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1. Introduction 

According to Merriam Webster1, to predict is ‘to declare or indicate in advance; foretell on 

the basis of observation, experience, or scientific reason.’ The advent of sophisticated 

mathematical and statistical techniques has taken ‘divination’ out of prediction. In the late 

19th century, the work of Francis Galton in the areas of regression analysis, correlation and 

the normal distribution has been instrumental in helping analysts investigate the 

relationship between dependent and independent variables and, as a result, to be able to 

improve forecast. More recently, economists such Robert Engle and Clive Granger have 

made significant contributions to the study of time series that have widespread applications 

nowadays in economics and especially finance, such as price and interest rate volatility, as 

well as risk measurement.  

Aviation is another industry that faces risk and uncertainty and has greatly benefited by 

advances in mathematical, statistical and operations research techniques. A flight is an event 

that can be scheduled up to six months ahead of its execution. However, despite the best 

preparation, flight performance is subject to many factors beyond human control such as 

weather, equipment failure, labor actions, security threats, etc. As a main contributor to the 

economy and global trade, government regulators, airlines and airport authorities have a 

vested interest in ensuring that the aviation system supports unimpeded movements of 

goods and people from their origin to their final destination. According to the Total Delay 

Impact Study2 by a group of Nextor researchers, “the total cost of all US air transportation 

delays in 2007 was $32.9 billion. The $8.3 billion airline component consists of increased 

                                                                 
1 The source is http://www.merriam-webster.com/dictionary/predict. 
2 Ball, M. et al., 2010. Total delay impact study, a comprehensive assessment of the costs and impacts of flight delay in the United 

States, Nextor, vii. The report is available at the following website: http://its.berkeley.edu/sites/default/files/ 

NEXTOR_TDI_Report_Final_October_2010.pdf. 
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expenses for crew, fuel, and maintenance, among others. The $16.7 billion passenger 

component is based on the passenger time lost due to schedule buffer, delayed flights, flight 

cancellations, and missed connections. The $3.9 billion cost from lost demand is an estimate 

of the welfare loss incurred by passengers who avoid air travel as the result of delays”. 

Predictability is all the more difficult to achieve as airlines often face three types of delay. 

First, delays can be induced: The air traffic control authority can initiate a ground delay 

program in case of adverse weather conditions or heavy traffic volume on the ground or en-

route. Second, delays can be propagated: In a sequence of legs operated by the same tail-

numbered aircraft, a flight may accumulate delays that cannot be recovered by the end of 

the itinerary. Finally, delays can be stochastic because they are the results of random events 

such as equipment breakdown or extreme weather events. 

Predictability represents a key performance area in the aviation industry for several  

reasons.  

 For the International Civil Aviation Organization (ICAO), predictability refers to the 

“ability of the airspace users and ATM service providers to provide consistent and 

dependable levels of performance.”3  

 One of the goals of the U.S. Next Generation of Air Transportation System (NextGen) is 

to foster the transition from an air traffic control to more of an air traffic managed 

system where pilots have more flexibility to select their routes, utilize performance-

based navigation (PBN) with the help of satellites and make decisions based on 

automated information-sharing.  

 According to Rapajic (2009:51), "cutting five minutes of average of 50 per cent of 

schedules thanks to higher predictability would be worth some €1,000 million per 

annum, through savings or better use of airlines and airport resources." 

Unpredictability imposes considerable costs on airlines in the forms of lost revenues, 

customer dissatisfaction and potential loss of market share. 

Recently, much discussion has revolved around the validity of using airlines’ schedules as a 

measure of on-time performance and the variance of block delay as an indicator of 

predictability. Both airlines’ limited control over the three types of delay and airport 

congestion make it difficult to build robust schedules and to use schedule as a reference for 

on-time performance. In fact, schedule padding may skew actual airline performance 

assessment, hence the need for an alternative methodology.  

