradi‐
tional use of the statistical control of process methods in no-stationary processes, and to dis‐
cuss the use of time series methodologies to work with correlated observations.

2. Theorical Review

History of Quality Control is as old as the history of the industry itself. Before the Industrial
Revolution, the quality was controlled by the vast experience of the artisans of the time,
which guarantee product quality. The industrial system has suffered a new technical era,
where the production process split complex operations into simple tasks that could be per‐
formed by workers with specific skills. Thus, the worker is no longer responsible for all
product manufacturing, leaving the responsibility of only a part of it (Juran, 1993).

It is within this context that the inspection, which sought to separate the non-conforming
items from the establishment of specifications and tolerances. A simple inspection did not
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improve the quality of products, only provided information on the quality level of these and
pick the items conform, those not complying. The constant concern with costs and produc‐
tivity has led to the question: how to use information obtained through inspection to im‐
prove the quality of products?

The solution of this question led to the recognition that variability was a factor inherent in
industrial processes and could be understood through the statistics and probability, noting
that could be measurements made during the manufacturing process without having to wait
for the completion of the production cycle.

In 1924, Dr. Walter. A. Shewhart of Bell Telephone Laboratories, developed a statistical
graph to monitor and control the production process, being one of the tools of Statistical
Quality Control. The purpose of these graphs was differentiate between aleatórias1 causes
unavoidable and causes a remarkable process. According to Shewhart (1931), if the random
causes were present, one should not tamper with the process, if assignable causes are
present, one should detect them and eliminate them. In other words, these graphics monitor
the change or lack of instability in the process thus ensuring quality products.

Studies by Johnson and Basgshaw (1974) and Harris and Ross (1991) showed that the graph‐
ics Shewhart and cumulative sums (CUSUM) are sensitive to the presence of autocorrelated
data (data that are not independent of each other over time), especially when the autocorre‐
lation is extreme, ie tools are not suitable for the process control.

You will need to process the data first and then control them statistically. The presence of
autocorrelation in the data leads to growth in the number of false alarms. Alwan and Rob‐
erts (1988) show that many false alarms (signals of special causes) may occur in the presence
of moderate levels of autocorrelation, and the resulting measurement system, the dynamics
of the process or both aspects, and conventional control charts are used without knowing
the presence or absence of correlation, much effort can be spent in vain.

Many methods have been proposed to deal with statistical data autocorrelation. The interest
in the area was stimulated by the work of Box and Jenkins, published in 1970 work entitled
Time Series Analysis: Forecasting and Control, where it was presented among several quan‐
titative methods, methodology used to analyze the behavior of the time series. The method
of Box and Jenkins uses the concept of filter composed of three components: component au‐
toregressive (AR), the integration filter (I) component and the moving average (MA).

The reason for monitoring residual processes is that they are independent and identically
distributed with mean zero, when the process is controlled and remains independent of pos‐
sible differences in the mean when the process gets out of control. Zhang (1998), the tradi‐
tional graphics Shewhart, CUSUM graphics, the graphics may be applied to the EWMA
waste, since the use of graphics residual control has the advantage that they can be applied
to autocorrelated data, even if the data is nonstationary processes. When a graph of residual
control is applied to a non stationary, it can only be concluded that the process has some
deviation in the system because of a non stationary there is no constant average and / or
constant variance.
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3. Statistical Quality Control

The statistical quality control (SQC) is a technique of analyzing the process, setting stand‐
ards, comparing performance, verify and study deviations, to seek and implement solutions,
analyze the process again after the changes, seeking the best performance of machinery
and / or persons (Montgomery, 1997).

Another definition is given by Triola (1999), which states that the SQC is a preventive meth‐
od where the results are compared continuously through statistical data, identifying trends
for significant changes, and eliminating or controlling these changes in order to reduce them
more and more.

SPC charts are designed to detect shifts among natural fluctuations caused by chance noises.
For example, the Shewhart chart utilizes the standard deviation (SD) statistic to measure the
size of the in-control process variability. By graphically contrasting the observed deviations
against a multiple (usually, triple) of SDs, the control chart is intended to identify unusual
departures of the process from its normal state (controlled state).

Under certain assumptions, when the observed deviation from the mean exceeds three SDs,
it is said that the process is out of control since there is only a probability of 0.0026 for the
observation to fall outside the three SD limits given an unshifted mean chance the process
mean is shifted. This Shewhart chart scheme is in effect a statistical hypothesis testing that
reveals only whether the process is still in-control (Chen and Elsayed, 2000).

To better understand the technical statistical quality control, it is necessary to bear in mind
that the quality of a product manufactured by a process is inevitably subject to variation,
and which can be described in terms of two types concerned.

