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1. Introduction 

The climatic factors and their variability, both spatial and temporal, linked to precipitation 

decreasing and irregular distribution, due to climatic changes, have been gathering a higher 

weight in the definition of water management policies. These policies have important 

implications on agriculture. Using new technologies that allow a better use of water requires 

institutional changes in major areas. The first point is the need for base information with an 

adequate spatial and temporal resolution. The work we have done includes itself in the 

water efficient and sustained use, allowing the improvement of irrigation systems and it’s 

the result of a jointly effort of several teams based on an international project. 

PLEIADES (Participatory multi-Level EO-assisted tools for Irrigation water management 

and Agricultural Decision-Support) is a research and technological development project co-

funded by the European Commission's Sixth Framework Programme within its Sustainable 

Development, Global Change and Ecosystems Priority. The project responds to the 

identified need for targeted research in the area of Integrated management strategies and 

mitigation technologies, topic Water in Agriculture: new systems and technologies for 

irrigation and drainage. A set of pilot Case Studies represents a sample of the wide range of 

conditions found in the European and Southern Mediterranean and in the Americas, 

covering Portugal, Spain, Italy, Greece, Turkey, Morocco, Mexico, Peru, and Brazil.  

The Portuguese working area was the Caia irrigation area, a subsystem of Guadiana basin, 

located in the southeast of Portugal, near the border with Spain. PLEIADES was expected to 

generate new knowledge on the functioning and performance of these pilot areas. This in 

turn aimed at providing the knowledge and information base for decision makers at all 

levels on agricultural water needs and consumption. It also set out to provide the basis for 

assessing the benefits and threats potentially brought about by new technologies to all 

actors in changing environments. The project was also expected to generate new tools for 
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irrigation water management, combining innovative sensor technology with flexible easy-

to-use Decision-Support Systems for adaptive management. These tools were designed to 

help farmers to control water more efficiently and improve the environmental and economic 

performance of their irrigation systems. 

In our work, we address the efficient and sustainable use of water for food production in 

water-scarce environments. We consider the economic, environmental, technical, social, and 

political dimensions through a synergy of leading-edge technologies and participatory 

approaches. These technologies provide easy access to information for all stakeholders while 

active participation will be effected by spatial information and innovative networking tools. 

Our aim is to improve the performance of irrigation schemes by means of a range of 

measures. Major technical innovation is made possible by the comprehensive space-time 

coverage of EO data and the interactive networking/connecting capabilities of Information 

and Communication Technologies (ICT).  

The project was designed to assess and demonstrate in an operational perspective how the 

integration of Earth observation (EO) techniques in routine Irrigation Advisory Services 

(IAS) can improve the efficiency in the use of water for irrigation. The use of leading-edge 

Information and Communication Technology (ICT) tools in the generation and distribution 

of information makes the EO easily available to IAS and the farmers. The project WebGIS 

(www.pleiades.es) was one of the central outcomes of our project. Its key feature is the 

operational generation of irrigation scheduling information products from a virtual 

constellation of EO satellites and their delivery to farmers in near-real-time using leading-

edge on-line analysis and visualization tools. It is supported by a methodology package to 

derive crop coefficients and further advanced parameters from EO satellite images in an 

operational processing chain. 

The overall goal is to improve and optimise irrigation and drainage systems by means of 

new technologies. In this context, New Technologies (NT) include Earth observation, 

Geographical Information Systems, Information and Communication Technologies, and 

Decision-Support systems. In order to achieve this overall goal 3 specific objectives have 

been set: 

1. In accordance with the identified needs of stakeholders, multi-level NT-assisted tools 

will be adapted and developed for farmers and other water managers to optimise their 

water use at farm, irrigation scheme and at river-basin levels. 

2. To conduct trial campaigns in pilot areas with the active participation of users at farm 

and irrigation scheme level. 

3. To evaluate the performances of the NT-assisted tools using an extended evaluation 

system covering technical, economic, environmental, social and political dimensions 

and involving stakeholders at all levels over the whole lifetime of the project. 

PLEIADES aims to demonstrate that New Technologies (NT) can effectively support the 

optimisation of irrigation schemes and in the long run foster sustainability by providing 

comprehensive and timely spatial information that supports decisions made at many levels: 

farms, irrigation schemes and river-basins.  
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We recognise that improvements will come not only from technical innovations but also 

from changes in social factors related to water governance, participation and social learning. 

Thus the NT-assisted tools will be deployed to facilitate technical and social learning 

enabling farmers to act responsibly by fine tuning their on-farm practices in accordance with 

the river-basin water status.  

This work addresses the efficient and sustainable use of water for food production in water 

scarce environments. It aimed to improve the performance of irrigation schemes by means 

of a range of measures that consider the economic, environmental, technical, social, and 

political dimensions through a synergy of leading-edge technologies and participatory 

approaches. Major social and technical innovation was made possible by the comprehensive 

space-time coverage of Earth observation (EO) data and the interactive 

networking/connecting capabilities of Information and Communication Technologies. The 

system we developed stands mainly over FAO normative, about culture water needs and 

the calculation of cultural coefficient (Kc) in a simple way, directly from remote sensing data. 

For that we simply use radiometric parameters derived from visible and infrared bands. 

Crop evapotranspiration can be calculated using the crop coefficient (Kc) defined as the ratio 

of total evapotranspiration (ET) by reference evapotranspiration (ET0). 

Earth Observation (EO) provides an objective evaluation of crop water demand; this 

information can be used at different decision levels (from the farmers to the river basin 

authorities) to promote a more efficient use of water resources in agriculture. A rational 

management of water resources for irrigation requires information characterized by high 

temporal and spatial variability, which cannot be monitored with traditional field 

inspections. EO is a mature technology, ready for being transferred to operational 

applications in agricultural water management. Detailed data on crop development and 

irrigation needs are timely distributed to final users by means of modern Information and 

Communication Technologies. 