This article proposes a methodology to determine the predictability of block time based on 

the case study of the Seattle-Oakland city pair. The predictable block time is located at the 

percentile where the sign and magnitude of the pseudo coefficient of determination is the 

highest, while all the covariates are significant at a given confidence level. Ordinary-least-

square (OLS) regression models enable analysts to evaluate the percentage of variation in 

actual block time explained by changes in selected operational variables. However, quantile 

                                                                 
3 Henk J. Hof, Development of a Performance Framework in support of the Operational Concept, ICAO Mid Region 

Global ATM Operational Concept Training Seminar, Cairo, Egypt,  November 28–December 1, 2005, p. 36. 
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regression is more robust to outliers than the traditional OLS regression because the latter 

does not focus on the conditional mean.  

This is of importance to aviation practitioners and, especially, airline schedulers who have 

often resorted to schedule padding in order to make up for ground and en route delays. This 

research presents a different perspective on the study of predictability with the intent to 

help aviation analysts achieve the following objectives: 

 To assess the impact of selected operational covariates at different locations of the 

distribution of block time. 

 To derive more predictable block times based on the impact of operational covariates at 

various quantiles. 

 To test a model without any assumption about the distribution of errors and 

homoscedasticity (constant variance of the residuals). 

After a brief background, the discussion will proceed with the methodology, an explanation 

of the outcomes and some final comments. 

2. Background 

A focus group including communication navigation surveillance and air traffic management 

representatives4 defined predictability as “a measure of delay variance against a 

performance dependability target. As the variance of expected delay increases, it becomes a 

very serious concern for airlines when developing and operating their schedules”.  

According to Donohue et al. (2001:398), “predictability focuses on the variation in the ATM 

[Air Traffic Management] system as experienced by the user. Predictability includes both 

variability in flight times and arrival rates”. In this article, the study of predictability is 

extended beyond wheels-off (takeoff) and wheels-off (landing) times to include any flight 

operations between gate-out and gate-in times such as taxi-out and taxi-in movements. This 

approach takes into account passenger experience. 

For Vossen et al. (2011:388), “flexibility can be defined as the amount of operational latitude 

granted to the carriers in meeting their individual objectives (e.g. on-time arrival, network 

preservation, profit) when disruptions occur. […] The notion of predictability is closely 

related, and can be defined as the reduction of uncertainties in the implementation of ATFM 

[Air Traffic Flow Management] initiatives”. Although airlines have to face many events in 

the course of a flight that cannot thoroughly be anticipated and planned for, “ATFM 

initiatives should provide the user with time to react, and the provider’s intent should be 

communicated as clearly and as far in advance as possible”. 

Predictability is sometimes associated with the concept of robust airline scheduling. The 

latter is the outcome of four sequential tasks as schedule generation, fleet assignment, 

                                                                 
4 Report of the Air Traffic Services Performance Focus Group and Communication Navigation Surveillance, February 

1999. Airline Metric Concepts for Evaluating Air Traffic Service Performance. The website is http://www.boeing.com/ 

commercial/caft/cwg/ats_perf/ATSP_Feb1_Final.pdf. 
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aircraft routing and crew pairing/rostering (Wu 2010; Abdelghany and Abdelghany 2009). 

Fleet assignment models (FAM) are often used to determine how demand for air travel is 

met by available fleet (see Abara 1989 and Hane et al. 1995). Moreover, the fleet assignment 

models present two challenges: complexity and size of the problem that the FAM can 

handle.  

Rapajic (2009) identified network structure and fleet composition as sources of flight 

irregularities. Wu (2010) provided an excellent exposition of issues related to delay 

management, operating process optimization, and schedule disruption management. Wu 

explained that "airline schedule planning is deeply rooted in economic principles and 

market forces, some of which are imposed and constrained by the operating environment of 

the [airline] industry" (2010:11). He presented a schedule optimization model to improve the 

robustness of airline scheduling. However, such a model does not consider how selective 

operational variables are likely to impact scheduling.   

