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Advanced Bit Stuffing Mechanism  
for Reducing CAN Message Response Time 

Kiejin Park and Minkoo Kang 
Ajou University 

Republic of Korea 

1. Introduction 

As customer requirements for safety and convenience in automobiles increases, so does the 

quantity of electronics and software installed in them. The amount of signal data from the 

electronics systems needs to be managed, making the design of communication protocols for 

in-vehicle networks (IVN) more important (Navet et al., 2005). The IVN protocols can be 

classified into two paradigms: event-triggered and time-triggered (Obermaisser, 2004). The 

event-triggered protocols are efficient in terms of network utilization, because the messages 

transmitted within event-triggered protocols are only transmitted when specific events 

occur. This differs from time-triggered communication in that the response time of message 

transmission is not predictable (Fabian & Wolfgang, 2006). 

The controller area network (CAN) is a well-known event-triggered protocol originally 

developed in the mid-1980s for multiplexing communication between electronic control 

units (ECUs) in automobiles (ISO 11898, 1993). In recent years, CAN has been used in 

embedded control systems that require high safety and reliability because of its appealing 

features and low implementation costs (Navet et al., 2005; Johansson et al.; 2005). Appealing 

features of CAN protocols are that the error detection mechanisms can identify multiple 

types of error (e.g. bits error, bit stuffing error, cyclic redundancy checksum error, frame 

error, and acknowledgement error). Moreover, error counters in a CAN controller can be 

used to represent which states of the controller are associated with specific errors, which 

include an error-active state, an error-passive state, and a bus-off state (Gaujal & Navet, 

2005). 

In spite of low implementation costs and wide acceptance of the CAN protocol in 

automotive control systems and industrial factory automation, limited bandwidth and 

nondeterministic response time have restricted the wider use of CAN in safety-critical real-

time embedded control systems such as x-by-wire applications (Rushby, 2003; Wilwert et al., 

2004). To mitigate the effects of these problems, the worst-case response time of a CAN 

message should be reduced as much as possible. Calculating the worst-case response time of 

CAN messages has been studied in order to guarantee its schedulability (Tindell et al., 1994, 

1995), and this approach has been cited in over 200 subsequent papers. More recently, the 

schedulability analysis of CAN has been studied as the revised version of the original 

approach (Davis & Burns, 2007). 
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To reduce the length of CAN messages, the pre-processing mechanism using bitwise 
manipulation before bit stuffing has been suggested (Nolte et al., 2002, 2003). According to 
this mechanism, the worst-case response time can be reduced by minimizing stuffing bits in 
CAN messages. However, this mechanism cannot be applied to CAN network systems 
because the problem of message priority inversion has not been addressed. In our previous 
work, to resolve the problem of message priority inversion, a mechanism with a new bit 
mask for reducing the length of CAN message as well as preserving message priorities has 
been proposed (Park et al., 2007). Subsequently, we found that the mechanism has a 
problem which causes the frame shortening error and proposed the advanced bit stuffing 
(ABS) mechanism for resolving the problems with the previous approach (Park & Kang, 
2009). In this paper, we describe the ABS mechanism in detail and extend the generation 
procedure of the bit mask of the ABS mechanism for the extended 2.0B frame format.  

The outline of this paper is as follows. Section 2 presents a summary of the CAN protocol, 
and describes the impossibility of the worst-case bit stuffing scenario proposed by Nolte et 
al. Then calculating response time of CAN messages is presented. In Section 3, the ABS 
mechanism for reducing CAN message response time using generation of a new mask is 
described in detail. Also, we describe the examples of problems with priority inversion and 
frame shortening error. In Section 4, we evaluate the performance of the ABS mechanism 
with various CAN message sets. Finally, Section 5 concludes the paper. 

2. Background 

2.1 CAN message frame format 

Controller area network (CAN) is the ISO standard for communication in automotive 
applications. It is designed to operate at network speeds of up to 1 Mbps for message 
transmission. Each CAN message contains up to 8 bytes of data (Farci et al., 1999). The 
frame format of a CAN message is classified into two categories that include the standard 
2.0A with 11-bit identifier and the extended 2.0B with 29-bit identifier. Furthermore, 
message transmission over a CAN is controlled by four different types of frame: data frame, 
remote transmit request (RTR) frame, overload frame, and error frame (Etschberger, 2001). 
Fig. 1 shows the format of a CAN standard 2.0A data frame. 

 

Fig. 1. Standard 2.0A data frame format of a CAN message. 