The special cause is a factor that generates variations that affect the process behavior in un‐
predictable ways, it is therefore possible to obtain a standard or a probability distribution.

The common cause is defined as a source of variation that affects all the individual values of a
process. It results from various sources, without having any predominance over the other.

When these variations are significant in relation to the specifications, it runs the risk of hav‐
ing non-compliant products, ie products that do not meet specifications. The elimination of
requiring special causes a local action, which can be made by people close to the process, for
example, workers. Since the common causes require actions on the system of work that can
only be taken by the administration, since the process is itself consistent, but still unable to
meet specifications (Ramos, 2000).

According to Woodall et al (2004), Statistical Quality Control is a collection of tools that are
essential in quality improvement activities.

Descriptive Statistics

According to Reid and Sanders (2002), descriptive statistics can be helpful in describing cer‐
tain characteristics of a product and a process. The most important descriptive statistics are
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measures of central tendency such as the mean, measures of variability such as the standard
deviation and range, and measures of the distribution of data. We first review these descrip‐
tive statistics and then see how we can measure their changes.

The mean: To compute the mean we simply sum all the observations and divide by the total
number of observations. The equation for computing the mean is:

x̄ =
∑
i=1

n
xi

n

where: x̄= mean;

xi= the observationi,i =1,2,...,n;

n= number of observation.

The range and standard deviation: There are two measures that can be used to determine the
amount of variation in the data. The first measure is the range, which is the difference be‐
tween the largest and smallest observations in a set of data. Another measure of variation is
the standard deviation. Standard deviation is a statistic that measures the amount of data dis‐
persion around the mean.The equation for computing the standard deviation is (Reid and
Sanders, 2002),:

σ =
∑
i−1

n
(xi − x̄)2

n −1

where: σ= standard deviation of a sample

x̄= the mean;

xi= the observationi,i =1,2,...,n;

n= number of observation in the sample

Small values of the range and standard deviation mean that the observations are closely
clustered around the mean. Large values of the range and standard deviation mean that the
observations are spread out around the mean.

Distribution of the data

A third descriptive statistic used to measure quality characteristics is the shape of the distri‐
bution of the observed data. When a distribution is symmetric, there are the same number of
observations below and above the mean. This is what we commonly find when only normal
variation is present in the data. When a disproportionate number of observations are either
above or below the mean, we say that the data has a skewed distribution.
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Figure 1. Normal distributions with varying standard deviations (adapted of Reid and Sanders, 2002).

Figure 2. Differences between symmetric and skewed distributions (adapted of Reid and Sanders, 2002).

Control Charts

In any production process, no matter how well designed or carefully maintained it is, a cer‐
tain amount of inherent or natural variability will always exist. Natural variability is the cu‐
mulative effect of many causes small, essentially unavoidable. When this variation is
relatively small, generally considered an acceptable level of performance of the process. In
the context of statistical quality control, this natural variability often called "a stable system
of special causes" is said to be in statistical control. Control charts are used to examine
whether or not the process is under control, ie, indicate only random causes are acting on
this process. Synthesize a wide range of data using statistical methods to observe the varia‐
bility within the process, based on sampling data. Can inform us at any given time as the
process is behaving, if it is within prescribed limits, signaling thus the need to seek the cause
of variation, but not showing us how to eliminate it (Ryan, 1989).

It was W. A. Shewhart (1931) which introduced control charts in 1924 with the intention to
eliminate variations to distinguish them from the common causes and special causes. A con‐
trol chart consists of three parallel lines: a line that reflects the average level of process oper‐
ation, and two external lines called upper control limit (UCL) and lower control limit (LCL),
calculated according to the standard deviation of a process variable (Shewhart, 1931).

There are several types of control charts, as the characteristic values or purpose, and we can
divide them by attribute control charts and control charts for each variable.
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Control charts by attributes

A control chart for attributes, on the other hand, is used to monitor characteristics that have
discrete values and can be counted. Often they can be evaluated with a simple yes or no de‐
cision (Reid and Sanders, 2002).

There are two broad categories of control charts for attributes: those who classify items into
compliance or non-compliant, as is the case of graphs of the fraction of the number of faulty
or defective, and those who consider the number (amount) of nonconformity existing graph‐
ics such as the number of defects in the sample or per unit.

According to Ramos (2000), the difficulties are:

a) due to the small size of the batch, the approximation of binomial and Poisson by the nor‐
mal distribution may no longer be valid, in which case the limits of control charts can not be
determined by standard formulas;

b) the probability distributions Binomial and Poisson may not adequately represent the
studied phenomenon. This occurs when the parts are manufactured simultaneously (multi‐
ple mold cavities, for example), in which the incidence of defects or defects is not independ‐
ent, statistically speaking.