Morrisset and Odoni (2011) compared runway system capacity, air traffic delay, scheduling 

practices, and flight schedule reliability at thirty-four major airports in Europe and the 

United States from 2007 to 2008. The authors explained that European airports limit air 

traffic delay through slot control. The other difference is that declared capacity (therefore, 

the number of available slots) is based mainly on operations under instrument 

meteorological conditions (IMC). By not placing any restrictions on the number of 

operations, schedule reliability in the United States depends more on weather conditions 

than at European airports.  

3. Methodology 

3.1. The sample and the assumptions 

The sample includes daily data for the month of June to August in 2000, 2004, 2010 and 2011 

for the Seattle/Tacoma International (SEA)-Oakland International (OAK) city pair. The 

summer season is usually characterized by low ceiling and visibility that determine 

instrument meteorological conditions5 and weather events such as thunderstorms—all likely 

to skew the distribution of block times.  

Illustration 1 compares the boxplots of actual block times in minutes for the four summers 

under investigation. The boxplot shows the spread of the distribution, the selected quantile 

values, the position of the mean and median block times, and the presence of outliers that 

make it important to consider a regression model at different quantiles. The boxplots reveal 

an increase in the actual block times between summer 2004 and 2011. Summer 2010 features 

the largest range as well as the lowest block times at the 5th percentile among the four 

samples (Illustration 1). It is also characterized by the highest proportion of operations in 

instrument meteorological conditions compared with the other three samples (Table 1). The 

                                                                 
5 The minimum ceiling and visibility at SEA are respectively 4,000 feet and 3 nautical miles. At OAK, they are 2,500 feet 

and 8 nautical miles.  
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skewness coefficients6 are 0.11, -0.44, 0.37, and 0.19 respectively for summer 2011, 2010, 2004 

and 2000. A negative skew indicates that the left tail is longer. While the standard deviation 

is appropriate to measure the spread of a symmetric distribution, interquartile ranges are 

more indicative of spread changes in skewed distributions (see Figure 1). 

 

Figure 1. Box Plots of Actual Block Times (SEA-OAK) 

Secondly, summer is part of the high travel season when demand is usually at its peak. This, 

in turn, is likely to increase airport congestion and subsequently impact block time. Finally, 

the years were selected to account for (1) pre- and post-September 11, 2001 traffic, (2) lower 

traffic demand resulting from the 2008-2009 economic recession, and (3) the introduction of 

the Green Skies over Seattle7 after 2010.  

The key performance indicators of flight performance are summarized in Table 1. Although 

the number of flights increased between 2000 and 2011 and the average minutes of expected 

departure clearance times (EDCT) were higher in 2011 than in 2000, the percentage of on-

time gate departures and arrivals and other key delay indicators such as taxi-out delay (a 

measure of ground congestion) improved in 2011. It is interesting to point out that the 

percentage of flights in IMC did not change significantly at OAK among the four selected 

summers. IMC operations were, however, much higher in 2010 and 2011 than in 2000 at 

SEA, which explains the existence of average minutes of EDCT in 2010 and 2011. 

The sample does not include a variable that measures performance-based navigation. The 

available surveillance data such as Traffic Flow Management System (TFMS) do not capture 

                                                                 
6 The skewness coefficient is computed as γ  = E[(x – μ)3/σ] = μ3/σ3 where μ3 is the third moment about the mean μ and 

σ is the standard deviation and E is the expectation operator.   
7 The Green Skies over Seattle program includes initiatives such as reduced track mileage to minimum possible 

distance to protect the environment, optimized profile descent, reduction or elimination of low altitude radar 

vectoring, as well as required navigational performance.  
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whether a pilot had requested a required navigation performance procedure, whether air 

traffic control had granted the request, and whether the procedure had actually been 

implemented. Moreover, it is presently difficult to differentiate flown performance-based 

navigation procedures from instrument landing system (ILS) approaches in the case of flight 

track overlay.  