As shown in fig. 1, a data frame consists of start-of-frame (SOF), arbitration field, control 
field, data field, acknowledgement (ACK) field, and end-of-frame (EOF). An SOF bit marks 
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the beginning of a data frame, and is represented by one dominant bit (value=0). The 
arbitration field consists of an 11-bit identifier and a dominant delimiter bit. The identifier 
indicates the priority of the message. A message with identifier ‘00000000000’ has highest 
priority, and a message with identifier ‘11111111111’ has lowest priority. The last four bits of 
the control field are called the data length code (DLC). Its value represents the length of data 
field. Data field contains up to 8 bytes of data to be transmitted. The CRC field consists of a 
15-bit CRC code and a recessively transmitted delimiter bit. The ACK field has two delimiter 
bits. The EOF consists of a sequence of 7 recessive bits (Etschberger, 2001). 

In recent years, a luxury car may incorporate as many as 2500 signals exchanged by up to 70 
ECUs (Albert, 2004). In the standard 2.0A frame format of a CAN message, the length of the 
identifier is 11 bits. This means that 2048 different CAN messages are distinguishable in the 
CAN communication system, so, the 11-bit identifier is insufficient to distinguish all signals. 
For this reason, the extended 2.0B frame format with 29-bit identifier has been defined. Fig. 
2 shows the format of a CAN extended 2.0B data frame (Pfeiffer et al., 2003) 

 

Fig. 2. Extended 2.0B data frame format of a CAN message. 

2.2 Worst-case bit stuffing scenario 

When a CAN node detects an error in a transmitted message, it transmits an error flag 
which consists of six bits of the same polarity. The bit stuffing mechanism prevents six 
consecutive bits from having the same polarity by inserting a bit of opposite polarity after 
the fifth bit. Moreover, the main purpose of the bit stuffing mechanism is used to 
synchronize transmitter and receiver when the same values are to be transmitted 
consecutively (Nolte et al., 2001). Bits exposed to bit stuffing are from an SOF bit to a 15-bit 
CRC code without a CRC delimiter (see Fig. 1 and Fig. 2). The stuffing bits of the received 
frame are removed at the receiving node before the message is processed (Wolfhard, 1997). 

The worst-case scenario of the bit stuffing has been presented as shown in Fig. 3 (Nolte et 
al., 2007). 

 

Fig. 3. The worst-case scenario of the bit stuffing. 
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According to the worst-case scenario, the number of bits of a CAN message is given by:  

 ݃ ൅ ݏ8 ൅ 13 ൅ ቔ௚ା଼௦ିଵସ ቕ (1) 

where ݃ is 34 for the standard format or 54 for the extended format, ݏ is the number of data 
bytes of a CAN message (Nolte et al., 2007). However, it is impossible that stuffing bits be 
inserted in the worst-case scenario. The causes are: 

1. Several bit values are fixed by the CAN frame format (e.g., the SOF bit and delimiter 
bits in the arbitration field and the control field). 

2. The DLC in the control field depends on its number of data bytes. 
3. The CRC field of a CAN message depends on the bit sequence from an SOF bit to the 

data field. 

Accordingly, the worst-case number of stuffing bits in a standard 2.0A data frame is 
reduced by 21~40% from previous values.  

 

Fig. 4. The CAN arbitration process. 

2.3 Bitwise bus arbitration  

Each ECU of a CAN network can initiate the transmission of a message as soon as the bus is 
free. Because it may happen that more than one ECU begins a message transmission at the 
same time, an arbitration process is necessary. To prevent the ECUs from destroying each 
other’s transmitted data, the message with the highest priority of all simultaneously 
arbitrating messages is determined in an arbitration phase. As mentioned in Section 2.1, the 
message having the lowest value message identifier is assigned highest priority 
(Etschberger, 2001). Fig. 4 shows the CAN arbitration process. Each ECU monitors the signal 
level on the bus during the arbitration phase. The arbitation phase consists of the 
transmission of the message identifier and of the RTR bit. If an ECU detects a dominant bus 
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level, although it has switched a recessive level itself, it aborts the transmission process 
immediately, as in this case a message with higher priority is obviously being transmitted at 
the same time, and goes into the receive state (Etschberger, 2001). 