Three main usages of EO based products have been conceived: 

1. Distribution of personalized information to a range of stakeholders (i.e. landowners, 

irrigation farmers and their associations) concerning crop and water status;  

2. Integration in GIS based river-basin water management tool, for distributed water 

balance calculations.  

3. A portfolio of EO based products has been set-up, and the methodologies for their 

retrieval have been defined, starting from past experiences and scientific knowledge 

available among the partners in the Consortium. FAO. methodology has been adopted 

as the standard procedure for computing crop water requirements from EO based 

products.  

Three different levels of EO based products are distinguished: 

1. Land-use (irrigated vs. non irrigated crops; crop inventory maps);  

2. Basic (vegetation cover, Leaf Area Index, Crop Coefficients, potential 

evapotranspiration, Crop Water Requirements among others);  
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3. Advanced (reference and actual evapotranspiration, biomass, yield). 

The conceptual approach for the derivation of EO model of the service is split up into the 

following steps:  

1. Acquisition and analysis of high resolution satellite images in the visible and infrared 

spectrum;  

2. Local agro-meteorological data acquisition (e.g. temperature, humidity, wind speed, 

sun radiation, rainfall);  

3. Field validation through measurements in selected areas;  

4. Elaboration of EO based products;  

5. Data quality check and integration in a dedicated Geographical Information Systems 

(GIS) for irrigation management from field to district and hydrological basin scale;  

6. Real-time distribution of personalized irrigation advices on a weekly basis directly to 

farmers by means of different communication systems (Internet, text and graphical 

messages by using GSM/UMTS).  

The validation of the different methodologies for the retrieval of EO based products has 

been an important part of the work carried out within all the pilot areas. Intensive field 

campaigns carried out simultaneously to satellite acquisitions have produced a large 

dataset for calibration and validation purposes. Micrometeorological instrumentations 

have been installed for comparison between field measurements of crop water use and 

estimates from EO processing. New methodologies have been set-up i.e. for improving 

the estimation of canopy parameters and for calculating reference evapotranspiration 

from geostationary satellites (of particular relevance in areas with very limited 

meteorological data). 

2. Virtual constellation and space segment operationality  

Farm management requires monitoring of agricultural crops at high spatial resolution and 

frequent temporal coverage during the entire growing season. The necessary spatial 

resolution can be provided by the current high-resolution sensors (20-30m pixel size), like 

TM, ETM+, SPOT, LISS, ASTER, ALI, or in the case of agricultural plots with special spatial 

requirements by very-high resolution sensors (like Quickbird, Ikonos). However, canopy 

architecture and biophysical parameters describing the canopy, like leaf area index, 

fractional ground cover, biomass, evapotranspiration, water stress, evolve continuously 

during the crop growing season.  

A single satellite with a 16 day repeat time (like Landsat) would provide little useful 

information, considering also that cloud conditions may increase the time period between 

useable images. The critical requirement of frequency of coverage combined with high 

spatial resolution has not been satisfied after more than thirty years of Landsat mission 

launching. Satellite constellations have been proposed for this purpose by some studies, 

but a practical solution for the near future is not at hand. Our solution is a virtual 

constellation of EO satellites that corresponds to the needs and user requirements of 
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irrigation scheduling and precision agriculture. Therefore, we have developed a unified 

procedure to obtain consistent time series of vegetation parameters of interest from this 

virtual constellation. 

2.1. Definition and operational aspects 

The virtual constellation (VC) is defined as a set of EO satellites, each of which provides the 

necessary data to derive NDVI and other vegetation parameters at the spatial resolution 

required for the given application. In our case, for irrigation scheduling a spatial resolution 

of at least 30 m is imperative to resolve the major part of agricultural fields (plots). An 

additional key selection criterion is near-nadir observation, such that bi-directional effects 

are minimized. Landsat is the backbone of this VC, because of its excellent operational 

availability and low cost.  

Due to the technical failure in Landsat7 all images taken on/after 31 May 2003 have no 

useable data in a significant part of each image. The software correction offered by USGS 

involves spatial degradation, which moves the spatial resolution of ETM+ out of the interest 

margin of our VC, except for areas located directly in the centre of a scene (non-affected 

area). This sensor failure clearly demonstrates the vulnerability of the operational space 

segment for this and similar applications.  

Currently available alternative platforms are less ideal for operations, since they are either 

much more expensive (IRS, ALI, Spot), more complicated (Spot, due to changing view 

angles), and/or not operational (Aster, no rush service). A number of emerging platforms 

may add more elements to the VC. Our experience in PLEIADES has shown that all can be 

used to complete the TM time series. Ikonos and Spot were successfully tested in the Italian 

pilot area. The experience of Spot programming for this area showed that on average 5-6 

images per month can be obtained (fairly cloud free and with incidence angles less than 15º). 

We want to stress here again that the space segment is the most vulnerable part of the 

entire operational system. For this reason, urgent actions are required to ensure the 

capability to obtain adequate EO images at the adequate coverage frequency and low cost. 

As a practical near-term solution for the case of cloudiness and/or satellite sensor failure, a 

contingency scenario was developed to base the PLEIADES operational system on a 

synergistic combination of EO data, field data, and an expert system of local crop 

coefficient (Kc) curves.  

These curves have been developed from the synthesis of previous campaigns, specially 

tailored to the crops and climatology of a given area. In the case of an EO data failure (either 

missing image or clouds), the system would draw on a default list of Kc curves (per crop, 

crop cycle, sowing date) from (in order of priority) field data, the local expert system data 

base, and the look-up tables recommended by the Food and Agriculture Organization 

(FAO) [1]. Medium-resolution sensors (like AVHRR or MODIS) are also used to derive 

support data for this purpose.  
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2.2. Methodology to derive PLEIADES parameters from EO data 

All biogeophysical parameter calculation from EO starts with a pre-processing of EO data, 

composed of three main steps: i) Geometric correction and image re-sampling; ii) 

Cross-satellite intercalibration; iii) Atmospheric correction. 