Control charts for variable

Control charts for variables monitor characteristics that can be measured and have a contin‐
uous scale, such as height, weight, volume, or width. When an item is inspected, the varia‐
ble being monitored is measured and recorded (Reid and Sanders, 2002).

They may not be used for quality characteristics that cannot be measured because the con‐
trol of the process requires monitoring of the mean and variability of measures. The graph‐
ics control variables used to data that can be measured or which undergo a continuous
variation.

Some of the methods suitable for the construction of different control charts are the Shewhart
chart, Chart MOSUM - Moving Sum, the EWMA Chart - Weight Exponential Moving Average (Ex‐
ponentially Weighted Moving Averages) and CUSUM Chart - Cumulative Sum (Cumulative Sum).

Shewhart control charts

The first formal model of control chart was proposed by Dr. Walter A. Shewhart (1931),
which now bears his name. Let X a statistical sample which measures a characteristic of the
process used to control a production line. Suppose that μ is the population mean of X and σ
is the population standard deviation.

The following equations are used to describe the three parameters that characterize the She‐
whart control charts (Montgomery, 1997)

UCL=μ + kσx̄ (1)
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CL=μ (2)

LCL=μ −kσx̄ (3)

where UCL is the upper control limit, CL is the center line or the average of the process, LCL
is the lower control limit of the process, and k is the distance the control limits by the center
line, which is expressed as a multiple of the σstandard deviation. The value of k is 3 most
widely used.

The control graph is divided into zones (Figure 3). If a data point falls outside the control
limits, we assume that the process is probably out of control and that an investigation is
warranted to find and eliminate the cause or causes.

Figure 3. Control chart (adapted of Reid and Sanders, 2002).

X̄ - S  Control Charts

A mean control chart is often referred to as an X̄ chart. It is used to monitor changes in the
mean of a process. The X̄ - S  control charts are generally preferred over the X̄ - Rcharts
when n10 or 12, since for larger samples the amplitude sampling R loses the efficiency to
estimateσ, when compared to the sample standard deviation. The X̄  control charts is used
in order to control the mean of the considered process. The two charts should be used simul‐
taneously (Werkema, 1995).

The limits of the X̄ - S  control charts are obtained in a similar manner, calculated under the
assumption that the quality feature of interest (x) has a normal distribution with (μ) mean
and (σ) standard deviation, ie, in abbreviated form (Panagiotidou and Nenes, 2009; Werke‐
ma, 1995).

x ~ N (μ, σ)

However, satisfactory results are obtained even when this assumption is not true and distri‐
bution of x can only be considered approximately normal. In practice the μ and σ parame‐
ters are unknown and must be estimated from sample data. The method of estimation of μ
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and σ again involves taking m samples (subgroups rational) primary, each containing n ob‐
servations of the quality characteristic considered.

Estimation ofμ:

The (μ) mean is estimate through the overall average of the sample (x )̄̄as defined in the
equation:

x̄̄ =
x̄1 + x̄2 + ... + x̄m

m =
1
m∑i=1

m
x̄ i (4)

where x̄ i, i =1,2,...,m is the i-ésima sample mean:

x̄ i =
xi1 + xi2 + ... + xin

n
(5)

Estimation of σbased on sample standard deviation:

The (σ) standard deviation is estimate based in the (s̄) standard deviation mean as defined
by:

s̄ =
s1 + s2 + ... + sm

m =
1
m∑i=1

m

Si
(6)

where si, i =1,2,...,m is the i-ésima sample of the standard deviation:

si =
1

n −1∑l=1

n
(xij - x̄ i)2 (7)

It can be shown that the standard deviation sigma must be estimated byσ
∧

=
s̄
c4

, where c4is a

correction factor, tabulated as a function of size n of each sample.

Expressions for calculating the limits of X̄ −Scontrol charts:

X̄  control charts -

UCL = x̄̄ + 3s̄ / c4 n = x̄̄ + A3s̄ (8)

CL = x̄̄ (9)

LCL = x̄̄ - 3s̄ / c4 n = x̄̄ - A3s̄ (10)
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where A3 =3 / c4 n is a constant tabulated as a function of size n of each sample.

S control charts -

UCL = s̄ + 3σ̂s = B4s̄ (11)

CL = s̄ (12)

LCL = s̄ −3σ̂s = B3s̄ (13)

where σ̂s is a estimative of the standard deviation of the distribution of the S and B3 and B4
are constants tabulated in function of size n of each sample (Panagiotidou and Nenes, 2009;
Werkema, 1995).

Identification of Process in Control

It is understood that the process is controlled to:

a) all points on the chart are within the control limits;

b) the arrangement of points within the control limits is random.

Identification of Process out of Control

According Montgomery (2009), various criteria may be simultaneously applied to a control
graph for determining whether the process is under control. The basic criterion is one or
more points outside the control limits. The additional criteria are sometimes used to increase
the sensitivity of the control graphs when there is a small change in the process, so as to re‐
spond quickly to an assignable cause.