2.4 Response time model of CAN messages 

The worst-case response time of a CAN message ݉ can be calculated as the sum of the 
queuing delay ݐ௠ and the transmission delay ܥ௠ as follows: 

 ܴ௠ ൌ ௠ݐ ൅  ௠    (2)ܥ

The queueing delay ݐ௠ is composed of the blockng time ܤ and the interference and is given 
by:  

௠ݐ    ൌ ܤ ൅ ∑ ඄௧೘ା௃ೕାఛ್೔೟்ೕ ඈ ௝∀௝∈௛௣ሺ௠ሻܥ  (3) 

where the set ݄݌ሺ݉ሻ consists of all the messages in the system of higher priority than 
message ݉, ܬ௝ is the jitter on the queueing of the message ݆, 	 ௝ܶ is the transmission period of 

the message ݆, and ߬௕௜௧ is the transmission time for a single bit.  

The blocking time ܤ can be calculated by the transmission time of the longest CAN message 
within the system. The transmission delay ܥ௠ can be calculated by multiplying the number 
of bits of the message ݉ as in (1) and ߬௕௜௧ (Tindell et al., 1995). 

3. Advanced Bit Stuffing (ABS) mechanism 

As mentioned in Section 1, the mechanism proposed by Nolte et al. cannot be applied to 
reduce the length of CAN messages because the message transmission priorities can be 
shuffled as shown in Table 1. 

 

 
High priority CAN 
ID 

Low priority CAN 
ID 

Description 

Original CAN 
Message 

00001010111…  01111110101… 
Low bit value has higher 
priority 

XORing  
(by Nolte et al.) 

01011111101… 00101011111… Mask: 01010101010 

Bit Stuffing Message 010111110101… 001010111110… Priority inversion occurs. 

Table 1. Counter example of priority inversion problem. 

To solve the problem of priority inversion, a mechanism for minimizing the length of CAN 
messages in bit stuffing, and for preserving message priorities, has been proposed (Park et 
al., 2007). However, the previous mechanism contains a flaw which causes frame shortening 
errors. The frame shortening error means that the receiver anticipates a frame of different 
length than the original (Charzinski, 1994; Tran, 1999). It can occur when the first bit and the 
last four bits of the control field are changed by the XOR operations with the bit mask. An 
example of the frame shortening error is shown in Fig. 5.  
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Fig. 5. Example of the frame shortening error. 

As shown in Fig. 5, two bits are changed by bit errors. The first error is the bit in the DLC 
and the second one is the ACK slot. Thus the receiver can expect a message with a smaller 
than the original message. 

In this section, we propose an advanced bit stuffing (ABS) mechanism which adopts XOR 
operations and prevents priority inversion and frame shortening errors at the same time. In 
order to develop the ABS mechanism, an assignment scheme for CAN message identifiers 
and generation rules of a new XOR bit mask are presented. 

3.1 Message identifier assignment 

To better understand the number of bits used for message identifiers in CAN-based control 
systems, we assumed that there are two assignment schemes of message identifiers. The first 
scheme is to assign to messages consecutive identifiers starting from 1. In this scheme, when 
the number of message identifiers is n, the number of used bits is ڿlogଶ  For instance, if the .ۀ݊
system requires 256 messages, than the number of used bits for message identifiers are 8. On 
the other hand, the second scheme is based on the grouping of message identifiers in 
accordance with their level of importance. In this scheme, the number of used bits can be 
calculated by: 

  ݊௨௦௘ௗ ൌ ۀlogଶ݉ڿ ൅ logଶڿ  (4)   ۀ݊

where ݉ and ݊ represent the number of groups and the maximum number of identifiers in a 
group, respectively. For example, the system requires 4 message groups and each group 
consists of up to 32 message identifiers. In this case, only 7 bits are used for message 
identifiers. 2 bits out of 7 bits are required for representing message groups and 5 bits out of 
7 bits are required for representing message identifiers of each group. Because the first 
scheme is a special case (i.e., ݉ ൌ 1) of the second scheme, in this paper, we have applied the 
second scheme in order to assign message identifiers. 
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3.2 XOR mask generation for standard 2.0A frame format 

In order to generate a new mask for standard 2.0A frame format, we assumed that the bits 
for group and those for group identifiers are assigned to the most significant bit (MSB) and 
the least significant bit (LSB) field in the arbitration field, respectively. When the number of 
data bytes (ݏ), the number of groups (݉) and the maximum number of identifiers in a group 
(݊) are determined, the following mask generation procedure is constructed for the standard 
2.0A frame format. 

1. The length of a mask is the length of the bits exposed to bit stuffing, 8ݏ ൅ 34. The mask 
is initially set to “010101…” 

2. A value of 0 is assigned to ڿlogଶ݉ۀ bits of the MSB and ڿlogଶ -bits of the LSB of the 11 ۀ݊
bit identifier in the mask. 