Semi-automatic procedures have been developed in order to elaborate Kc maps from EO 

data in the minimum possible time. Pre-processing requires approximately half of the 

elaboration time of the entire process. Once georeferenced surface reflectance has been 

calculated in each pixel, the algorithms for determining Kc are quite straightforward. 

The elaboration for step (i) is based on consolidated procedures available in each pilot 

zone. This step does not necessary requires a standardization, and it strictly linked to the 

topographical mapping standard adopted in each area. The principal recommendation 

coming from PLEIADES is to adopt procedures that do not alter substantially the 

radiometric content of data; as such, first-degree relationships should be preferentially 

used for coordinates transformation and nearest neighbour techniques for pixel 

resampling. 

2.3. Cross-sensor intercalibration  

When using different sensors from our virtual constellation to generate time series of maps 

of geobiophysical parameters, a reliable methodology is needed to intercalibrate the 

observations from different sensors at different observation scales in different platforms. 

Intercalibration between observations or cross-calibration of sensors aims at developing 

relationships that allow to translate reflectances and spectral vegetation indices from one 

sensor to another.  

For this purpose, we have performed an observational study, comparing reflectances and 

NDVI from near-synchronous image pairs of ETM+ as the reference sensor and TM, LISS, 

Aster, Quickbird, and AVHRR. Linear relationships were found for the intercalibration of 

reflectances and NDVI from one sensor to another, for all sensors, provided that some 

spatial aggregation is performed.  

The main source of data dispersion in our linear cross-sensor translation equations is the 

geolocalization uncertainty inherent in the process of geometric correction. Consequently, 

spatial aggregation needs always to be performed if (different or the same) sensors are to be 

used to derive time-series of biogeophysical parameters over heterogeneous areas. 

The homogenous zone approach developed here is recommended as an excellent tool for 

deriving robust new cross-sensor relationships, provided that the selected homogeneous 

crops cover the full NDVI range. The linear cross-sensor relationships derived from one 

image pair are shown to be valid for the whole season and for all areas with similar 

vegetation and climate. We recommend repeating the procedure once or twice a year in 

order to check the temporal stability of the radiometric calibration coefficients. 
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Although the differences in most cases are small, we maintain different equations for 

different spatial aggregation sizes. Table 1 gives the coefficients of the resulting equations 

for the example of 100 m grid cell side length (except for 75 m for Aster), which is the 

minimum recommended grid size. 

 

Sensor Coefficients of linear equation ( )NDVI ETM a NDVI sensor b      

a b

TM  1.0336 +0.0128 

LISS III 1D  1.1672 -0.0454 

Quickbird  1.0443±0.008 +0.0191±0.005 

Aster L1B  1.1304±0.022 -0.0002±0.019 

Table 1. Summary of NDVI cross-sensor translation equations for elements in our virtual constellation. 

Measure of uncertainty is defined as deviation from the mean. 

2.4. Operational atmospheric correction  

An automatic procedure has been developed for atmospheric correction. This procedure 

uses parameters extracted directly from the image instead of recurring to external data on 

synchronous on-site vertical profiles of atmospheric data, which are usually difficult to 

obtain. It results in a substantial reduction of processing time as compared to approaches 

based on radiative transfer calculations. It was found that approach (i) for NVDI Kc 

calculation is less sensitive than approach of analytical Kc (ii) for the effects related to the 

atmospheric correction. 

 

Figure 1. Example of the implementation of the atmospheric correction (AC) module on the satellite 

derived NDVI for an alfalfa plot. Top of atmosphere (ToA) NDVI refers to the NDVI without AC, 

whereas of atmosphere (BoA) NDVI corresponds to NDVI with AC. The reference field measurements of 

NDVI are shown as solid circles. 
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A validation of the performance of this module has been performed by using field 

measurements of spectral reflectance carried out with the spectroradiometer GER 3700 (331 - 

2509 nm spectral coverage, 1.5 - 9.5 nm resolution) for two land uses: (i) an alfalfa plot and 

(ii) a bare soil. Figure 1 illustrates the outcome of the AC-module in terms of the NDVI 

values for the alfalfa plot. Field measurements of NDVI showed the greatest scattering due 

to both, heterogeneity of the canopy cover in the alfalfa field and, the small field of view of 

the spectroradiometer in comparison to Landsat pixel size. Taking into account this 

variability, we can conclude that atmospherically corrected NDVI values are in agreement 

with in field measured NDVI. Similar results are obtained for the bare soil plot. 

3. Crop coefficient and reference evapotranspiration 

Crop evapotranspiration can be calculated using the crop coefficient (Kc) (1) defined as the 

ratio of total evapotranspiration (ET) by reference evapotranspiration (ET0). Combining Kc 

(from field measurements or from satellite images) with ET0 from agrometeorological 

station observations allows us to calculate crop evapotranspiration. This coefficient 

integrates the effect of characteristics that distinguish a typical field crop from the grass 

reference, which has a constant appearance and a complete ground cover. 

Factors that determine the crop coefficients are crop type, climate, soil evaporation and crop 

growth stages [1, 2]. For this purpose FAO has proposed tabulated average values 

distinguishing by crops that can be applied knowing its phenology.  

In case of annual crops under standard conditions (disease-free, well fertilized, grown in 

large fields, under optimum soil water conditions and achieving full production under the 

given climatic conditions), the Kc curve for the whole growing season can be calculated 

considering the initial (KcINI), medium (KcMID) and end stage (KcEND). 

 
0

c

ET
K

ET
  (1) 

Mainly at the initial and end period, due to lower values of crop cover, soil evaporation has 

a large effect on KcINI and KcEND [3, 1, 4]. Therefore, vegetation indices (VI) are better related 

to transpiration of crop than to Kc [5] in those periods. This introduces a great variation in 

KcINI and KcEND daily values depending on soil water status, i.e. on frequency of wetting by 

irrigation and rainfall. 

The dual crop coefficient approach proposed by [6] splits Kc into separate coefficients, one 

for crop transpiration Kcb (basal crop coefficient), and one for soil evaporation (Ke). The soil 

evaporation coefficient, Ke, describes the evaporation component of ET. When topsoil is wet, 

after irrigation or rainfall, Ke is maximal.  