The Shewhart control charts have some rules sensitizers (Montgomery, 2009):

1. One or more points outside the control limits;

2. Two or three consecutive points outside the warning limits of 2-sigma;

3. Four or five consecutive points above of the limits of one-sigma;

4. A sequence of eight consecutive points of a same side of the center line;

5. Six points in a sequence is always increasing or decreasing;

6. Fifteen points in sequence in the area C (both above and below the center line);

7. Fourteen points alternately in sequence up or down;

8. Sequence of eight points on both sides of the center line CL;

9. A standard non-random data;

10. One or more points near a limit or control.
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Typical patterns of behavior are non-random (Lourenço Filho, 1964):

a) Periodicity - increases and decreases at regular intervals of time. The periodicity appears
as one of the operating conditions of the process suffers periodic changes or when regular
exchange of machines or operators.

b) Trend - when the points are directed substantially upwards, or downwards. The general
trend indicates a gradual deterioration of a critical process. This "decay" can be a tool wear
and operator fatigue.

c) Shift - changes in performance of the process. The cause of the change can be introduction
of new machinery, new operators, new methods or even a quality program, which usually
brings motivation and improves performance.

4. Time Series

The time series analysis aims to: investigate the mechanism generating the time series; to
forecast future values of the series, to describe the behavior of the series; seek relevant perio‐
dicities in the data. A model that describes a series does not necessarily lead to a procedure
(or formula) prediction. You need to specify a function-loss, beyond the model, to get the
procedure. A function-loss, which is often used, is the mean square error, although on some
occasions, other criteria or loss functions are more appropriate (Morettin and Toloi, 2006;
Camargo and Russo, 2011).

Autocorrelation

The autocorrelation is a measure of dependency between observations Same series separat‐
ed by a given range named retardation.

Be a time seriesY t . The ratio between the covariance (Y t ,Y t−k) and variance (Y t) defines a
autocorrelation coefficient simple (rk ), while the sequence of rkvalues is called autocorrela‐
tion function simple (AFS) (Camargo and Russo, 2006).

The graphical representation of this function is called correlogram. Formally, the autocorre‐
lation coefficients simple between Y t  and their Y t−k lagged values, are defined by:

rk =
cov(Y t , Y t−k )

var(Y t)
=
∑

t=k+1

n
(Y t − Ȳ )(Y t−k − Ȳ )

∑
t=1

n
(Y t − Ȳ )2

(14)
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We can see the existence of unit root if the values of the autocorrelation function begin near
to unit and decline slowly and gradually as increases the distance (number of lags, k) be‐
tween the two sets of observations to which they concern, calling himself, not stationary and
follows a random walk. If these coefficients decline rapidly as this distance increases, there
is a series of characteristics of stationary (Morettin and Toloi, 2006; Russo et al. 2006).

Stationary Processes

A common assumption in many time series techniques is that the data are stationary. A sta‐
tionary process has the property that the mean, variance and autocorrelation structure do
not change over time. A process is considered stationary if its statistical characteristics do
not change with time.

Stationarity is a assumption in time series analysis. It means that the main statistical proper‐
ties of the series remain unchanged over time. More precisely, a process {Y t} is said to be
completely stationary or strict sense stationary (abbreviated as SSS) if the process Y t  and
Y t+n have the same statistics for anyn. So, the characteristicsY (t+n), for all n, will be the same
asY t .

Non-Stationary Processes

A big reason for using a stationary data sequence instead of a non-stationary sequence is
that non-stationary sequences, usually, are more complex and take more calculations when
forecasting is applied to a data series (Beusekom, 2003).

Where a series submit over time variation in your parameters, so, we have a series non-sta‐
tionary, which when submitted to differentiation process becomes stationary. If the time ser‐
ies is not stationary, we can often transform it to stationarity with one of the following way:

a) Difference the data, by create the new series

Y t = X t −X t−1

The differenced data will contain one less point than the original data. Although you can
difference the data more than once, one difference is usually sufficient.

b) If the data contain a trend, we can fit some type of curve to the data and then model the
residuals from that fit.

c) For non-constant variance, taking the logarithm or square root of the series may stabilize
the variance. For negative data, you can add a suitable constant to make all the data positive
before applying the transformation. This constant can then be subtracted from the model to
obtain predicted (i.e., the fitted) values and forecasts for future points.