3. A value of 0 is assigned to the RTR bit of the arbitration field in the mask. 
4. The string “010000” is assigned to 6 bits of the control field in the mask. Then, the mask 

can be generated as depicted in Fig. 6. 
 
 

 

Fig. 6. XOR mask generation for standard 2.0A frame format. 

3.3 XOR mask generation for extended 2.0B frame format 

We extended the mask generation procedure in Section 3.2 for extended 2.0B frame format. 
In the same manner, we assumed that the bits for a group and those for group identifiers are 
assigned to the MSB and the LSB field in the arbitration field of the extended 2.0B frame 
format, respectively. When the number of data bytes (ݏ), the number of groups (݉) and the 
maximum number of identifiers in a group (݊) are determined, the following mask 
generation procedure is constructed for the extended 2.0B frame format. 

1. The length of a mask is the length of the bits exposed to bit stuffing, 8ݏ ൅ 54. The mask 
is initially set to “010101…” 

2. A value of 0 is assigned to ڿlogଶ݉ۀ bits of the MSB and ڿlogଶ -bits of the LSB of the 29 ۀ݊
bit identifier in the mask. 

3. A value of 00 is assigned to 2 medial bits of the arbitration field, and a value of 0 is 
assigned to the RTR bit of the arbitration field in the mask. 

4. The string “010000” is assigned to 6 bits of the control field in the mask. Then, the mask 
can be generated as depicted in Fig. 7. 
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Fig. 7. XOR mask generation for extended 2.0B frame format. 

In both standard and extended frame format, r0 bit should be a dominant bit. But the bit of 
r0 bit location in the generated mask is assigned to a recessive bit in the generation 
procedure for both standard and extended frame format. This assignment is for separating 
XOR masked CAN messages from original CAN messages. If an ECU receives a CAN 
message with dominant bit of r0 bit location, the received message is unmasked, and 
otherwise (i.e., a CAN message with recessive bit level of r0 bit location), a received message 
is masked. 

 

Fig. 8. Implementing the ABS mechanism 

3.4 Guidance for implementing the ABS mechanism 

In Section 3.2 and Section 3.3, the XOR masks are generated for standard and extended 
frame format. The ABS mechanism reduces the number of stuffing bits in the CAN message 
by a bitwise manipulation using the XOR masks (Fig. 8). 

4. Performance evaluation 

As in our previous work, the example of the case of ڿlogଶ݉ۀ ൌ 2 illustrates the efficiency of 
the proposed mechanism (Park et al., 2007). For the SOF bit, the arbitration field, and the 
control field, the expected number of stuffing bits has been calculated with a variable 
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number of ڿlogଶ  The expected number of stuffing bits in the original messages is shown .ۀ݊
in Table 2. For comparison, the expected number of stuffing bits in the XOR masked 
messages is shown in Table 3, where ܲሺܺ ൌ ݅ሻ represents the probability that the message 
has ݅ stuffing bits, and ܧሺܺሻ is the expected number of the stuffing bits. In order to calculate 
the probability, we assume that the probability of a bit having value 1 or 0 is equal.  

logଶڿ  ሺܺܲ ۀ݊ ൌ 0ሻ ܲሺܺ ൌ 1ሻ ܲሺܺ ൌ 2ሻ ܲሺܺ ൌ 3ሻ ܧሺܺሻ 
1 0 0.234 0.594 0.172 1.938 

2 0 0.305 0.609 0.086 1.781 

3 0 0.324 0.633 0.043 1.719 

4 0.086 0.402 0.477 0.035 1.461 

5 0.157 0.477 0.341 0.025 1.234 

6 0.199 0.509 0.268 0.024 1.117 

7 0.251 0.561 0.176 0.012 0.949 

8 0.260 0.572 0.159 0.009 0.917 

9 0.260 0.572 0.159 0.009 0.917 

Table 2. The expected number of the stuffing bits in the original messages. 