Estimation of Ke requires knowledge of soil water balance [1]. Wright [6] introduced the idea 

of a basal crop coefficient in which the soil evaporation component of ET was minimal due 

to a dry soil surface but adequate soil moisture in the crop root zone was available. 
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   0cb eET K K ET    (2) 

In PLEIADES we use two approaches to obtain the crop coefficient from satellite imagery: 

one, directly from NDVI, named Kc - NDVI, based on the relationship between NDVI and the 

basal crop coefficient, and another, named analytical Kc, is based on the direct application of 

the Penman-Monteith equation. The NDVI is the main operational parameter to monitor 

vegetation status using Earth Observation.  

4. Crop coefficient from NDVI and canopy biophysics parameters 

Relevant canopy biophysics parameters are green fractional cover, fraction of absorbed 

photosynthetically active radiation, primary production, Leaf Area Index (LAI), basal crop 

coefficient. All they are involved in canopy evapotranspiration. The ability of NDVI to 

describe canopy biophysics parameter has been shown as follows: 

1. NDVI is related linearly with green fractional cover [7, 8]; 

2. NDVI is related linearly with the fraction of absorbed photosynthetically active 

radiation (fAPAR) [9]; 

3. NDVI is related with primary production (dry biomass) by means of Light Use 

Efficiency (LUE) models [10, 11, 12]: 

  
0

t

P a NDVI b PAR W dt        (3) 

where P is primary production, PAR is Photosynthetically Active Radiation,  is the 

efficiency of crop to transform PAR into dry mass, W is a water stress coefficient, and a, b are 

constants. Using these LUE models we can consider that, under non-water stress, NDVI on 

plateau stage can be seen as a good estimator of the dry matter accumulation rate, 

depending on crop and environmental variables [13].  

It establishes a relationship between NDVI and crop growth rate (CGR) which agrees with 

the idea that considers NDVI as an estimator of the canopy photosynthetic power. This way, 

[14] consider that vegetation index can be legitimately used to provide an estimate of 

growth rate. 

1. NDVI is related exponentially with Leaf Area Index (LAI) [15]. Is well known that NDVI 

begins to saturate for a value of LAI equal to 3 reaching a plateau for LAI > 3 (Figure 2 

a); 

2. NDVI is related linearly with the basal crop coefficient Kcb [16]. This relationship is a 

relevant basis for the Kc – NDVI approach. 

The facts pointed out in (3) and (4) may appear contradictory (saturation of NDVI for LAI > 3 

on one hand and the linear relation of NDVI with Kcb on the other). This seeming paradox is 

due to the usual reasoning that relates higher LAI with higher evapotranspiration. This 

reasoning arises from associating more leaf surface with more transpiration. However, 
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already [17] stated that the evidence seems conclusive that transpiration in most mesophytic 

crop plants and other mesophytic vegetation well supplied with water increases with leaf 

area to LAI of about three (Figure 2 b).  

 

Figure 2. Typical NDVI-LAI curve (a), and ratio of actual to potential evapotranspiration (ET/ETp) as a 

function of the LAI (b). 

Accounting the LAI saturation in the relation with evapotranspiration has lead to the concept 

of active LAI (Allen et al., 1998). The active LAI is defined as the index of the leaf area that 

actively contributes to the surface heat and vapour transfer. It is generally the upper, sunlit 

portion of a dense canopy. For practical applications, however, the active LAI is an ambiguous 

concept due its dependence on canopy architecture and its interaction with sunlight. 

The basal crop coefficient is clearly related with green fractional cover (fc) (Figure 3). In fact, 

the procedure to estimate Kcb is based in the knowledge of fc [1], despite of ambiguities of the 

green fc concept, mainly in the maturation stage. The relationship between NDVI and CGR 

for well watered crops is based on the ability of NDVI to estimate fAPAR, introducing this 

fact in the LUE model. CGR is also related with the transpiration rate. 

 

Figure 3. Green Fraction Coverand NDVI versus DoY at field scale for corn. 
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The relationship between NDVI and CGR exhibits a strong dependence on crop and 

environmental variables (solar radiation, temperature, etc.) [13]. This is due to the different 

nature of NDVI and CGR. NDVI depends only on canopy characteristics, while CGR and so 

the transpiration rate, are strongly also dependent on surface and environmental variables. 

The basal crop coefficient is the ratio of canopy transpiration rate over the reference canopy 

transpiration rate.  

So, the empirical relationship between NDVI and Kcb shown by many authors, e.g. [18] and [19], 

(Figure 4) could be explained by considering NDVI as a measurement of relative CGR. Further 

research will be need in this subject. Despite limitations due to variability associated with 

canopy structure, background soil, and calibration uncertainties, NDVI can be used 

advantageously to estimate crop water requirements [20] in accounting its relationship with Kcb. 

 

Figure 4. Temporal evolution of crop coefficient (Kcb) and NDVI, in maize. Kcb is estimated from green 

plant cover using FAO methodology [19]. 

Taking into account similarities between the crop coefficient curve and vegetation index, 

[21] established the potential for modelling crop coefficient as a function of vegetation index. 

This relation was derived from reflectance observations at field scale in the wavelengths 

ranges [0.63, 0.69 m] and [0.76, 0.90 m], measured at nadir and two meters above corn. A 

linear transformation of the NDVI was developed by equating the NDVI at effective cover 

and for dry, bare soil at the experimental site to the Kcb at effective cover and for dry soil 

evaporation, respectively. Similarly, [22] obtained (4) for two research sites in Colorado 

using alfalfa as reference evapotranspiration surface 

 1.181 0.026cbK NDVI    (4) 

In order to minimize the presence of soil background, other vegetation indices (VI) have 

been used to compute Kcb [23]. This provides a particularly useful tool for satellite images 

where soil brightness and colour can vary. One of these VIs used is Soil Adjusted Vegetation 

Index (SAVI) [24] which for the same conditions as (4) gives the relationship [5]: 

 1.69 0.16cbK SAVI    (5) 



 
Sustainable Development – Authoritative and Leading Edge Content for Environmental Management 178 

Thus, crop coefficients derived from spectral measurements (Kcs) are independent of the 

time parameters, day of planting and effective cover, and represent a real-time crop 

coefficient. The use of spectral crop coefficients facilitates irrigation scheduling on a 

field-to-field basis over a large region if the fields can be observed spectrally, because 

planting and assumed effective cover dates are not required.  

