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1. Introduction 

In most of the real world engineering applications, stability analysis of compressed 
members is very crucial. There have been many researches dedicated to the buckling 
behavior of axially compressed members. On the other hand, obtaining analytical solutions 
for the buckling behavior of columns with variable cross-section subjected to complicated 
load configurations are almost impossible in most of the cases. Some of the works related to 
obtaining analytical or analytical approximate solutions for the column buckling problem 
are provided below.  

The problems of buckling of columns under variable distributed axial loads were solved 
in detail by Vaziri and Xie [1] and others. Some analytical closed-form solutions are given 
by Dinnik [2], Karman and Biot [3], Morley[4], Timoshenko and Gere [5] and others. One 
of the detailed references related to the structural stability topic is written by Simitses and 
Hodges [6] with detailed discussions. Iyengar [7] made some analysis on buckling of 
uniform with several elastic supports. Wang et al. [8] have given exact mathematical 
solutions for buckling of structural members for various cases of columns, beams, arches, 
rings, plates and shells. Ermopoulos [9] found the solution for buckling of tapered bars 
axially compressed by concentrated loads applied at various locations along their axes. Li 
[10] gave the exact solution for buckling of non-uniform columns under axially 
concentrated and distributed loading. Lee and Kuo [11] established an analytical 
procedure to investigate the elastic stability of a column with elastic supports at the ends 
under uniformly distributed follower forces. Furthermore, Gere and Carter [12] 
investigated and established the exact analytical solutions for buckling of several special 
types of tapered columns with simple boundary conditions. Solution of the problem of 
buckling of elastic columns with step varying thickness is established by Arbabei and Li 
[13]. Stability problems of a uniform bar with several elastic supports using the moment-



 
Advances in Computational Stability Analysis 116 

distribution method were analyzed by Kerekes [14]. The research of Siginer [15] was 
about the stability of a column whose flexural stiffness has a continuous linear variation 
along the column. Moreover, the analytical solutions of a multi-step bar with varying 
cross section were obtained by Li et al. [16-18]. The energy method was used by Sampaio 
et al. [19] to find the solution for the problem of buckling behavior of inclined beam-
column. Some of the important researchers who studied the mechanical behavior of beam-
columns are Keller [20], Tadjbakhsh and Keller [21] and Taylor [22]. Later on, analytical 
approximate techniques were used for the stability analysis of elastic columns. Coşkun 
and Atay [23] and Atay and Coşkun [24] studied column buckling problems for the 
columns with variable flexural stiffness and for the columns with continuous elastic 
restraints by using the variational iteration method which produces analytical 
approximations. Coşkun [25, 26] used the homotopy perturbation method for buckling of 
Euler columns on elastic foundations and tilt-buckling of variable stiffness columns. 
Pınarbaşı [27] also analyzed the stability of nonuniform rectangular beams using 
homotopy perturbation method. These techniques were also used successfully in the 
vibration analysis of Euler-Bernoulli beams and in the vibration of beams on elastic 
foundations. [28-29]   

Recently, by the emergence of new and innovative semi analytical approximation methods, 
research on this subject has gained momentum. Analytical approximate solution techniques 
are used widely to solve nonlinear ordinary or partial differential equations, 
integrodifferential equations, delay equations, etc. The main advantage of employing such 
techniques is that the problems are considered in a more realistic manner, and the solution 
obtained is a continuous function which is not the case for the solutions obtained by 
discretized solution techniques.  

The methods that will be used throughout this study are, Adomian Decomposition Method 
(ADM), Variational Iteration Method (VIM) and Homotopy Perturbation Method (HPM). 
Each technique will be explained first, and then all will be applied to a selected case study 
related to the topic of the article. 

2. Problem formulation 

Derivation of governing equations related to stability analysis is given in detail in 
Timoshenko and Gere [5], Simitses and Hodges [6], and Wang et al. [8]. The reader can also 
refer to any textbook related to the subject. In this section, only the governing equation will 
be given for the related cases. 

Consider the elastic columns given in Fig.1. The governing equation for the buckling of such 
columns is 

 
2 2 2

2 2 2
( ) 0

d y d y d y
EI x P

dx dx dx

 
  

  
 (1) 
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Figure 1. Elastic columns with various end conditions 

In the case of constant flexural rigidity (i.e. EI is constant), Eq.(1) becomes 

 
4 2

4 2
0

d y d yP

EIdx dx
   (2) 

where EI is the flexural rigidity of the column, and P is the applied load. Both Eqs. (2) and 
(3) are solved due to end conditions of the column. Some of these conditions are shown in 
Fig.1. In this figure, letters are used for a simplification to describe the support conditions of 
the column. The first letter stands for the support at the bottom and the second letter for the 
top. Hence, CF is Clamped-Fixed, PP is Pinned-Pinned, C-P is Clamped-Pinned and C-S is 
Clamped-Sliding Restraint. 