In order to evaluate the performance of the ABS mechanism, the number of stuffing bits of 
masked message frames is compared with the number of stuffing bits of the original 
message frames. The original and masked message frames are generated by a simulation 
program. The flowchart of the simulation program is shown in Fig. 9. Simulation 
procedures are as follows: 1) Initially, the simulation program obtains input parameters. In 
this simulation, the number of runs is 1000 and each CAN message has four data bytes; 2) 
Then, the original message frame is generated and the number of stuffing bits is calculated; 
3) Next, the bit mask is generated by using mask generation as shown in Section 3.2 and 
Section 3.3, and masked message frame generated by XOR operation in both the bit mask 
and the original message frame; 4) Finally, the number of stuffing bits of the masked 
message frame is calculated. When a simulation is complete, the average and maximum 
number of stuffing bits in the original and masked message frames are calculated, 
respectively.  

In this experiment, the number of runs is 1000 and the assumptions that are made in these 
experiments are as follows: 1) the probability that a bit which does not have a specific value 
can be set to 0 or 1 is the same, and 2) it is independent of other bit values, and finally, 3) 
there is no transmission error during experiment. 
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logଶڿ ሺܺܲ ۀ݊ ൌ 0ሻ ܲሺܺ ൌ 1ሻ ܲሺܺ ൌ 2ሻ ܲሺܺ ൌ 3ሻ ܧሺܺሻ 
1 1 0 0 0 0 

2 1 0 0 0 0 

3 0.875 0.125 0 0 0.125 

4 0.875 0.125 0 0 0.125 

5 0.875 0.125 0 0 0.125 

6 0.844 0.156 0 0 0.156 

7 0.754 0.234 0.012 0 0.258 

8 0.728 0.254 0.018 0 0.291 

9 0.728 0.254 0.018 0 0.291 

Table 3. The expected number of the stuffing bits in the XOR masked messages. 

Fig. 10 and Fig. 11 show the average and maximum number of stuffing bits in the standard 

data frame as the number of used bits in the arbitration field changes, in both the original 

frame and the masked frame. In the same manner, the number of stuffing bits in the 

extended data frame is shown in Fig. 12 and Fig. 13. Here we can see that the more the 

number of used bits decreases, the more does the number of stuffing bits of the original 

message frame increase. However, the number of stuffing bits of the masked message frame 

showed little variation regardless of the change in the number of used bits. 

From the experimental results, it can be found that the expected number of stuffing bits is 

reduced by the maximum of 58.3% with an average of 32.4%. This may effect the response 

time of CAN messages because message response time is in proportion to the length of 

message frame. 

The average and maximum number of stuffing bits in the standard data frame with ڿlogଶ݉ۀ ൌ 2, logଶڿ ۀ݊ ൌ 4 as the number of data bytes changes, in both the masked frame and 

the original frame, are shown in Fig. 14. In the same manner, the number of stuffing bits in 

the extended data frame is shown in Fig. 15. As shown in Fig. 14 and Fig. 15, the number of 

stuffing bits of the masked message frame is smaller than the number of stuffing bits of the 

original message frame.  

As mentioned in Section 2.4, the response time of CAN messages is determined by the 

queuing delay and the transmission delay. If the number of stuffing bits decreases, both the 

queuing delay and the transmission delay can be reduced. Furthermore, this may have 

effects on the reduced network utilization of the embedded systems using CAN network 

protocols. 
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Fig. 9. Flowchart of the simulation program. 
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Fig. 10. The number of stuffing bits in the standard frame with 4 data bytes. 

The number of used bits for message identifiers
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Fig. 11. The number of stuffing bits in the standard frame with 8 data bytes. 
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The number of used bits for message identifiers
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Fig. 12. The number of stuffing bits in the extended frame with 4 data bytes. 

The number of used bits for message identifiers
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Fig. 13. The number of stuffing bits in the extended frame with 8 data bytes. 
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The number of data bytes
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Fig. 14. The number of stuffing bits in the standard frame with ڿlogଶ݉ۀ ൌ 2, logଶڿ ۀ݊ ൌ 4 

The number of data bytes
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Fig. 15. The number of stuffing bits in the extend frame with ڿlogଶ݉ۀ ൌ 6, logଶڿ ۀ݊ ൌ 9 
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5. Conclusions 

Minimizing the response time of the CAN message is necessary to guarantee real-time 
performance improvement. In this paper, an effective mechanism called advanced bit 
stuffing (ABS) mechanism is presented. The ABS mechanism develops an assignment 
scheme of CAN message identifiers and generation rules of a new XOR bit mask, to prevent 
the problems with message priority inversion and frame shortening error. From the 
experimental result, the number of stuffing bits of the masked message frame showed little 
variation regardless of the change of the number of used bits. It has been also found that it is 
more effective in embedded systems in which the number of CAN messages is less than that 
of bits that are used for message priority. 
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