The spectral information would be sensitive to leaf loss due to hail, stress caused by disease 

and water deficit, cold or wet conditions that delay early growth, and warm temperatures 

and drought that speed senescence [16]. At field scale, further work was performed in order 

to improve scheduling irrigation events on corn compared to other traditional DoY based 

methods resulting in estimated crop water use reduced by 15% [25]. 

5. Crop coefficient and NDVI relation from field observations  

Intensive experimental campaigns were conducted within pilot zones. The research field has 

a permanent lysimeter station and it is water controlled following FAO 56 specifications 

[26]. Coinciding in time with spectral acquisitions, biomass (kg.m-2), Leaf Area Index (LAI), 

and Green Fraction Cover (fc) were measured to describe the phenology of crops.  

By the knowledge of crop stages, Kcb values have been estimated taking into account the 

effect of varying relative humidity and wind velocity from standard conditions (RH = 40%, v 

= 2 m.s-1) (Allen et al., 1998). Reflectance in red and near infrared to compute NDVI is 

obtained by integrating spectral reflectance in the range of ranges [0.63, 0.69 m] and [0.76, 

0.90 m].  

Evolution in time of NDVI and fc for maize is represented in Figure 5. NDVI reaches its 

maximum value, when crop reaches also full effective green cover in coincidence to 

maximum of Kcb. As can be seen in Figure 3 for maize, ranges of maximum and minimum 

values for fc and NDVI coincide in time obtaining comparable curves.  

Variation in behaviour of fc allows determining KcbINI (0.15), and KcbMID (1.15). To determine 

KcbEND it is necessary to estimate water content of plant. The resulting 54% on DoY = 277 

suggest a value of KcbEND = 0.5. The average curve for Kcb adapted for crop height, minimum 

relative humidity and wind velocity is represented in Figure 5 along with NDVI.  

From linear regression we obtain the equations for the reflected-based crop coefficients for 

corn (Figure 6) in case of NDVI and SAVI: 

  21.37 0.017 0.99cbNDVIK NDVI R     (6) 

  2 21.76 9.10 0.99cbSAVIK SAVI R     (7) 

To perform the comparison between (6) and (7), which are grass based reference 

evapotranspiration, and (4), which is alfalfa based reference evapotranspiration, we have 

realized the following steps: 



 
Remote Sensing Based Crop Coefficients for Water Management in Agriculture 179 

1. Derive from (4) a new SAVI based equation, using the relationship NDVI = 

1.2735�SAVI+0.02106, obtained from the definition of SAVI with a value for L = 0.5 

(where L is the adjusting factor to account for fc in the SAVI definition equation), the 

same as used for (7); 

2. Multiply alfalfa-based Kcb by a factor 1.15 to convert them in grass based Kcb, according 

the procedure described in [27]. Equations (8) and (9) show that the obtained results are 

very similar to (6) and (7). 

 
, 1.36 0.031cb grassK NDVI    (8) 

 
, 1.73 0.009cb grassK SAVI    (9) 

 

Figure 5. Field observations of Kcb and NDVI versus DoY for corn. 

 

Figure 6. Linear regression between values of Kcb and measured NDVI for maize. 

In the case of wheat, the evolution in time is not as representative as in maize. We observe in 

Figure 3 that on DoY = 95, fc reaches a first local maximum before it continues growing in 
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coincidence with emerging ears (with active photosynthesis), supposing a rapid increase in 

fc, and thus in Kcb and spectral indices.  

Applying (6) and (7) to data obtained for wheat, we see in Figure 7 that Kcb obtained from 

NDVI reproduces the evolution in time of fc. 

This relationship facilitates calculations of transpiration taking into account that only points 

over dry soil were considered, but without limiting crop transpiration. Evaporation of soil 

introduces an important contribution to Kc during days after irrigation or rainfall.  

This means that water soil balance must be taken into account to get the contribution of 

evaporation in Kc. Over large areas, where variability of soil colour and brightness can 

influence the NDVI, SAVI and other Vis designed to normalize soil background effect should 

be used. 

 

Figure 7. Evolution in time of observed fc for wheat. The Kcb NDVI and Kcb SAVI values for wheat have 

been obtained from the linear relationships in (6) and (7). 

6. Crop coefficient from NDVI: Operational point of view  

Equations (6) and (7) provide the grass based basal crop coefficient from NDVI and SAVI 

data. These VIs are calculated for Landsat TM broadband from field radiometry data. 

Equation (4) provides alfalfa-based basal crop coefficient from NDVI.  

Neale et al. [28] review the use of canopy reflectance observations to obtain crop coefficients 

over large areas. Similarities were found between the mean crop coefficient for small grain 

to the ratio of the perpendicular vegetation index (PVI) for wheat to PVI of wheat at full 

canopy cover. Heilman et al. [3] investigated the relationship between percent cover and 

reflectance-based perpendicular vegetation index (PVI) for alfalfa.  
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Neale et al. [22] related the crop canopy reflectance to basal crop coefficient for corn, 

developing an operational technique for estimating actual crop ET. The reflectance based 

crop coefficient (Kcr) was derived by nearly transforming the seasonal normalized difference 

vegetation index (NDVI) using the percent shading and leaf area measurements to establish 

the EFC and relate it to the basal crop coefficient by [6]. In several studies, NDVI has been 

directly used to predict Kc [5, 22, 23, 29, 30]. 

