
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

24

Advanced Bit Stuffing Mechanism
for Reducing CAN Message Response Time

Kiejin Park and Minkoo Kang
Ajou University

Republic of Korea

1. Introduction

As customer requirements for safety and convenience in automobiles increases, so does the

quantity of electronics and software installed in them. The amount of signal data from the

electronics systems needs to be managed, making the design of communication protocols for

in-vehicle networks (IVN) more important (Navet et al., 2005). The IVN protocols can be

classified into two paradigms: event-triggered and time-triggered (Obermaisser, 2004). The

event-triggered protocols are efficient in terms of network utilization, because the messages

transmitted within event-triggered protocols are only transmitted when specific events

occur. This differs from time-triggered communication in that the response time of message

transmission is not predictable (Fabian & Wolfgang, 2006).

The controller area network (CAN) is a well-known event-triggered protocol originally

developed in the mid-1980s for multiplexing communication between electronic control

units (ECUs) in automobiles (ISO 11898, 1993). In recent years, CAN has been used in

embedded control systems that require high safety and reliability because of its appealing

features and low implementation costs (Navet et al., 2005; Johansson et al.; 2005). Appealing

features of CAN protocols are that the error detection mechanisms can identify multiple

types of error (e.g. bits error, bit stuffing error, cyclic redundancy checksum error, frame

error, and acknowledgement error). Moreover, error counters in a CAN controller can be

used to represent which states of the controller are associated with specific errors, which

include an error-active state, an error-passive state, and a bus-off state (Gaujal & Navet,

2005).

In spite of low implementation costs and wide acceptance of the CAN protocol in

automotive control systems and industrial factory automation, limited bandwidth and

nondeterministic response time have restricted the wider use of CAN in safety-critical real-

time embedded control systems such as x-by-wire applications (Rushby, 2003; Wilwert et al.,

2004). To mitigate the effects of these problems, the worst-case response time of a CAN

message should be reduced as much as possible. Calculating the worst-case response time of

CAN messages has been studied in order to guarantee its schedulability (Tindell et al., 1994,

1995), and this approach has been cited in over 200 subsequent papers. More recently, the

schedulability analysis of CAN has been studied as the revised version of the original

approach (Davis & Burns, 2007).

Automation

472

To reduce the length of CAN messages, the pre-processing mechanism using bitwise
manipulation before bit stuffing has been suggested (Nolte et al., 2002, 2003). According to
this mechanism, the worst-case response time can be reduced by minimizing stuffing bits in
CAN messages. However, this mechanism cannot be applied to CAN network systems
because the problem of message priority inversion has not been addressed. In our previous
work, to resolve the problem of message priority inversion, a mechanism with a new bit
mask for reducing the length of CAN message as well as preserving message priorities has
been proposed (Park et al., 2007). Subsequently, we found that the mechanism has a
problem which causes the frame shortening error and proposed the advanced bit stuffing
(ABS) mechanism for resolving the problems with the previous approach (Park & Kang,
2009). In this paper, we describe the ABS mechanism in detail and extend the generation
procedure of the bit mask of the ABS mechanism for the extended 2.0B frame format.

The outline of this paper is as follows. Section 2 presents a summary of the CAN protocol,
and describes the impossibility of the worst-case bit stuffing scenario proposed by Nolte et
al. Then calculating response time of CAN messages is presented. In Section 3, the ABS
mechanism for reducing CAN message response time using generation of a new mask is
described in detail. Also, we describe the examples of problems with priority inversion and
frame shortening error. In Section 4, we evaluate the performance of the ABS mechanism
with various CAN message sets. Finally, Section 5 concludes the paper.

2. Background

2.1 CAN message frame format

Controller area network (CAN) is the ISO standard for communication in automotive
applications. It is designed to operate at network speeds of up to 1 Mbps for message
transmission. Each CAN message contains up to 8 bytes of data (Farci et al., 1999). The
frame format of a CAN message is classified into two categories that include the standard
2.0A with 11-bit identifier and the extended 2.0B with 29-bit identifier. Furthermore,
message transmission over a CAN is controlled by four different types of frame: data frame,
remote transmit request (RTR) frame, overload frame, and error frame (Etschberger, 2001).
Fig. 1 shows the format of a CAN standard 2.0A data frame.