White noise

In according of Cochrane (2005), The building block for our time series models is the white
noise process, which I’ll denoteεt . In the least general case,

εt ~ i.d .d .N (0,σεt

2)
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Notice three implications of this assumption:

1. E (εt)= E (εt |εt−1, εt−2...) = E(εt |all information at t −1)=0

2. E (εtεt− j)=cov(εtεj)=0

3. var(εt)=var(εt |εt−1, εt−2...) =var(εt |all information at t −1)=σ 2

The first and second properties are the absence of any serial correlation or predictability.
The third property is conditional homoscedasticity or a constant conditional variance. Later,
we will generalize the building block process. For example, we may assume property 2 and
3 without normality, in which case the εt  need not be independent. We may also assume the
first property only, in which case εt  is a martingale difference sequence (Cochrane, 2005).

Summary of time series models:

Autoregressive models - AR(p)

The class of models purely autoregressive is defined by:

Y t =
at

φp(B) (15)

where φp(B) has p coefficients. The AR (p) assumes that the result is the weighted sum of its
p past values than white noise.

The condition of stationarity of the AR (p) states that all the p roots of the characteristic
equation fall outside the unit circle (Russo, et al, 2006).

Moving average models - MA(q)

According to Russo, et al (2009), the class of moving averages models is defined by

Y t =θq(B)at (16)

where θq(B) has q coefficients. The models MA (q) resulting from the linear combination of
random shocks that occurred during the current and past periods.

The invertibility condition requires that all roots of the characteristic equation fall outside
the unit circle.

Autoregressive and moving average models - ARMA (p,q)

The class of models, autoregressive-moving average is of type

Y t =
θq(B)at
φp(B) (17)

Practical Concepts of Quality Control42



where φp(B)has p coefficients and θq(B) has q coefficients. With a combination of models AR
(p) and MA (q), it is expected that the models ARMA (p,q) be models extremely parsimoni‐
ous, using few coefficients to explain the same serie.

From the standpoint of adjustment, it is very important because you can adjust more quick‐
ly. The condition of stationary and invertibility of a ARMA (p, q) require that all p roots of f
(B) 0 and all the q roots of q (B) 0 fall outside the unit circle (Russo, et al, 2009).

Autoregressive Integrated Moving Averages Models - ARIMA (p,d,q)

The class of autoregressive-integrated-moving-average models are defined by the equation,

Y t =
θq(B)at

φp(B)(1−B)d (18)

to an integrator positive d. Made the differentiation of the series d times necessary to make it
stationary, then the ARIMA(p, d, q) model can be adjusted through the ARMA(p,q) model
(Russo, et al, 2009).

Sazonal Model - SARIMA

According to Fischer (1982), the appearance of some short-term cyclical behavior is called
seasonality. For a full treatment about series of time, need to characterize and eliminate this
cyclic function of time to become the condition of stationarity.

Seasonality means a tendency to repeat a certain behavior of the variable that occurs with
some regularity in time. That is, are those series that have variations of a similar amount of
time to another, characterized by showing high serial correlation between observations of
the variable spaced by the period of seasonality, and, of course, the serial correlation be‐
tween the next observations.

Similar to the process ARIMA (p,d,q) this process develops the model in one of three basic
forms of description of each value ofY t , and applies the same procedures developed for a
model where the seasonal component is not present. After establishing the value of the vari‐
able in period t+h, then applies the expectancy operator. Forecast errors, confidence inter‐
vals and updating are treated similarly to the ARIMA model (Fischer, 1982).

Box-Jenkins Methodology

This method for the prediction is based on the setting called tentative ARIMA models, has a
flexible modeling methodology that forecasts are made from the current and past values of
these series. Therefore, describing both the stationary behavior as the non-stationary zero.
ARIMA models are able to describe the process of generating a variety of series for forecast‐
ers (corresponding to the filters) without taking into account the economic relations, for ex‐
ample that generated the series (Morretin and Toloi, 2006).

The determination of the best model for "Box and Jenkins" methodology following this steps
(Leroy, 2006):
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Identification

Identification is the most critical phase of the "Box and Jenkins" methodology, it is possible
that several researchers to identify different models for the same series, using different crite‐
ria of choice (ACF, PACF, Akaike, etc..). Typically, the models should be parsimonious. The
study analyzes the ACF and PACF, and attempts to identify the model. The process seeks to
determine the order of (p,d,q), based on the behavior of the Autocorrelation Functions
(ACF) and Partial Autocorrelation (PACF), as well as their respective correlograms.

Estimation:

After identifying the best model should then adjust and examine it. The adjusted models are
compared using several criteria. One of the criteria is the of parsimony, in which it appears
that the incorporation of coefficients additional improves the degree of adjustment (increas‐
es the R2 and reduces the sum of squared residuals) model, but you reduces the degrees of
freedom. One of ways to improve the degree of adjustment of this model to time series data
is to include lags additional in Cases AR (p), MA (q), ARMA (p, q) and ARIMA.