 

Table 1. Performance Metrics for the SEA-OAK City Pair 

Secondly, the availability of Q-routes makes it possible for RNAV/RNP capable aircraft to 

reduce mileage, to minimize conflicts between routes and to maximize high-altitude 

airspace. Q-routes are available for use by RNAV/RNP capable aircraft between 18,000 feet 

MSL (mean sea level) and FL (flight level) 450 inclusive. They help minimize mileage and 

reduce conflicts between routes. 

Thirdly, block time as a measure of gate-to-gate performance is sensitive to delays on the 

ground and en route. To account for this, airborne delay represents a surrogate for enroute 

congestion, while increases in taxi times imply surface movement congestion.   

3.2. Sources and definition of the variables 

The sources for the variables are ARINC8’s Out-Off-On-In times and the U.S. Federal 

Aviation Administration’s Traffic Flow Management System (TFMS). The directional city 

pair data originated from the ‘Enroute’ and ‘Individual Flights’ data marts of the Aviation 

System Performance Metrics (ASPM) data warehouse9.  

The choice of variables reflects operational and statistical considerations. On the one hand, 

some model variables represent significant factors in airport congestion (taxi times) and 

enroute performance (airborne delays). On the other hand, the model with the highest 

values for the Akaike Information Criterion (AIC)10 and Bayesian Information Criterion 

(BIC)11 was selected in order to prevent overfitting and to reduce the number of covariates.  

The dependent (response variable) and independent variables (covariates) are defined as 

follows: 

                                                                 
8 AIRINC stands for Aeronautical Radio, Inc. (http://www.arinc.com).  
9 The TFMS (formerly ETMS) and ARINC data as well as the ASPM delay metrics are available at http://aspm.faa.gov. 
10 The Akaike Information Criterion is defined as 2k – 2 ln(L) where k is the number of parameters and L the 

maximized value of the likelihood function for the estimated model.  
11 The Bayesian Information Criterion is -2 ln(L) + k.ln(n) where n is the number of observations. 



 
Predicting Block Time: An Application of Quantile Regression 61 

 Actual Block Time (ACTBLKTM) is the dependent variable. It refers to the time in 

minutes from actual gate departure to actual gate arrival.  

 Block Buffer (BLKBUFFER) represents the difference between planned and optimal 

block time. The latter is the sum of unimpeded taxi-out times and filed estimated time 

enroute. Block buffer is the additional minutes included in planned block time in order 

to take into account potential induced, propagated and stochastic delays. It has also 

been defined as “the additional time built into the schedule specifically to absorb delay 

whilst the aircraft is on the ground and to allow recovery between the rotations of 

aircraft” (Cook, 2007:105). Donohue et al. (2001:113) explained that "to obtain their 

desired on-time performance, airlines will add padding into a schedule to reflect an 

amount above average block times to allow for delay and seasonally experienced 

variations in block times." 

 Departure Delay (DEPDEL) corresponds to difference between the actual and planned 

gate departure time at the departure airport in a city pair. 

 Arrival Delay (ARRDEL) represents to the difference between the actual and planned 

gate arrival time at the arrival airport in a city pair.  

 Airborne Delay (AIRBNDEL) accounts for the total minutes of airborne delay. It is the 

difference between the actual airborne times (landing minus takeoff times) minus the 

filed estimated time enroute.  

 Taxi-Out Time (TXOUTTM) refers to the duration in minutes from gate departure to 

wheels-off times (gate-out to wheels-off).  

3.3. Quantile regression 

Readers interested in quantile regression are referred to Hao and Naiman (2007), Koenker 

(2005), Koenker and Hallock (2001) and Koenker and Bassett (1998). Quantile regression 

provides several advantages compared with the ordinary-least-square (OLS) regression in 

assessing the influence of selected operational factors on the variations of block time at 

various locations of its distribution: 

 Quantile regression specifies the conditional quantile function and, therefore, a way to 

assess the probability of achieving a certain level of performance. It permits the analysis 

of the full conditional distributional properties of block time as opposed to ordinary-

least-square (OLS) regression models that focus on the mean. 