Fig. 1. Standard 2.0A data frame format of a CAN message.

As shown in fig. 1, a data frame consists of start-of-frame (SOF), arbitration field, control
field, data field, acknowledgement (ACK) field, and end-of-frame (EOF). An SOF bit marks

Advanced Bit Stuffing Mechanism for Reducing CAN Message Response Time

473

the beginning of a data frame, and is represented by one dominant bit (value=0). The
arbitration field consists of an 11-bit identifier and a dominant delimiter bit. The identifier
indicates the priority of the message. A message with identifier ‘00000000000’ has highest
priority, and a message with identifier ‘11111111111’ has lowest priority. The last four bits of
the control field are called the data length code (DLC). Its value represents the length of data
field. Data field contains up to 8 bytes of data to be transmitted. The CRC field consists of a
15-bit CRC code and a recessively transmitted delimiter bit. The ACK field has two delimiter
bits. The EOF consists of a sequence of 7 recessive bits (Etschberger, 2001).

In recent years, a luxury car may incorporate as many as 2500 signals exchanged by up to 70
ECUs (Albert, 2004). In the standard 2.0A frame format of a CAN message, the length of the
identifier is 11 bits. This means that 2048 different CAN messages are distinguishable in the
CAN communication system, so, the 11-bit identifier is insufficient to distinguish all signals.
For this reason, the extended 2.0B frame format with 29-bit identifier has been defined. Fig.
2 shows the format of a CAN extended 2.0B data frame (Pfeiffer et al., 2003)

Fig. 2. Extended 2.0B data frame format of a CAN message.

2.2 Worst-case bit stuffing scenario

When a CAN node detects an error in a transmitted message, it transmits an error flag
which consists of six bits of the same polarity. The bit stuffing mechanism prevents six
consecutive bits from having the same polarity by inserting a bit of opposite polarity after
the fifth bit. Moreover, the main purpose of the bit stuffing mechanism is used to
synchronize transmitter and receiver when the same values are to be transmitted
consecutively (Nolte et al., 2001). Bits exposed to bit stuffing are from an SOF bit to a 15-bit
CRC code without a CRC delimiter (see Fig. 1 and Fig. 2). The stuffing bits of the received
frame are removed at the receiving node before the message is processed (Wolfhard, 1997).

The worst-case scenario of the bit stuffing has been presented as shown in Fig. 3 (Nolte et
al., 2007).

Fig. 3. The worst-case scenario of the bit stuffing.

Automation

474

According to the worst-case scenario, the number of bits of a CAN message is given by:

 ݃ ൅ ݏ8 ൅ 13 ൅ ቔ௚ା଼௦ିଵସ ቕ (1)

where ݃ is 34 for the standard format or 54 for the extended format, ݏ is the number of data
bytes of a CAN message (Nolte et al., 2007). However, it is impossible that stuffing bits be
inserted in the worst-case scenario. The causes are:

1. Several bit values are fixed by the CAN frame format (e.g., the SOF bit and delimiter
bits in the arbitration field and the control field).

2. The DLC in the control field depends on its number of data bytes.
3. The CRC field of a CAN message depends on the bit sequence from an SOF bit to the

data field.

Accordingly, the worst-case number of stuffing bits in a standard 2.0A data frame is
reduced by 21~40% from previous values.

Fig. 4. The CAN arbitration process.