The inclusion of additional lags implies increasing the number of repressors, which leads to
a reduction in the sum of squared residuals estimated. Currently, there are several criteria
for selection of models that generate a trade-off between reductions in the sum of squared
residuals and estimated a more parsimonious model.

Generally, when working with lagged variables are lost about the time series under study.
Therefore, to compare alternative models (or competitors) should remain fixed number of
information used for all models compared.

Checking:

Aspiring to know the efficacy of the model found, takes place waste analysis. If the residuals
are autocorrelated, then the dynamics of the series is not completely explained by the coeffi‐
cients of the fitted model. It should be excluded from the process of choosing the model(s)
with this feature.

An analysis of existence (or not) of serial autocorrelation of waste is made based on the func‐
tions of autocorrelation and partial autocorrelation of waste and their respective correlo‐
grams. It is noteworthy that, when estimating a model, it is desired that the error produced
by it have characteristic "white noise" that is, this will be independent and identically dis‐
tributed (i.i.d. condition).

Forecast:

Predictions can be ex-ante, made to calculate future values of short-term variable in the study.
Or, ex-post held to generate values within the sample period. The better these last, the more
efficient the model estimated. We choose the best model throught the lower Mean Absolute
Percentage Error (MAPE). It is a formal measure of the quality of forecasts ex-post. There‐
fore, the lower value of the MAPE is the best fit of forecasts of the model to time series data.
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5. Methodology and Results

In this work we analyzed the Têxtil Oeste Ltda industry, whose Statistical Control of Proc‐
esses implantation happened in 1999. Here, we limited to analyze the control charts for con‐
tinuous variables as tools used for the control of the process. The conventional Shewhart
control charts were used added of other appropriated models to transformations of autocor‐
relations data in data that are independent and usually distributed.

In thread’s polypropylene process there are several outputs to consider critical. One of these
outputs is the thread’s resistance. In an effort to develop a control plan to assure quality of
the appropriate surface, it was certain that the resistance has a main impact on surface quali‐
ty of the thread. So, to verify the quality of the thread, it’s resistance should be controlled.

At once, the data used in this study is the daily data of the thread’s polypropylene resistan‐
ces control.

These data are for the models identification and estimation and for the models predictive
capacity analysis. Before control charts be applied, three fundamental assumptions must be
met: The process is under control; the data are normally distributed; and the observations
are independent.

Montgomey (2009) considers that the points out of control are stipulated reasonably well for
the controls charts of Shewhart when the normality assumption is somewhat violated, but
when observations aren’t independent, control charts yield deceiving results. Many process‐
es don’t produce independent observations. Alwan (1991) describes a method for control
charting with autocorrelated data. The method involves fitting a time series curve and con‐
trol charting the residuals.

It was made a study that helped to verify where it is the largest instability of the process, so
that we can make a better control of the system. It is suspected that the daily thread’s resist‐
ance data aren’t independent, and the result of a plot of these data, as showing in Figure 4,
supports this belief.

The problem is to implement statistical control for a process that has autocorrelation (Dob‐
son, 1995). The Figure 4 shows us the great data variability. Calculations were performed to
confirm the autocorrelation’s suspected.

Calculations were done to confirm the suspected autocorreation. The autocorrelation coeffi‐
cient for thread’s resistance is defined as

rk =
∑
t=1

n−k
(xt − x̄)(xt+k − x̄)

∑
t=1

n
(xt − x̄)2

, k =0,1,2, …

where k = time periods ahead

n = total number of data
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Real observations

Daily data
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Figure 4. Daily data.

The standard error at lag k, if k =1 isSek =
1
n , and the standard error at lag k, if k1 is

Sek =
1
n (1 + 2∑

i=1

k−1
ri

2)
The autocorrelation coefficient for k =1 and k =2are:

r1 =
160680,24

971034 =0,16

and

r2 =
100113,10

971034 =0,10

The standard error for k =1 and k =2are:

Se1 =
1

1041 =0,0310

and

Se2 =
1

1041 1 + 2(0,16)2 =0,0317

The Figure 5 shows the autocorrelation coefficients and 2 standard errors for these coeffi‐
cients for up to 24 lags, and the Figure 6 shows the partial autocorrelation coefficients and
the 2 standard errors for these coefficients for up to 24 lags.
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Autocorrelations coefficients 

Thread's resistance

(Standard errors are white-noise estimates)

169,9 ,0000169,2 ,0000169,1 ,0000168,3 ,0000165,6 ,0000163,5 ,0000160,6 ,0000159,8 ,0000159,7 ,0000150,6 ,0000149,9 ,0000146,6 ,0000143,2 ,0000142,9 ,0000138,5 ,0000130,4 ,0000124,0 ,0000120,3 ,0000109,2 ,000096,06 ,000072,41 ,000060,15 ,000043,26 ,000026,15 ,0000  Q p