The governing equations (1) and (2) are both solved with respect to the problem’s end 
conditions. The end conditions for the columns shown in Fig.1 are given below: 

Pin support:  

 0y  and
2

2
0

d y

dx
  (3) 

Clamped support: 

 0y  and 0
dy

dx
  (4) 

Free end: 

 and
3

3
0

d y dyP

EI dxdx
   (5) 
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Sliding restraint: 

 0
dy

dx
 and  (6) 

The governing equation given in Eq.(2) is a fourth order differential equation with constant 
coefficients which makes it possible to obtain analytical solutions easily. However, Eq.(1) 
includes variable coefficients due to variable flexural rigidity. For this type of differential 
equations, analytical solutions are limited for the special cases of EI(x) only. It is not possible 
to obtain a solution for any form of the function EI(x).   

In some problems, obtaining analytical solutions is very difficult even for a constant 
coefficient governing equation. Consider the buckling of a column on an elastic foundation 
shown in Fig.2. 

 
Figure 2. Column with continuous elastic restraints. 

The governing equation for the column in Fig.2 is 

 
2 2 2

2 2 2
( ) 0

d y d y d y
EI x P ky

dx dx dx

 
   

  
 (7) 

which, for the constant EI becomes 

 
4 2

4 2
0

d y d yP k
y

EI EIdx dx
    (8) 

In Eqs.(7) and (8), k is the stiffness parameter for the elastic restraint. The solution of Eq.(8) 
for the CF column is given in [8] as 
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2 2 2 2 2 2 4 4

2 2

( ) 2 cos cos ( ) ( )

2 ( ) sin sin 0

S T S T T S S T S T

ST S T T S

 



        
    

 (9) 

Although Eq.(8) is a linear equation with constant coefficients, obtaining a solution from 
Eq.(9) is not that easy. It is very interesting that, even with a software, one can not easily 
produce the buckling loads in a sequential order from Eq.(9). In view of this experience, 
an analytical solution for Eq.(7) is almost impossible to obtain except very limited EI(x) 
choices.  

Hence, analytical approximate techniques are efficient alternatives for solving these 
problems. By the use of these techniques, a solution which is continuous in the problem 
domain is possible for any variation in flexural rigidity. These techniques produce the 
buckling loads in a sequential order, and it is also very easy to obtain the buckling mode 
shapes from the solution provided by the method used. These are great advantages in the 
solution of such problems. 

3. The methods used in the elastic stability analysis of Euler columns 

3.1. Adomian Decomposition Method (ADM) 

In the ADM a differential equation of the following form is considered 

 ( )Lu Ru Nu g x    (10) 

where, L is the linear operator which is highest order derivative, R is the remainder of linear 
operator including derivatives of less order than L, Nu represents the nonlinear terms, and g 
is the source term. Eq.(10) can be rearranged as 

 ( )Lu g x Ru Nu    (11) 

Applying the inverse operator L-1 to both sides of Eq.(11) and employing given conditions; 
we obtain 

      1 1 1( )u L g x L Ru L Nu      (12) 

After integrating source term and combining it with the terms arising from given conditions 
of the problem, a function f(x) is defined in the equation as 

    1 1( )u f x L Ru L Nu     (13) 

The nonlinear operator ( )Nu F u is represented by an infinite series of specially generated 

(Adomian) polynomials for the specific nonlinearity. Assuming Nu is analytical, we write 

 
0

( ) k
k

F u A




  (14) 
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The polynomials Ak’s are generated for all kinds of nonlinearity, so that they depend only on 
uo to uk components and can be produced by the following algorithm. 