2.3 Bitwise bus arbitration

Each ECU of a CAN network can initiate the transmission of a message as soon as the bus is
free. Because it may happen that more than one ECU begins a message transmission at the
same time, an arbitration process is necessary. To prevent the ECUs from destroying each
other’s transmitted data, the message with the highest priority of all simultaneously
arbitrating messages is determined in an arbitration phase. As mentioned in Section 2.1, the
message having the lowest value message identifier is assigned highest priority
(Etschberger, 2001). Fig. 4 shows the CAN arbitration process. Each ECU monitors the signal
level on the bus during the arbitration phase. The arbitation phase consists of the
transmission of the message identifier and of the RTR bit. If an ECU detects a dominant bus

Advanced Bit Stuffing Mechanism for Reducing CAN Message Response Time

475

level, although it has switched a recessive level itself, it aborts the transmission process
immediately, as in this case a message with higher priority is obviously being transmitted at
the same time, and goes into the receive state (Etschberger, 2001).

2.4 Response time model of CAN messages

The worst-case response time of a CAN message ݉ can be calculated as the sum of the
queuing delay ݐ௠ and the transmission delay ܥ௠ as follows:

 ܴ௠ ൌ ௠ݐ ൅ ௠ (2)ܥ

The queueing delay ݐ௠ is composed of the blockng time ܤ and the interference and is given
by:

௠ݐ ൌ ܤ ൅ ∑ ඄௧೘ା௃ೕାఛ್೔೟்ೕ ඈ ௝∀௝∈௛௣ሺ௠ሻܥ (3)

where the set ݄݌ሺ݉ሻ consists of all the messages in the system of higher priority than
message ݉, ܬ௝ is the jitter on the queueing of the message ݆, 	 ௝ܶ is the transmission period of

the message ݆, and ߬௕௜௧ is the transmission time for a single bit.

The blocking time ܤ can be calculated by the transmission time of the longest CAN message
within the system. The transmission delay ܥ௠ can be calculated by multiplying the number
of bits of the message ݉ as in (1) and ߬௕௜௧ (Tindell et al., 1995).

3. Advanced Bit Stuffing (ABS) mechanism

As mentioned in Section 1, the mechanism proposed by Nolte et al. cannot be applied to
reduce the length of CAN messages because the message transmission priorities can be
shuffled as shown in Table 1.

High priority CAN
ID

Low priority CAN
ID

Description

Original CAN
Message

00001010111… 01111110101…
Low bit value has higher
priority

XORing
(by Nolte et al.)

01011111101… 00101011111… Mask: 01010101010

Bit Stuffing Message 010111110101… 001010111110… Priority inversion occurs.

Table 1. Counter example of priority inversion problem.

To solve the problem of priority inversion, a mechanism for minimizing the length of CAN
messages in bit stuffing, and for preserving message priorities, has been proposed (Park et
al., 2007). However, the previous mechanism contains a flaw which causes frame shortening
errors. The frame shortening error means that the receiver anticipates a frame of different
length than the original (Charzinski, 1994; Tran, 1999). It can occur when the first bit and the
last four bits of the control field are changed by the XOR operations with the bit mask. An
example of the frame shortening error is shown in Fig. 5.

Automation

476

Fig. 5. Example of the frame shortening error.

As shown in Fig. 5, two bits are changed by bit errors. The first error is the bit in the DLC
and the second one is the ACK slot. Thus the receiver can expect a message with a smaller
than the original message.

In this section, we propose an advanced bit stuffing (ABS) mechanism which adopts XOR
operations and prevents priority inversion and frame shortening errors at the same time. In
order to develop the ABS mechanism, an assignment scheme for CAN message identifiers
and generation rules of a new XOR bit mask are presented.

3.1 Message identifier assignment

To better understand the number of bits used for message identifiers in CAN-based control
systems, we assumed that there are two assignment schemes of message identifiers. The first
scheme is to assign to messages consecutive identifiers starting from 1. In this scheme, when
the number of message identifiers is n, the number of used bits is ڿlogଶ For instance, if the .ۀ݊
system requires 256 messages, than the number of used bits for message identifiers are 8. On
the other hand, the second scheme is based on the grouping of message identifiers in
accordance with their level of importance. In this scheme, the number of used bits can be
calculated by:

 ݊௨௦௘ௗ ൌ ۀlogଶ݉ڿ ൅ logଶڿ (4) ۀ݊

where ݉ and ݊ represent the number of groups and the maximum number of identifiers in a
group, respectively. For example, the system requires 4 message groups and each group
consists of up to 32 message identifiers. In this case, only 7 bits are used for message
identifiers. 2 bits out of 7 bits are required for representing message groups and 5 bits out of
7 bits are required for representing message identifiers of each group. Because the first
scheme is a special case (i.e., ݉ ൌ 1) of the second scheme, in this paper, we have applied the
second scheme in order to assign message identifiers.