 24 +,025 ,0306 23 +,010 ,0306 22 +,027 ,0306 21 +,051 ,0307 20 +,045 ,0307 19 +,052 ,0307 18 +,028 ,0307 17 +,002 ,0307 16 +,093 ,0307 15 +,026 ,0308 14 +,056 ,0308 13 +,057 ,0308 12 +,015 ,0308 11 +,065 ,0308 10 +,088 ,0308  9 +,078 ,0308  8 +,059 ,0309  7 +,103 ,0309  6 +,112 ,0309  5 +,150 ,0309  4 +,108 ,0309  3 +,127 ,0309  2 +,128 ,0309  1 +,158 ,0310Lag Corr. S.E.

-1,0 -0,5 0,0 0,5 1,0

Figure 5. Autocorrelations coefficients.

As we can see, the data are highly autocorrelated. The autocorrelation coefficients for lags
1-7 exceed two the standard errors. Before a control charts can be used, these data must be
transformed to guarantee the independence of each observation.

To find an independent, normally distributed data set, Montgomery (2009) recommends to
model the structure and to develop the control charting of the residuals directly.

The Box & Jenkins’s methodology was used, to determine the parameters of the model (Box,
Jenkins and Reinsel, 2008).

Partial autocorrelations coefficients

Thread's resistance

(Standard errors assume AR order of k-1)

 24 +,004 ,0310 23 -,020 ,0310 22 +,002 ,0310 21 +,018 ,0310 20 +,017 ,0310 19 +,027 ,0310 18 +,004 ,0310 17 -,038 ,0310 16 +,065 ,0310 15 -,012 ,0310 14 +,020 ,0310 13 +,025 ,0310 12 -,037 ,0310 11 +,012 ,0310 10 +,036 ,0310  9 +,029 ,0310  8 -,002 ,0310  7 +,046 ,0310  6 +,055 ,0310  5 +,109 ,0310  4 +,068 ,0310  3 +,096 ,0310  2 +,106 ,0310  1 +,158 ,0310Lag Corr. S.E.

-1,0 -0,5 0,0 0,5 1,0

Figure 6. Partial autocorrelations coefficients.
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Thread's resistance

ARIMA (1,1,1) Residuals

Daily data
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Figure 7. Residuals of thread’s resistance.

The Figures 8 and 9 show that the obtained model is adapted to the resistance data. The au‐
tocorrelation coefficients were calculated for the transformed data defined for the model
ARIMA (1,1,1), to validate that the autocorrelation has been removed from the data.

Autocorrelation coefficients 

for transformed data

Thread' resistance:  ARIMA (1,1,1) Residuals

(Standard errors are white-noise estimates)

19,83 ,706319,72 ,658618,73 ,661918,52 ,615818,42 ,559718,42 ,494718,38 ,430817,85 ,398614,08 ,592911,82 ,692910,19 ,747910,16 ,680610,12 ,6052 6,34 ,8497 6,29 ,7905 6,17 ,7231 6,16 ,6296 5,10 ,6476 4,88 ,5593 4,60 ,4664  ,96 ,9161  ,95 ,8137  ,34 ,8450  ,00 ,9738  Q p

 24 -,010 ,0306 23 -,031 ,0306 22 -,014 ,0307 21 +,010 ,0307 20 -,001 ,0307 19 +,006 ,0307 18 -,022 ,0307 17 -,060 ,0307 16 +,046 ,0308 15 -,039 ,0308 14 -,005 ,0308 13 -,006 ,0308 12 -,060 ,0308 11 -,007 ,0308 10 +,011 ,0308  9 -,003 ,0309  8 -,032 ,0309  7 +,015 ,0309  6 +,016 ,0309  5 +,059 ,0309  4 +,003 ,0309  3 +,024 ,0309  2 +,018 ,0310  1 -,001 ,0310Lag Corr. S.E.

-1,0 -0,5 0,0 0,5 1,0

Figure 8. Autocorrelation coefficients.
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Partial autocorrelation coefficients

 for transformed data

Thread's resistence: ARIMA (1,1,1) Residuals

(Standard errors assume AR order of k-1)

 24 -,010 ,0310 23 -,032 ,0310 22 -,007 ,0310 21 +,006 ,0310 20 +,002 ,0310 19 +,008 ,0310 18 -,019 ,0310 17 -,052 ,0310 16 +,047 ,0310 15 -,036 ,0310 14 -,002 ,0310 13 -,003 ,0310 12 -,062 ,0310 11 -,007 ,0310 10 +,008 ,0310  9 -,005 ,0310  8 -,035 ,0310  7 +,012 ,0310  6 +,016 ,0310  5 +,058 ,0310  4 +,003 ,0310  3 +,024 ,0310  2 +,018 ,0310  1 -,001 ,0310Lag Corr. S.E.