The operational procedure to estimate Kc from satellite imagery is based on the linear 

relationship between NDVI and basal crop coefficient described earlier. Landsat is the 

reference imagery to estimate NDVI (spectral broadband calibration). The attractiveness of 

Landsat is the high resolution (30 m in the visible and near infrared bands and 60 to 120 m 

in the thermal band) so that individual fields can be observed. The methodology that is 

described here has been checked against the preliminary results of all PLEIADES pilot areas 

for the following crops: Barley, wheat, maize, opium plant, sugar beet, alfalfa, pea, potato, 

onion and garlic. So we can establish the limits of applicability of this approach.  

6.1. Dual crop coefficient NDVI approach 

Wright [6] proposed a dual basal crop coefficient approach which splits the total crop 

coefficient into crop transpiration (Kcb) and soil evaporation (Ke) fractions, see Figure 8. The 

Kcb component represents the crop evaporative conditions from soil conditions whose 

surface is dry (direct evaporation from soil surface is minimum), and the crop growth is not 

limited by water, insect, climatological or physiological factors. The dual crop coefficient 

concept (see also equation (2)) expressed as 

 c cb eK K K   (10) 

 

Figure 8. Crop coefficient curves showing the basal Kcb, soil evaporation Ke and the corresponding 

single Kcb = Kcb + Ke curve [1]. 
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We assume that there is a linear relationship between Kcb and NDVI as stated earlier. This time, 

however, the linear relationships are adjusted to values of NDVIMAX and NDVIMIN from satellite 

imagery rather to those from field radiometry. Table 2 gives the corresponding values. 

 NDVI Kcb fc Kc 

Minimum 0.16 0.15 0.0 0.4 

Maximum 0.80 1.15 0.8 1.2 

Table 2. Maximum and minimum values of NDVI and derived parameters observed in set of Landsat 

images. 

The resulting linear relationship is: 

 1.5625 0.1cbK NDVI    (11) 

The soil evaporation part in (10), Ke, is related with bare soil fraction, and is strongly 

dependent on wetting state of bare soil fraction, because the evaporative power of soil 

changes strongly if the soil is wetted or if the soil is dry. Irrigation system (gravity, 

sprinkler, drip, etc) and irrigation frequency, coupled with type and stage of crop, are the 

factors that determine the time of different bare soil wetting states. We propose a first 

approach to take into account these factors assuming NDVI as a good estimator of ground 

fractional cover, fc, (and so, of bare soil fraction, 1 - fc ). The other factors are parameterized 

by means of a parameter β: 

  1e cK f     (12) 

The parameter β is estimated empirically, from the values of KcINI or KcMID and can be 

modified on the basis of ancillary or local information. It is crop (and stage) dependent. 

Assuming a linear relationship between NDVI and fc for all crops, and considering again the 

NDVI maximum and minimum values from satellite imagery and the corresponding fc as 

given in Table 1, we obtain the relationship 

 1.3514 0.2811cf NDVI    (13) 

6.2. Single crop coefficient NDVI approach 

A common β parameter value is 0.25, obtained considering an fc value of 0.8, Kc equal to 1.2, 

and Kcb equal to 1.15. Taking β as 0.25 and combining (10), (11), (12), and (13), we obtain a 

direct relationship Kc - NDVI 

 1.2246 0.2203cK NDVI    (14) 

We also obtain a relationship Kc - NDVI directly from Table 1 in the same way as above, by 

considering a linear relationship between the maximum NDVI and the maximum Kc (at 

effective full cover) and the minimum (bare soil) NDVI and bare soil Kc, respectively. The 

resulting relationship is: 
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 1.25 0.2cK NDVI    (15) 

Equations (14) and (15) are very similar. By its simplicity we assume (15) as the operational 

formula to derive Kc from NDVI. 

Table 3 shows the comparison between Kc values obtained from NDVI by means of (15), and 

the values for KcINI, KcMID from [1] for the crops studied in the field during the pilot 

campaign. We observe good agreement for crops with higher effective ground cover, 

although (15) seems to overestimate KcINI slightly for spring crops.  

Crop  
NDVI

min

NDVI

max

KcINI

(15)

KcINI

FAO56

KcMID

(15)

KcMID 

FAO56 

Alfalfa  0.16 0.80 0.40 0.40 1.20 1.20 

Barley  0.16 0.80 0.40 0.30 1.20 1.15 

Garlic  0.16 0.44 0.40 0.70(0.40)* 0.75 1.00 

Maize  0.16 0.78 0.40 0.30(0.40)* 1.17 1.20 

Onion  0.16 0.53 0.40 0.70(0.50)* 0.86 1.00 

Opium poppy  0.16 0.80 0.40 No reference 1.20 No reference 

Pea  0.16 0.77 0.40 0.50(0.40)* 1.16 1.15 

Potato  0.16 0.78 0.40 0.50(0.45)* 1.17 1.15 

Sugar beet  0.16 0.78 0.40 0.35(0.45)* 1.17 1.20 

Wheat  0.16 0.80 0.40 0.30 1.20 1.15 

Table 3. Comparison between the averaged Kc values obtained from NDVI by means of (15), and the 

values for KcINI, KcMID from FAO56 [1] for the main crops in the pilot zone. 

Significant deviations between NDVI based and FAO56 based KcMID are found for crops like garlic 

and onion, which exhibit low ground cover in the stage of maximum development, in contrast 

with the rest of crops studied. The higher bare soil proportion of those crops can introduce and 

reinforce effects on Kc related with irrigation frequency, irrigation system utilized, environmental 

aspects and others. Further research is under way to study this behaviour. 

It should be also noted that (14) and (15) are applicable for the initial crop development and 

mid-season phases only. The application for the late season phase, when the crop is 

maturing, requires a slight correction because ground cover (green and dry) remains nearly 

constant in that phase. Assuming a constant value of 0.8 for ground cover (Table 1) and 

combining (11) and (12), we obtain: 

 1.5625 0.05cK NDVI    (16) 

Summarizing, the operational equations will be (15) for the initial, development and mid 

season and (16) for the late season. 