Advanced Bit Stuffing Mechanism for Reducing CAN Message Response Time

477

3.2 XOR mask generation for standard 2.0A frame format

In order to generate a new mask for standard 2.0A frame format, we assumed that the bits
for group and those for group identifiers are assigned to the most significant bit (MSB) and
the least significant bit (LSB) field in the arbitration field, respectively. When the number of
data bytes (ݏ), the number of groups (݉) and the maximum number of identifiers in a group
(݊) are determined, the following mask generation procedure is constructed for the standard
2.0A frame format.

1. The length of a mask is the length of the bits exposed to bit stuffing, 8ݏ ൅ 34. The mask
is initially set to “010101…”

2. A value of 0 is assigned to ڿlogଶ݉ۀ bits of the MSB and ڿlogଶ -bits of the LSB of the 11 ۀ݊
bit identifier in the mask.

3. A value of 0 is assigned to the RTR bit of the arbitration field in the mask.
4. The string “010000” is assigned to 6 bits of the control field in the mask. Then, the mask

can be generated as depicted in Fig. 6.

Fig. 6. XOR mask generation for standard 2.0A frame format.

3.3 XOR mask generation for extended 2.0B frame format

We extended the mask generation procedure in Section 3.2 for extended 2.0B frame format.
In the same manner, we assumed that the bits for a group and those for group identifiers are
assigned to the MSB and the LSB field in the arbitration field of the extended 2.0B frame
format, respectively. When the number of data bytes (ݏ), the number of groups (݉) and the
maximum number of identifiers in a group (݊) are determined, the following mask
generation procedure is constructed for the extended 2.0B frame format.

1. The length of a mask is the length of the bits exposed to bit stuffing, 8ݏ ൅ 54. The mask
is initially set to “010101…”

2. A value of 0 is assigned to ڿlogଶ݉ۀ bits of the MSB and ڿlogଶ -bits of the LSB of the 29 ۀ݊
bit identifier in the mask.

3. A value of 00 is assigned to 2 medial bits of the arbitration field, and a value of 0 is
assigned to the RTR bit of the arbitration field in the mask.

4. The string “010000” is assigned to 6 bits of the control field in the mask. Then, the mask
can be generated as depicted in Fig. 7.

Automation

478

Fig. 7. XOR mask generation for extended 2.0B frame format.

In both standard and extended frame format, r0 bit should be a dominant bit. But the bit of
r0 bit location in the generated mask is assigned to a recessive bit in the generation
procedure for both standard and extended frame format. This assignment is for separating
XOR masked CAN messages from original CAN messages. If an ECU receives a CAN
message with dominant bit of r0 bit location, the received message is unmasked, and
otherwise (i.e., a CAN message with recessive bit level of r0 bit location), a received message
is masked.

Fig. 8. Implementing the ABS mechanism

3.4 Guidance for implementing the ABS mechanism

In Section 3.2 and Section 3.3, the XOR masks are generated for standard and extended
frame format. The ABS mechanism reduces the number of stuffing bits in the CAN message
by a bitwise manipulation using the XOR masks (Fig. 8).