 It defines functional relations between variables for all portions of a probability 

distribution. Quantile regression can improve the predictive relationship between block 

times and selected variables by focusing on quantiles instead of the mean. As Hao and 

Naiman (2007:4) pointed out, “While the linear regression model specifies the changes 

in the conditional mean of the dependent variable associated with a change in the 

covariates, the quantile regression model specifies changes in the conditional quantile.” 

 It determines the effect of explanatory variables on the central or non-central location, 

scale, and shape of the distribution of block times. 

 It is distribution-free, which allows the study of extreme quantiles. Outliers influence 

the length of the right tail and make average block time irrelevant as a standard for 
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identifying the best-possible block time. A single rate of change characterized by the 

slope of the OLS regression line cannot be representative of the relationship between an 

independent variable or covariate and the entire distribution of block time, the response 

variable. In the quantile regression, the estimates represent the rates of change 

conditional on adjusting for the effects of the other model variables at a specified 

percentile. Therefore, the skewed distribution of block times calls for a more robust 

regression method that takes into account outliers or the lack of sufficient data at a 

particular percentile (especially at the extremes of the distribution) and generates 

different slopes for different quantiles.  

The difference between OLS and quantile regression characteristics are summarized in the 

table below: 

 

Linear Regression Quantile Regression 

 Estimates the mean of a response 

variable conditional on the values of 

the explanatory variables (specifies the 

conditional mean function) 

 Determines the rate of change in the 

mean of the response variable 

 Specifies the conditional quantile 

function (focus on quantiles).  

 Defines functional relations between 

variables for all portions of a 

probability distribution 

 Provides a measure of the impact of 

explanatory variables on the central 

location of the distribution of the 

response variable.  

 Does not account for full conditional 

distribution properties of the response 

variable 

 Determines the effect of explanatory 

variables on the central or non-central 

location, scale, and shape of the 

distribution of the response variable 

 Permits the analysis of the full 

conditional distributional properties of 

the dependent variable 

Normal distribution (sensitive to outliers) 
Distribution-free (allows study of extreme 

quantiles) 

Determines best fitting line for all data 
Different estimates for different  

quantiles 

Normal distribution of errors 
No assumption about the distribution of 

errors 

Assumption of constant variance in errors 

(homoscedasticity) 
Does not assume homoscedasticity 

Table 2. The Assumptions of Linear and Quantile Regression 

4. Outcomes and implications 

Appendix 1 provides the estimates for the OLS models. The intercept that represents the 

predicted value of actual block time when the covariates are equal to zero is not significant 
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at a 95% confidence level in the 2011 and 2010 samples. However, since the intercept is 

necessary to provide more accurate predictions, it was left in the model.  

Among the dependent variables, gate arrival and departure delays are not significant at a 

95% confidence level in the 2010 sample. This implies that airlines can make up for ground 

delays once en route or ground delays are likely to be more significant in a few extreme 

cases. The F statistics suggest that there is a zero percent chance that the dependent variable 

estimates are equal to zero. A value of the Durbin Watson statistic close to 2.00 suggests that 

there is little statistical evidence that the error terms are positively auto-correlated. The 

values of the coefficients of determination (R2) imply that the model covariates explain a 

high proportion of the variation in block times.  