7. Caia (Portugal) 

The Caia irrigation scheme is located in the Caia watershed in east-central Portugal close to 

the Spanish border. The Caia river is a tributary to the transnational Guadiana river basin. It 

is a relatively flat area at a mean elevation of 200 m above sea level, with mean annual 
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precipitation of 537 mm. The irrigation infrastructure was established in 1967, with a central 

dam of 203 hm3 capacity and a metered canal network serving 7,237 ha. Except for a 

concentrated small-scale plot area of 600 ha, the fields are generally large, on average 35 ha. 

The main crops are corn, wheat, tomato, and sugarbeet, which are all grown for industrial 

commercialization. 

The water resources from the dam are mainly used for irrigation (over 90%) and population 

supply (less than 10%). Pressure on water quantity is increasing and water quality is already 

under pressure, as ecological standards are very close to the regulatory limits. 

The Associação de Beneficiários do Caia (ABCaia) is the local water user association 

(Irrigation District Board). It has the mandate for water management in the irrigation 

scheme and represents the local farmers in the River Basin Council. At the beginning of 

PLEIADES, there was an incipient traditional IAS (provided by the Centro Operativo de 

Técnicas de Rega, COTR) with a newly installed agrometeorological station and a small GIS 

facility at the Irrigation District Board. The goal was to build up an innovative irrigation 

advisory capacity, in order to cope with the rapidly increasing pressure on water quantity 

and quality. 

7.1. Local crop expert database and field protocols 

The first pilot campaign was a fruitful training and learning phase that consolidated the 

local team and established local field sampling protocols. It also laid the foundations for the 

local GIS-based expert database on crop phenology. Figure 9 shows the crop coefficient 

curves for the major crops. An important emphasis in the Caia pilot zone is on tomato, 

which has phonological cycles that can vary enormously between plots. 

During the following pilot campaign, extensive field data were collected to extend the 

expert database for all major crops of the area. They were also used for validation and local 

calibration of EO-derived products.  

 

Figure 9. Crop coefficient curves for major crops in Caia area, from field campaign. 

The local team developed and implemented a work strategy having as objective to be close 

to satellite overview conditions. In that sense nadir pictures of crop canopy have been taken 

as close as possible to overpass satellite period, to determine Green fraction cover, and the 
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crop coefficient has been calculated using farming information concerning amount of used 

irrigation water, agrometeorological data and field phenological stage to correct and 

calibrate Kcb curve. 

For this campaign a spatial extrapolation of the crop coefficients was performed, based on 

field work land use maps. Figure 10 shows the temporal and spatial evolution of crop 

coefficient in the pilot zone, for the three studied crops. 

 

Figure 10. Spatial and temporal evolution of crop coefficient in Caia pilot Zone. 

7.2. Calibration and validation of FAO and EO derived crop coefficients 

The crop coefficient has been calculated in three different ways: the first (line in Figure 11) is 

based on the concepts of the FAO-56 (Allen et al., 1998) methodology for Kcb calculation, 

with its general tabulated values; the second is Kc NDVI calculated with EO PLEIADES 

methodology (circles and squares, from Landsat 7 and 5, respectively); third way is Kcb from 

field observations, adjusted with additional field data (triangles). Figure 11 shows maize 

monitored on “Melinho” and “Botafogo” test fields. The length of the “Initial stage” of 

phenological development is based on information concerning seeding dates, but FAO-56 

standard methodology stipulates that crop green development occurs earlier than has been 

observed in the field. The EO-derived data are rather close to the field observations. The 

slight scatter indicates that the crop stage have several variations, depending on soil and 

crop water stress parameters. 

 

Figure 11. Maize field Kc evolution during campaign versus EO derived and FAO-56: Melinho plot area 

(a) and Botafogo plot area (b). 

Tomato is planted in a way that full canopy is not reached in any growing stage. This means 

that soil evaporative fraction is always present, resulting in a better water management at 

plot level. Due to the fact that it is a multi-stage plant, i.e. one plant can be on multiple 
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phenological stages at the same period, irrigation must be a compromise for the average 

stage of the field. Based on the experience of field technicians, the different Kcb curves 

(Figure 12) have been calculated with data obtained at plot level, FAO-56 methodology and 

EO derived data. 

 

Figure 12. Tomato field Kc evolution during campaign versus EO derived and FAO-56: D. Joana plot 

area (a) and Sta. Isabel plot area (b). 

The results demonstrate again a huge difference between standard FAO-56 values (line) and 

the Kc values obtained from field survey (triangles). As with maize, the EO derived data 

present closer values to what has been observed on the plots. Given the huge deviation of 

actual crop coefficients from FAO-56 values the local expert database on crop phenology 

plays a crucial role in the quality of an IAS under implementation. 

7.3. Real-time demonstration and participatory evaluation with farmers 

Field monitoring has been carried from seeding until harvesting dates, only during the 

months of July, August and September of 2005. A real-time on-place demonstration 

campaign of PLEIADES took place, surveying hot spots in each of the 6 pilot fields and 

delivering IAS information to farmers.  

A “Farmer Report” was supplied to each individual land owner covered by the ground 

truth operation (Figure 13). In Figure 13 is clearly identified the difference in corn 

maturation in July, using drop-to-drop irrigation (a) and pivot irrigation (b). 

Several meetings were organized to promote and explain the content of the information to 

the farmers and to get their feedback. The farmers found that the EO derived information, 

along with field survey data, can be very useful for them and that such an irrigate 

advisory service can help them with irrigation and farming strategies at their farm 

holding level.  

Although, one of the monitored fields had a change for sugar beet with a winter variety, 

with impacts on data correlation, on the other two the same season of maize and tomato has 

been used.  

The weekly procedure has been maintained in order to collect phenological stages data to 

define Kcb field curves, for evaluation of EO-derived data. For the demonstration campaign 

the Portuguese Meteorological Institute provided Kc NDVI data, obtained from Landsat 5, in 
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almost real time, so that they could be compared with field data. The local team made their 

spatial integration and data extrapolation based on ABCaia GIS tools and related 

geographical information data available for this pilot zone. 