4. Performance evaluation

As in our previous work, the example of the case of ڿlogଶ݉ۀ ൌ 2 illustrates the efficiency of
the proposed mechanism (Park et al., 2007). For the SOF bit, the arbitration field, and the
control field, the expected number of stuffing bits has been calculated with a variable

Advanced Bit Stuffing Mechanism for Reducing CAN Message Response Time

479

number of ڿlogଶ The expected number of stuffing bits in the original messages is shown .ۀ݊
in Table 2. For comparison, the expected number of stuffing bits in the XOR masked
messages is shown in Table 3, where ܲሺܺ ൌ ݅ሻ represents the probability that the message
has ݅ stuffing bits, and ܧሺܺሻ is the expected number of the stuffing bits. In order to calculate
the probability, we assume that the probability of a bit having value 1 or 0 is equal.

logଶڿ ሺܺܲ ۀ݊ ൌ 0ሻ ܲሺܺ ൌ 1ሻ ܲሺܺ ൌ 2ሻ ܲሺܺ ൌ 3ሻ ܧሺܺሻ
1 0 0.234 0.594 0.172 1.938

2 0 0.305 0.609 0.086 1.781

3 0 0.324 0.633 0.043 1.719

4 0.086 0.402 0.477 0.035 1.461

5 0.157 0.477 0.341 0.025 1.234

6 0.199 0.509 0.268 0.024 1.117

7 0.251 0.561 0.176 0.012 0.949

8 0.260 0.572 0.159 0.009 0.917

9 0.260 0.572 0.159 0.009 0.917

Table 2. The expected number of the stuffing bits in the original messages.

In order to evaluate the performance of the ABS mechanism, the number of stuffing bits of
masked message frames is compared with the number of stuffing bits of the original
message frames. The original and masked message frames are generated by a simulation
program. The flowchart of the simulation program is shown in Fig. 9. Simulation
procedures are as follows: 1) Initially, the simulation program obtains input parameters. In
this simulation, the number of runs is 1000 and each CAN message has four data bytes; 2)
Then, the original message frame is generated and the number of stuffing bits is calculated;
3) Next, the bit mask is generated by using mask generation as shown in Section 3.2 and
Section 3.3, and masked message frame generated by XOR operation in both the bit mask
and the original message frame; 4) Finally, the number of stuffing bits of the masked
message frame is calculated. When a simulation is complete, the average and maximum
number of stuffing bits in the original and masked message frames are calculated,
respectively.

In this experiment, the number of runs is 1000 and the assumptions that are made in these
experiments are as follows: 1) the probability that a bit which does not have a specific value
can be set to 0 or 1 is the same, and 2) it is independent of other bit values, and finally, 3)
there is no transmission error during experiment.

Automation

480

logଶڿ ሺܺܲ ۀ݊ ൌ 0ሻ ܲሺܺ ൌ 1ሻ ܲሺܺ ൌ 2ሻ ܲሺܺ ൌ 3ሻ ܧሺܺሻ
1 1 0 0 0 0

2 1 0 0 0 0

3 0.875 0.125 0 0 0.125

4 0.875 0.125 0 0 0.125

5 0.875 0.125 0 0 0.125

6 0.844 0.156 0 0 0.156

7 0.754 0.234 0.012 0 0.258

8 0.728 0.254 0.018 0 0.291

9 0.728 0.254 0.018 0 0.291

Table 3. The expected number of the stuffing bits in the XOR masked messages.

Fig. 10 and Fig. 11 show the average and maximum number of stuffing bits in the standard

data frame as the number of used bits in the arbitration field changes, in both the original

frame and the masked frame. In the same manner, the number of stuffing bits in the

extended data frame is shown in Fig. 12 and Fig. 13. Here we can see that the more the

number of used bits decreases, the more does the number of stuffing bits of the original

message frame increase. However, the number of stuffing bits of the masked message frame

showed little variation regardless of the change in the number of used bits.

From the experimental results, it can be found that the expected number of stuffing bits is

reduced by the maximum of 58.3% with an average of 32.4%. This may effect the response

time of CAN messages because message response time is in proportion to the length of

message frame.

The average and maximum number of stuffing bits in the standard data frame with ڿlogଶ݉ۀ ൌ 2, logଶڿ ۀ݊ ൌ 4 as the number of data bytes changes, in both the masked frame and

the original frame, are shown in Fig. 14. In the same manner, the number of stuffing bits in

the extended data frame is shown in Fig. 15. As shown in Fig. 14 and Fig. 15, the number of

stuffing bits of the masked message frame is smaller than the number of stuffing bits of the

original message frame.