In the quantile regression models, the covariate estimates, as well as the key regression 

statistics at the 5th, 25th, median, 75th and 95th percentile, are summarized in the appendix 2 

table. The 50th quantile estimates can be used to track location changes. According to Hao 

and Naiman (2007: 55), the 5th and 95th percentiles “can be used to assess how a covariate 

predicts the conditional off-central locations as well as shape shifts of the response.” In the 

case of the 50th percentile in summer 2011, the quantile regression model for at τ (tau) = 0.50 

(50th percentile or median) is as follows: 

   0.50 BLKBUFFER SCHEDBLKTM

 
DEPDEL ARRDEL AIRBNDEL TXOUTTM

Block Time  14.8091  0.8909 * X  1.0038 * X   

0.3329 * X  0.2936 * X  1.0957 * X  1.1606 * X  




     

   
 (1) 

In equation (1), 1.1606 represents the change in the median of block time between SEA and 

OAK corresponding to a one minute change in taxi-out time at SEA. Since the p value is 

zero, we reject the null hypothesis, at a 95 percent confidence level, that taxi-out times at 

SEA has no effect on the median block time between SEA and OAK in summer 2011. The 

pseudo coefficient of determination is a goodness-of-fit measure12. In the case of summer 

2011, 80.21% of the variation in block time is explained by the model covariates at the 50th 

percentile of block time (appendix 1).  

No sample includes covariates that are significant at a 95% confidence level at all quantiles. 

Gate departure and arrival delays are significant only at the 95th percentile across the four 

samples. This means that departure and arrival delays are more likely to affect consistently 

block times in the upper percentiles—in case of severe airport congestion, for instance. 

Moreover, the magnitude of block buffers and gate departure delays have a negative impact 

on the conditional quantile of block time at all samples’ selected percentiles. The size of the 

buffer and the time an aircraft will spend on the tarmac before take-off are conditions likely 

to affect block times. As a result, there is a need for analysts to decompose and to measure 

the different operations between gate-out and wheels-off times including gate departure, 

push-back, taxi-out and queuing times before wheels off. Airport Surface Detection 

                                                                 
12 See Koenker and Machado 1999 for further explanations. According to Fitzenberger et al. (2010: 234), “the pseudo R2 

equals one minus the sum of weighted deviations about estimated quantile over the sum of weighted deviations 

around raw quantile”. 
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Equipment, Model X or ASDE-X data should help do so as the system relying on a 

combination of surface movement radar and transponder multi-lateration sensors becomes 

more widespread.  

Taking the example of summer 2011, 95 percent of the distribution of block times between 

SEA and OAK was below 129.14 minutes compared with a mean of 120.62 minutes 

(appendix 2). In other words, there is a 95 percent chance that actual block time will be 

lower than 129.14 minutes―based on a quantile regression model that explains 85.34 

percent of the variation in block times. One benefit of quantile regression is that it facilitates 

the evaluation of scale and magnitude changes across samples and percentiles. 

The quantile regression estimates in appendix 1 imply that block times increased in between 

summer 2000 and 2011 at all quantiles. In a comparison of summer 2000 with summer 2011, 

there had been an increase of 2.21 minutes in block times at the 95th percentile, for instance. 

The SEA-OAK city pair has been mainly operated by Southwest Airlines (SWA) and  

Alaska Airlines (ASA) with a predominant fleet of Boeing 737s. The total number of  

ASA arrivals and departures declined to 356 in summer 2011 from 693 in summer 

2000―with 91 ASA flights operated by Horizon’s Bombardier Q40013. Nevertheless, ASA 

operated larger capacity models such as the dash 400, 800 and 900 series, while SWA 

utilized a combination of dash 300, 500 and 700 models. The reason for the increase in block 

time may be attributed to airlines’ operations policy to slow aircraft speed in order to save 

on fuel costs14. Weather conditions characterized by the percentage of operations in 

instrument meteorological conditions (IMC) did not vary substantially at OAK compared 

with SEA (see Table 1).   

In appendix 3, the graphs illustrate the 95% confidence bands in the case of summer 2000. 