 0 0( )A F u  (15) 

 1 1 0( )A u F u  (16) 

 2
2 2 0 1 0

1
( ) ( )

2!
A u F u u F u    (17) 

 3
3 3 0 1 2 0 1 0

1
( ) ( ) ( )

3!
A u F u u u F u u F u      (18) 

  

The reader can refer to [30, 31] for the algorithms used in formulating Adomian 
polynomials. The solution u(x) is defined by the following series   

 
0

k
k

u u




  (19) 

where, the components of the series are determined recursively as follows: 

 0 ( )u f x  (20) 

    1 1
1 ,      0k k ku L Ru L A k 

      (21) 

3.2. Variational Iteration Method (VIM) 

According to VIM, the following differential equation may be considered: 

 ( )Lu Nu g x   (22) 

where L is a linear operator, N is a nonlinear operator, and g(x) is an inhomogeneous source 
term. Based on VIM, a correct functional can be constructed as follows: 

  1
0

( ) ( ) ( ) ( )  
x

n n n nu u Lu Nu g d            (23) 

where  is a general Lagrangian multiplier which can be identified optimally via the 
variational theory. The subscript n denotes the nth-order approximation, u is considered as a 
restricted variation i.e. 0u  . By solving the differential equation for  obtained from 
Eq.(23) in view of  0u  with respect to its boundary conditions, Lagrangian multiplier  
can be obtained. For further details of the method the reader can refer to [32]. 
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3.3. Homotopy Perturbation Method (HPM) 

HPM provides an analytical approximate solution for problems at hand as the other 
previously explained techniques. Brief theoretical steps for the equation of following type 
can be given as 

 ( ) ( ) ( )  ,  L u N u f r r    (24) 

with boundary conditions ( , ) 0B u u n   . In Eq.(24) L is a linear operator, N is a nonlinear 
operator, B is a boundary operator, and f(r) is a known analytic function. HPM defines 
homotopy as  

 ( , ) [0,1]v r p R    (25) 

which satisfies the following inequalities: 

 
0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0H v p p L v L u p L v N v f r        (26) 

or  

 
0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0H v p L v L u pL u p N v f r       (27) 

where r  and [0,1]p  is an imbedding parameter, u0 is an initial approximation which 
satisfies the boundary conditions. Obviously, from Eq.(26) and Eq.(27) , we have : 

 
0( ,0) ( ) ( ) 0H v L v L u    (28) 

 ( ,1) ( ) ( ) ( ) 0H v L v N v f r     (29) 

As p is changing from zero to unity, so is that of  ( , )v r p  from 0u  to ( )u r . In topology, this 
deformation 0( ) ( )L v L u  and ( ) ( ) ( )L v N v f r   are called homotopic. The basic assumption 
is that the solutions of Eq.(34) and Eq.(35)  can be expressed as a power series in p such that: 

 2 3
0 1 2 3 ...v v pv p v p v      (30) 

The approximate solution of ( ) ( ) ( )  ,  L u N u f r r    can be obtained as :  

 
0 1 2 31

lim ...
p

u v v v v v


       (31) 

The convergence of the series in Eq.(31) has been proved in [33]. The method is described in 
detail in references [33-36]. 

4. Case studies 

4.1. Buckling of a clamped-pinned column 

The governing equation for this case was previously given in Eq.(1). ADM, VIM and HPM 
will be applied to this equation in order to compute the buckling loads for the clamped-
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pinned column with constant flexural stiffness, i.e. constant EI, and variable flexural stiffness, 
i.e. variable EI with its corresponding mode shapes. To achieve this aim, a circular rod is 
defined with an exponentially varying radius. The case is given in Fig.3, and rod and its 
associated boundary conditions are also provided in Eqs.(3-4). As a case study, first the 
formulations for constant stiffness column by using ADM, VIM and HPM are given, and then 
applied to the governing equation of the problem. Afterwards, a variable flexural rigidity will 
be defined for the same column, and the same techniques will be used for the analysis. 

 
Figure 3. CP column with constant and variable flexural rigidity 

4.2. Formulation of the algorithms for uniform column 

4.2.1. ADM 

The linear operator and its inverse operator for Eq.(2) is 

 
4

4
( ) ( )

d
L

dx
    (32) 

 1

0 0 0 0

( ) ( )    
x x x x

L dx dx dx dx        (33) 

To keep the formulation a general one for all configurations to be considered, the boundary 
conditions are chosen as (0)Y A , (0)Y B  , (0)Y C   and (0)Y D  . Suitable values 
should be replaced in the formulation with these constants. In this case, 0A   and 0B   
should be inserted for the CP column. Hence, the equation to be solved and the recursive 
algorithm can be given as 

P 

x 

P

x
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 LY Y   (34) 

 
2 3

1( )
2! 3!
x x

Y A Bx C D L Y       (35) 

 1
1 ( ),      0n nY L Y n

    (36) 