As mentioned in Section 2.4, the response time of CAN messages is determined by the

queuing delay and the transmission delay. If the number of stuffing bits decreases, both the

queuing delay and the transmission delay can be reduced. Furthermore, this may have

effects on the reduced network utilization of the embedded systems using CAN network

protocols.

Advanced Bit Stuffing Mechanism for Reducing CAN Message Response Time

481

Fig. 9. Flowchart of the simulation program.

Automation

482

The number of used bits for message idenfifiers

0 1 2 3 4 5 6 7 8 9 10 11

T
h
e

 n
u
m

b
e

r
o

f
s
tu

ff
in

g
 b

it
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Original, Maximum

Masked, Maximum

Original, Average

Masked, Average

Fig. 10. The number of stuffing bits in the standard frame with 4 data bytes.

The number of used bits for message identifiers

0 1 2 3 4 5 6 7 8 9 10 11

T
h
e

 n
u
m

b
e

r
o

f
s
tu

ff
in

g
 b

it
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Original, Maximum

Masked, Maximum

Original, Average

Masked, Average

Fig. 11. The number of stuffing bits in the standard frame with 8 data bytes.

Advanced Bit Stuffing Mechanism for Reducing CAN Message Response Time

483

The number of used bits for message identifiers

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

T
h
e

 n
u
m

b
e

r
o

f
s
tu

ff
in

g
 b

it
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Original, Maximum

Masked, Maximum

Original, Average

Masked, Average

Fig. 12. The number of stuffing bits in the extended frame with 4 data bytes.

The number of used bits for message identifiers

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

T
h
e

 n
u
m

b
e

r
o

f
s
tu

ff
in

g
 b

it
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Origianl, Maximum

Masked, Maximum

Original, Average

Masked, Average

Fig. 13. The number of stuffing bits in the extended frame with 8 data bytes.

Automation

484

The number of data bytes

1 2 3 4 5 6 7 8

T
h
e

 n
u
m

b
e

r
o

f
s
tu

ff
in

g
 b

it
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Original, Maximum

Masked, Maximum

Original, Average

Masked, Average

Fig. 14. The number of stuffing bits in the standard frame with ڿlogଶ݉ۀ ൌ 2, logଶڿ ۀ݊ ൌ 4

The number of data bytes

1 2 3 4 5 6 7 8

T
h
e

 n
u
m

b
e

r
o

f
s
tu

ff
in

g
 b

it
s

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Original, Maximum

Masked, Maximum

Original, Average

Masked, Average

Fig. 15. The number of stuffing bits in the extend frame with ڿlogଶ݉ۀ ൌ 6, logଶڿ ۀ݊ ൌ 9

Advanced Bit Stuffing Mechanism for Reducing CAN Message Response Time

485

5. Conclusions

Minimizing the response time of the CAN message is necessary to guarantee real-time
performance improvement. In this paper, an effective mechanism called advanced bit
stuffing (ABS) mechanism is presented. The ABS mechanism develops an assignment
scheme of CAN message identifiers and generation rules of a new XOR bit mask, to prevent
the problems with message priority inversion and frame shortening error. From the
experimental result, the number of stuffing bits of the masked message frame showed little
variation regardless of the change of the number of used bits. It has been also found that it is
more effective in embedded systems in which the number of CAN messages is less than that
of bits that are used for message priority.

6. References

Albert, A. (2004). Comparison of Event-triggered and Time-triggered Concepts with
Regards to Distributed Control Systems, Embedded World Conference, Nürnberg,
Germany.

Charzinski, J. (1994). Performance of the Error Detection Mechanisms in CAN, Proceedings of
the 1st International CAN Conference, Mainz, Germany.

Davis, R. & Burns, A. (2007). Controller Area Network (CAN) Schedulability Analysis:
Refuted, Revisited and Revised, Real-Time Systems, Vol. 35, No. 3, pp. 239-272.