The estimates show a positive relationship between the quantile value and the estimated 

coefficients for scheduled block times, taxi out times and airborne delay, with a stronger 

effect in the upper tail. The effect of gate departure and arrival delays is not relatively 

constant, especially at the 50th percentile as implied by the wider bands around the 50th 

percentile value. These graphs are important for the analysts in identifying the quantiles 

where quantile value is likely to be close to the estimated coefficients and, therefore, to 

improve the accuracy of predicted block time.  

5. Final comments 

Based on the analysis of the SEA-OAK city pair case study, this research showed how 

quantile regression can help aviation practitioners develop more robust schedules. 

Originally proposed by Koenker and Bassett (1978), quantile regression is a rather novel 

approach to the analysis of airlines’ on-time performance. Although it is more widely used 

                                                                 
13 The sources for schedules and aircraft mix are the Official Airline Guide (http://www.oag.com) and Innovata 

(http://www.innovata-llc.com). 
14 Associated Press. Airlines slow down flights to save on fuel: JetBlue adds 2 minutes to each flight, saves $13.6 million a year in 

jet fuel, May 1, 2008. The article is available at the following website: http://www.msnbc.msn.com/id/24410809/ 

ns/business-us_business/t/airlines-slow-down-flights-save-fuel/#.T01rmPES2Ag 
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in ecology and biology than in the transportation industry, quantile regression is seldom 

featured in econometric textbooks. Nevertheless, it presents several advantages.  

First, it enables aviation analysts to consider the impact of selected covariates on different 

locations of the distribution of block times. Secondly, the significance and the strength of the 

impact of selected covariates on block times make it possible to assess the probability that gate-

to-gate operations is likely to reach a specific duration. This is made possible by looking at the 

conditional quantile in the case of quantile regression as opposed to the conditional mean of 

the distribution of block times in the case of OLS models. Thirdly, quantile regression makes it 

easier to evaluate the scale and magnitude of change across specific percentiles over a sample. 

Finally, quantile regression can help analysts study the impact of covariates from different 

perspectives. For instance, in summer 2011, the data analysis suggests that 95% of the block 

time distribution will be below the quantile dependent variable value of 129.14 minutes as a 

result of the impact of the covariates’ impact. Quantile regression enables the identification of 

more realistic threshold times based on quantiles and it allows airline practitioners to simulate 

and to evaluate various scenarios linked to changes in the models’ covariates.  

Predictability is a key performance area identified by the International Civil Aviation 

Organization. Moreover, it is a corner stone of the Next Generation of Air Transport 

System (NextGen) initiatives in the U.S. and the Single European Sky ATM Research 

program (SESAR) to ensure the transition from an air traffic controlled to a more air traffic 

managed environment. As air transportation regulators are under public pressure to crack 

down on tarmac and other types of delays, it has become imperative for airline schedulers 

to evaluate models that reflect the predictable influence of key operational variables on 

actual on-time performance. The complexity of the air traffic system, the inability for 

airline schedulers to fully anticipate both airport and en route congestion, and delays all 

make it more significant for aviation practitioners to assess the impact of some key 

operational variables at different locations of the distribution of block times that usually 

tends to be skewed due to outliers.   

The imbalance between air travel demand and airport capacity usually results in delays. As 

block times become more predictable, it is more possible for airline and airport operators to 

optimize airport capacity— especially at large congested airports. This is all the more significant 

in the U.S. where arrival and departure flows are not slot- constrained as in Europe. Block time 

predictability does not only affect how airports and airlines operate, but also the capability of air 

traffic control authorities to anticipate staff workload, as well as the ability of ground handlers 

to minimize aircraft turn times by allocating resources where and when needed.  

Author details 

Tony Diana15 

Division Manager, NextGen Performance, Federal Aviation Administration, Office of NextGen 
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15 Note: This article does not represent the opinion of the Federal Aviation Administration. 
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Appendix 

The ordinary-least square regression outputs 

 

Summer 2000: Quantile process estimates (95% confidence level) 
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The quantile regression outputs 
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