Finally, the solution is defined by 

 0 1 2 3 ...Y Y Y Y Y      (37) 

4.2.2. VIM 

Based on the formulation given previously, Lagrange multiplier,  would be obtained for 
the governing equation, i.e. Eq.(2), as 

 
 3

( )
3!

x
 


  (38) 

An iterative algorithm can be constructed inserting Lagrange multiplier and governing 
equation into the formulation given in Eq.(31) as 

  1
0

( ) ( ) ( )  
x

iv
n n n nY Y Y Y d           (39) 

where  is normalized buckling load for the column considered. Initial approximation for 
the algorithm is chosen as the solution of 0LY  which is a cubic polynomial with four 
unknowns to be determined by the end conditions of the column.  

4.2.3. HPM 

Based on the formulation, Eq.(2) can be divided into two parts as  

 ivLY Y  (40) 

 NY Y   (41) 

The solution can be expressed as a power series in p such that 

 
2 3

0 1 2 3 ...Y Y pY p Y p Y    
 (42) 

Inserting Eq.(50) into Eq.(35) provides a solution algorithm as 

 0 0 0iv ivY y   (43) 
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 4
1 0 0 0iv ivY y Y     (44) 

 1 0,      2iv
n nY Y n     (45) 

Hence, an approximate solution would be obtained as 

 0 1 2 3 ...Y Y Y Y Y      (46) 

Initial guess is very important for the convergence of solution in HPM. A cubic polynomial 
with four unknown coefficients can be chosen as an initial guess which was shown 
previously to be an effective one in problems related to Euler beams and columns [23-29]. 

4.3. Computation of buckling loads 

By the use of described techniques, an iterative procedure is constructed and a polynomial 
including the unknown coefficients resulting from the initial guess is produced as the solution 
to the governing equation. Besides two unknowns from the initial guess, an additional 
unknown  also exists in the solution. Applying far end boundary conditions to the solution 
produces a linear algebraic system of equations which can be defined in a matrix form as 

    ( ) 0M       (47) 

where   ,
T

A B  . For a nontrivial solution, determinant of coefficient matrix must be zero. 
Determinant of matrix  ( )M      yields a characteristic equation in terms of . Positive real 
roots of this equation are the normalized buckling loads for the Clamped-Pinned column.  

4.4. Determination of buckling mode shapes 

Buckling mode shapes for the column can also be obtained from the polynomial 
approximations by the methods considered in this study. Introducing, the buckling loads into 
the solution, normalized polynomial eigen functions for the mode shapes are obtained from 

 
 

 
1/21 2

0

,
 ,  1,2,3,...

,

N j

j

N j

Y x
Y j

Y x dx





 
 
 
  


 (48) 

The same approach can also be employed to predict mode shapes for the cases including 
variable flexural stiffness.  

4.5. Analysis of a uniform column 

After applying the procedures explained in the text, the following results are obtained for 
the buckling loads. Comparison with the exact solutions is also provided in order that one 
can observe an excellent agreement between the exact results and the computed results. 
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Twenty iterations are conducted for each method, and the computed values are compared 
with the corresponding exact values for the first four modes of buckling in the following table.  

 

Mode Exact ADM VIM HPM 

1 20.19072856 20.19072856 20.19072856 20.19072856 
2 59.67951594 59.67951594 59.67951594 59.67951594 
3 118.89986916 118.89986857 118.89986857 118.89986868 
4 197.85781119 197.88525697 197.88522951 197.88520511 

Table 1. Comparison of normalized buckling loads ( 2 /PL EI ) for the CP column 

From the table it can be seen that the computed values are highly accurate which show that 
the techniques used in the analysis are very effective. Only a few iterations are enough to 
obtain the critical buckling load which is Mode 1. Additional modes require additional 
iterations. The table also shows that additional two or three iterations will produce an 
excellent agreement for Mode 4. Even with twenty iterations, the error is less than 0.014% 
for all the methods used in the analyses. 

The buckling mode shapes of uniform column for the first four modes are depicted in Fig.4. 
To prevent a possible confusion to the reader, the exact mode shapes and the computed ones 
are not shown separately in the figure since the obtained mode shapes coincide with the 
exact ones. 

 
Figure 4. Buckling modes of CP column. 
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4.6. Buckling of a rod with variable cross-section 

A circular rod having a radius changing exponentially is considered in this case. Such a rod 
is shown below in Fig.5. The function representing the radius would be as 

 0( ) e axR x R   (49) 

where Ro is the radius at the bottom end, L is the length of the rod and 1aL  .  