-1,0 -0,5 0,0 0,5 1,0

Figure 9. Partial autocorrelations coefficients for transformed data.

Figure 8 and 9 show that the defined data is independent from an observation to another
observation. And the table 1 shows the Chi-square test to verify the normality.

For two degrees of freedom, χ0,05
2 =5,991. As the calculation qui-square value was χ 2 =

5,0415, and it is smaller than the critical value, the data are considered as normal. Now the
behavior of the productive process can be verified.

The Chi-square test was executed, to verify the normality:

Lower Limit Upper Limit Obs Exp (Obs-Exp)²/ Exp

649,0708 743,3123 744 696,1916 3,2831

648,9230 743,4601 672 696,1916 0,8406

648,7757 743,6074 702 696,1916 0,0485

648,6288 743,7543 690 696,1916 0,0551

648,4823 743,9008 720 696,1916 0,8142

Total    5,0415

Table 1. Test the Chi-square.

Figure 10 shows (X̄ ) and (S) charts for the real data.
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Figure 10. X̄  and S charts for real data.

Through the illustration 10 we can notice the sequence of observations and limits of the tra‐
ditional Shewhart charts, where several points were out of the control limits, indicating that
the process is apparently out of control. In fact, before the transformation of the data, we
found the data really correlated what took us to model for a process ARIMA (Wardell, Mos‐
kowitz and Plante, 1994).
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Figure 11. (X̄ ) and (S) charts for transformed data.
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Figure 11 shows (X̄ ) and (S) charts for transformed data. Verifications revealed that the sys‐
tem had been drained during this time period and actions were taken to correct the prob‐
lem. The problem was in the first observations, which were ignored, the normality condition
was verified, and the control charts X̄  and S were replotted.

Through the Figure 11 we can observe that the control charts for the same data, indicate that
the residual values are practically inside of control limits for the average. According to War‐
dell, Moskowitz and Plant (1994) it is entirely possible in traditional control charts, the
points are out of the limits because of the systematic or the common causes and not because
of occurrence of special causes.

6. Conclusion

According to Reid and Sanders (2002), there are several types of statistical quality control
(SQC) techniques. One category of SQC techniques consists of descriptive statistics tools
such as the mean, range, and standard deviation. These tools are used to describe quality
characteristics and relationships. Another category of SQC techniques consists of statistical
process control (SPC) methods that are used to monitor changes in the production process.
To understand SPC methods you must understand the differences between common and as‐
signable causes of variation.

Common causes of variation are based on random causes that cannot be identified. A certain
amount of common or normal variation occurs in every process due to differences in materi‐
als, workers, machines, and other factors. Assignable causes of variation, on the other hand,
are variations that can be identified and eliminated. An important part of statistical process
control (SPC) is monitoring the production process to make sure that the only variations in
the process are those due to common or normal causes. Under these conditions we say that a
production process is in a state of control. You should also understand the different types of
quality control charts that are used to monitor the production process: x-bar charts, R-range
charts, p-charts, and c-charts, Reid and Sanders (2002).

In this chapter we show how to use the techniques of quality control for autocorrelated data.
Thus, the data collected were analyzed simultaneously, the continuous variables, to find a
possible reason for lack of control in the final stages of production. We presented methods
for using the techniques of statistical quality control for correlated observations. It is the au‐
tocorrelation data, is modeled by the continuous variables ARIMA. With the residuals ob‐
tained in the models, we applied the Shewhart control charts.

The traditional Shewhart control charts can be used for process control, even when the as‐
sumptions of independent observations are transgressed, by removing the autocorrelation
with a time series models. For applying those techniques, the thread’s resistance stayed in
control state for the average. The result was a decrease in the variation of surface quality of
the polypropylene thread that is produced, while simultaneously it increased the surface
quality average.
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Many companies, because they believe in the advantages that can be obtained from the prac‐
tice of SQC, invest many resources in the implementation, especially of the conventional
control charts, called Shewhart charts. Since it is not necessary to a thorough knowledge of
statistics, is more favorable to the deployment of these graphs by the companies, but not al‐
ways the results are as expected. There is a concern with the correlation of data.

In this context, the text presented throughout this chapter can serve as a reference to the in‐
dustries that face difficulties in deploying statistical quality control. However, one must be
careful with the type of variables to analyze what is being proposed, which allows us to con‐
clude that this proposed combination of techniques for time series with control charts, claim
to be complete and extended to cover all possible difficulties we can find. In the classic mod‐
el of monitoring, there is no such information to identify an non conform item, in the end of
teh proces, no one knows how to do for the same does not happen, because the variables
used in the previous process are autocorrelated.
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