 

Figure 13. Farmer report from D. Isabel (a) and Melo (b) fields. 

Knowing, through data from the meteorological station at Caia (Figure 14), the relationship 

between potential evapotranspiration (ETp) and evapotranspiration measured from EO 

(ETEO), it is possible to establish the relationship expressed in (2).  

 

Figure 14. Evapotranspiration in Caia area. 

Hence, having a value of, for example, ET0 = 7.2 for the 2nd of June we can make the 

correspondence for the all area (Figure 15). This kind of data is very important to farmers 

because there is a well known relation where precipitation plus irrigation is equal to 

evapotranspiration plus terrain drainage. 
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Figure 15. Crop coefficient and Evapotranspiration in Caia area at 2 of June. 

7.4. Future perspectives 

For the intensive and extensive campaign the local ground team has been organised and 

defined protocols and set up a strategy to collect data as close as possible to satellite 

overpass conditions. During the project period a local effort has been made to implement 

irrigation advisory services on the pilot zone area, resulting in ongoing use of 

agrometeorological station data provided by the Centro Operativo de Técnicas de Rega 

(COTR) and the Farmer Association (ABCaia) supplying information on irrigation 

parameters. Survey data have been available due to the cooperation of the Agronomy 

School of Elvas University (ESA) and also made available to them jointly with with ABCaia 

aiming to set up strategies for development of local technical skills to support irrigation 

development in accordance with environmental requirements. 

The foundations have been laid for the PLEIADES prototype to start being operative in the 

Caia pilot zone. An efficient and dedicated local operating team has been consolidated, with 

collaborating entities. A local GIS based expert database on crop phenology and EO 

methodology calibration has been developed and the necessary ICT infrastructure has been 

established (Figure 15). The user participation is incipient but promising. A funding model 

still needs to be found for further sustainable implementation. Increasing pressure on water 

quantity and quality may provide an important motivation. 

The Server is based on leading edge online GIS Technology. The system architecture is web 

based and composed by a modular group of components, which makes maintenance of the 

system easy. Those components are based on the XML language. 

The web services have been programmed also to let the server be distributed in different 

PCs to share the load of the system. The server has been programmed for a Windows 

system, using open source libraries and toolkits like FOP, Xerces C++, GDAL, GD, 
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MapServer, SWFF, etc. GDAL has been used for obtaining the satellite images information, 

getting the pixel value and creating charts with GD showing the time evolution.  

 

Figure 16. PLEIADES WebGIS and mobile applications example. 

This toolkit, as well as the queries form, helps the user in taking decisions about water, 

crops, etc. MapServer lets the system offer a visual support for the user, supporting a wide 

variety of image formats, as well as vector format and databases. Xercess is the parser for 

the XML messages that implements the DOM interface providing quite an easy interface for 

the programmer for accessing the XML information. 

The system receives information from images and stations, pre-processing some of them to 

provide formatted data. It also offers a Quality Control (QC) interface for the IAS manger to 

control the information for the farmer, so that the final information distributed to the user 

(“published”) includes only correct and accurate information. The system is prepared for 

assimilating the satellite image as far as possible, so that the system gives a real time toolkit 

for analysing the satellite information with the spatial information. 

The mobile phone client has been programmed in Flash. A simpler interface has been 

designed because of the limitations of the mobile technologies. This client lets the farmers 

access the information of the satellite wherever they are without needing a computer or an 

internet connection and with an easy interface that lets them zoom into the image or ask for 

parameters information. 

8. Conclusions 

PLEIADES was designed to assess and demonstrate in an operational perspective how the 

integration of Earth observation (EO) techniques in routine Irrigation Advisory Services 
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(IAS) can improve the efficiency in the use of water for irrigation. The use of leading-edge 

Information and Communication Technology (ICT) tools in the generation and distribution 

of information makes the EO easily available to IAS and the farmers.  

The PLEIADES WebGIS (www.pleiades.es) is the central outcome of the project. Its key 

feature is the operational generation of irrigation scheduling information products from a 

virtual constellation of EO satellites and their delivery to farmers in near-real-time using 

leading-edge on-line analysis and visualization tools. It is supported by a methodology 

package to derive crop coefficients and further advanced parameters from EO satellite 

images in an operational processing chain. 

PLEIADES basic products were generated and transmitted to a sample of farmers normally 

within 2 days from overpass, thus completely matching the weekly operational irrigation 

scheduling cycles.  

Participatory evaluation with selected farmers shows that the farmers feedback is very 

positive, both on the information quality as on the added value of the spatial information 

(within-plot heterogeneity and between-plot variations). The reliability and accuracy of the 

information has been con-firmed by the comparison of different approaches to derive crop 

coefficients from EO and validation with field data in all pilot zones.  

The major improvement achieved by the use of EO in the generation of basic IAS 

information products like crop coefficients is twofold. Firstly, the spatial coverage is 

enhanced significantly, both extending to larger areas and providing within-field 

heterogeneity information. Secondly, the spatially resolved EO data can easily be combined 

with cadastral information in a geographical in-formation system (GIS), which allows for 

personalization of the irrigation scheduling recommendation.  

Conventional IAS provides average irrigation recommendations per crop type, while the 

new space-assisted IAS is able to provide specific recommendations for each individual plot, 

based on the actual state of that plot.  

The fast image delivery and quality controlled operational processing make the EO-based 

crop coefficient maps available at the same speed and quality as ground-based data (point 

samples), while significantly extending the spatial coverage and reducing service cost. The 

uptake of users at IAS and farmer level is encouraging.  

Advanced products have made a significant step towards operationality while maintaining 

satisfactory levels of accuracy. First exploitation steps including full operational 

implementation are indicators of the success of the prototype and the project.  

The space segment is the most vulnerable part of the entire operational system. After the 

sensor failure of Landsat 7, the backbone of the actual system is Landsat 5, due to its 

excellent operationality and low cost (22 years old, with no replacement in sight). Urgent 

actions are required to ensure the capability to obtain adequate EO images at the adequate 

coverage frequency and low cost. 
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