 
Figure 5. Circular rod with a variable cross-section 

Employing Eq.(49), cross-sectional area and moment of inertia for a section at an arbitrary 
point x becomes: 

 2
0( ) e axA x A   (50) 

 4
0( ) e axI x I   (51) 

where 

 2
0 0A R  (52) 

 
4
0

0 4

R
I


  (53) 

Governing equation for the rod was previously given in Eq.(1) as 

2 2 2

2 2 2
( ) 0

d y d y d y
EI x P

dx dx dx

 
  

  
 

4.6.1. Formulation of the algorithms 

4.6.1.1. ADM 

Application of ADM leads to the following 

  28 16 ( ) 0ivY aY a x Y       (54) 

x 

Ro 

L
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where 

 4( ) e axx   (55) 

and, where is normalized buckling load 2
0/PL EI . Once   is provided by ADM, buckling 

mode shapes for the rod can also be easily produced from the solution. 

ADM gives the following formulation with the previously defined fourth order linear 
operator. 

   
2 3

1 28 16 ( )
2! 3!
x x

Y A B L aY a x Y         (56) 

4.6.1.2. VIM 

Lagrange multiplier is the same as used in the uniform column case due to the fourth order 
derivative in Eq.(38). Hence, an algorithm by using VIM can be constructed as 

   2
1

0

( ) 8 16 ( )  
x

iv
n n n n nY Y Y aY a x Y d    

         (57) 

4.6.1.3. HPM 

Application of HPM produces the following set of recursive equations as the solution 
algorithm. 

 0 0 0iv ivY y   (58) 

  2
1 0 0 08 16 ( ) 0iv ivY y aY a x Y        (59) 

  2
1 18 16 ( ) 0,      2n n nY aY a x Y n  
       (60) 

4.6.2. Results of the analyses 

The proposed formulations are applied for two different variations, i.e. 0.1aL   and 0.2aL  . 
Twenty iterations are conducted for each method, and the computed normalized buckling 
load 2

0/PL EI values are given for the first four modes of buckling in Tables 2 and 3.  
 

Mode ADM VIM HPM 

1 16.47361380 16.47361380 16.47361380 
2 48.69674135 48.69674135 48.69674135 
3 97.02096924 97.02096916 97.02096921 
4 161.45155447 161.45151518 161.45150000 

Table 2. Comparison of normalized buckling loads ( 2
0/PL EI ) for 0.1aL   



 
Advances in Computational Stability Analysis 128 

Mode ADM VIM HPM 

1 13.35006457 13.35006457 13.35006457 

2 39.47004813 39.47004813 39.47004813 

3 78.64155457 78.64155458 78.64155466 

4 130.86858532 130.86856343 130.86853842 

Table 3. Comparison of normalized buckling loads ( 2
0/PL EI ) for 0.2aL   

The buckling mode shapes of the rod for the first four modes are depicted in between Figs.5-
9. To demonstrate the effect of variable cross-section in the results, a comparison is made 
with normalized mode shapes for a uniform rod which are given in Fig.4. Constant flexural 
rigidity is defined as 0.1aL   in these figures. 

 
 
 
 
 

 
 
 
 
 
 

Figure 6. Comparison of buckling modes for CP rod (Mode 1) 
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Figure 7. Comparison of buckling modes for CP rod (Mode 2) 

 

 
Figure 8. Comparison of buckling modes for CP rod (Mode 3) 
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Figure 9. Comparison of buckling modes for CP rod (Mode 4) 

5. Conclusion 

In this article, some analytical approximation techniques were employed in the elastic 
stability analysis of Euler columns. In a variety of such methods, ADM, VIM and HPM are 
widely used, and hence chosen for use in the computations. Firstly, a brief theoretical 
knowledge was given in the text, and then all of the methods were applied to the selected 
cases. Since the exact values for the buckling of a uniform rod were available, the analyses 
were initially conducted for that case. Results showed an excellent agreement with the exact 
ones that all three methods were highly effective in the computation of buckling loads and 
corresponding mode shapes. Finally, ADM, VIM and HPM were applied to the buckling of 
a rod having variable cross section. To this aim, a rod with exponentially varying radius was 
chosen and buckling loads with their corresponding mode shapes were obtained easily.  

This study has shown that ADM, VIM and HPM can be used effectively in the analysis of 
elastic stability problems. It is possible to construct easy-to-use algorithms with these 
methods which are highly accurate and computationally efficient. 
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