Etschberger, K. (2001). Controller Area Network (CAN): Basics, Protocols, Chips, and
Applications, IXXAT Automation GmbH, ISBN 978-3000073762, Weingarten,
Germany.

Fabian, S. & Wolfgang, S. (2006). Time-Triggered vs. Event-Triggered: A Matter of
Configuration, Proceedings of the GI/ITG Workshop on Non-Functional Properties on
Embedded Systems, pp. 1-6.

Farsi, M.; Ratcliff, K.; & Barbosa, M. (1999). An Overview of Controller Area Network,
Computing & Control Engineering Journal, Vol. 10, pp. 113-120.

Gaujal, B. & Navet, N. (2005) Fault Confinement Mechanisms on CAN: Analysis and
Improvements, IEEE Transactions on Vehicular Technology, Vol. 54, pp. 1103-1113.

International Standards Organization. (1993). Road Vehicles - Interchange of Digital
Information – Controller Area Network (CAN) for High-Speed Communication.
ISO 11898.

Johansson, K.H.; Torngren, M.; & Nielsen, L. (2005). Vehicle Applications of Controller Area
Network, Handbook of Networked and Embedded Control Systems, ISBN 0-8176-3239-5,
pp. 741-766.

Navet, N.; Song, Y.; Simonot-Lion, F.; & Wilwert, C. (2005). Trends in Automotive
Communication Systems, In Proceeding of the IEEE, Vol. 93, No.6, pp. 1204-1223.

Nolte, T.; Hansson, H.; Norstrom, C.; & Punnekkat, S. (2001). Using bit-stuffing distributions
in CAN analysis, IEEE/IEE Real-Time Embedded Systems Workshop (RTES’01).

Nolte, T.; Hansson, H.; & Norstrom, C. (2002). Minimizing CAN Response-Time Jitter by
Message Manipulation, Eighth IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS'02), pp. 197-206.

Nolte, T.; Hansson, H.; & Norstrom, C. (2003). Probabilistic Worst-Case Response Time
Analysis for the Controller Area Network, Ninth IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS'03), pp. 200-207.

Automation

486

Obermaisser, R. (2004). Event-Triggered and Time-Triggered Control Paradigms, Sptinger-
Verlag, ISBN 978-1441935694.

Park, K.; Kang, M.; & Shin, D. (2007). Mechanism for Minimizing Stuffing-bits in CAN
Messages, The 33rd Annual Conference on the Industrial Electronics Society (IECON
’07), pp. 735-737.

Park, K. & Kang, M. (2009). Advanced Bit Stuffing Mechanism for Reducing the Length of
CAN Messages, International Conference on Convergence Technologies and Information
Convergence (CTIC’09).

Pfeiffer, O.; Ayre, A.; & Keydel, C. (2003). Embedded Networking with CAN and CANopen, RTC
Books, ISBN 978-0929392783.

Rushby, J. (2003). A Comparison of Bus Architecture for Safety-Critical Embedded Systems,
NASA/CR, Technical Report, NASA/CR-2003-212161.

Tindell, K.W. & Burns, A.K. (1994). Guaranteed Message Latencies for Distributed Safety-
critical Hard Real-time Networks, Technical Report YCS 229, Department of
Computer Science, University of York.

Tindell, K.; Burns, A.; & Wellings, A. J. (1995). Calculating Controller Area Network (CAN)
Message Response Times, Control Engineering Practice, Vol. 3, No. 8, pp. 1163– 1169.

Tran, E. (1999). Multi-bit Error Vulnerabilities in the Controller Area Network Protocol, Carnegie
Mellon University, Thesis.

Wilwert, C.; Navet, N.; Song, Y.-Q.; & Simonot-Lion, F. (2004). Design of automotive X-by-
Wire systems, The Industrial Communication Technology Handbook, R. Zurawski, Ed.
Boca Raton, FL: CRC.

Wolfhard, L. (1997). CAN System Engineering: From Theory to Practical Applications, Springer,
ISBN 978-0387949390.

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

