
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

An End-to-End Framework for Designing
Networked Control Systems

Alie El-Din Mady and Gregory Provan
Cork Complex Systems Lab (CCSL), Computer Science Department

University College Cork (UCC), Cork
Ireland

1. Introduction

Designing a control system over Wireless Sensor/Actuator Network (WSAN) devices
increases the coupling of many aspects, and the need for a sound discipline for
writing/designing embedded software becomes more apparent. Such a WSAN-based control
architecture is called a Networked Control System (NCS). At present, many frameworks
support some steps of the NCS design flow, however there is no end-to-end solution that
considers the tight integration of hardware, software and physical environment. This chapter
aims to develop a fully integrated end-to-end framework for designing an NCS, from
system modelling to embedded control-code generation. This framework aims to generate
embedded control code that preserves the modelled system properties, and observes the
hardware/software constraints of the targeted platform.

Existing approaches for control code design typically ignore the embedded system
constraints, leading to a number of potential problems. For example, network delays and
packet losses can compromise the quality of control that is achievable Mady & Provan
(2011). Designing embedded control that accounts for embedded system constraints requires
dealing with heterogeneous components that contain hardware, software and physical
environments. These components are so tightly integrated that it is impossible to identify
whether behavioural attributes are the result of computations, physical laws, or both working
together.

Contemporary embedded control systems are modelled using hybrid system Henzinger
(1996) that captures continuous aspects (e.g. physical environment) and discrete-event
behaviour (e.g. control decision). Even though many tools support model-based code
generation (e.g. Simulink), the emphasis has been performance-related optimizations, and
many issues relevant to correctness are not satisfactorily addressed, including: (a) the precise
relationship between the model and the generated code is rarely specified or formalized;
(b) the generated code targets a specific embedded platform and cannot be generalized to
multi-targeted platforms, moreover there is no generator considers the embedded WSAN; (c)
the generated code does not respect the targeted platform hardware/software constraints; (d)
the continuous blocks are either ignored, or discredited before code generation. Therefore, the
correspondence between the model and the embedded code is lost.

20

2 Will-be-set-by-IN-TECH

This chapter proposes a framework for designing embedded control that explicitly accounts
for embedded system constraints. We develop an end-to-end framework for designing an
NCS where we model the system using a hybrid systems language. We focus on adopting
a distributed control strategy that explicitly considers hardware/software constraints. Our
approach enables us to generate code for multiple embedded platforms.

Fig. 1 shows an overview of the framework. The framework consists of four design
stages, outlining the role for each stage as follows: (i) the reference model captures the
control/diagnosis1 strategies and the physical plant using a hybrid system; (ii) the control
model is a projection of the source model, in which the physical/continuous aspects are
abstracted/transformed to a generic control specification; (iii) the embedded control model
combines the control model and the hardware/software constraints to define an embedded
control model satisfying the platform constraints; (iv) the target embedded model, that
captures the embedded platform code, is generated from the control model considering the
hardware/software constraints.

Consequently, the reference and control models abstract the hardware/software constrains
effect on the control algorithm. These constrains can be classified to: (a) processing resources
constrains; and (b) memory space constrains. The processing resources constrains consider the
hardware/software factors that affect the algorithm execution time (e.g., CPU speed), which
can lead to incompatibility between the processing capacity and the algorithm execution.
Whereas, the memory space constrains check if there is enough memory space for executing
the control algorithm.

Fig. 1. Framework Overview

An NCS is widely used in many applications, such as habitat monitoring, object tracking, fire
detection and modern building control systems. In particular, Building Automation Systems
(BAS) often uses a large wireless/wired sensor network. BAS is selected as our application
domain as it is considered as a cornerstone application for decreasing energy consumption;
around 40% of total energy use in the West is consumed in the industrial building sector, which
accounts for nearly one-third of greenhouse gas emissions. Of this figure, approximately

1 In this chapter, we consider only the control aspects in the reference model.

392 Automation

An End-to-End Framework for Designing Networked Control Systems 3

one-third can be attributed to Heating, Ventilation and Air-Conditioning (HVAC) systems
present in buildings. In this chapter, we consider an Air Handling Unit (AHU) control system
as a case study for the framework development. We apply the framework design stages on
this case starting from the reference model to the embedded control code.

We assume that we are given as input a set R of top-level system requirements, for example
user comfort requirements that any set-point will differ from operating value by less or equal
to 10%. We provide empirical guarantees that the requirements R are met by the generated
models and the corresponding transformation rules, by empirically evaluating the system
property for each generated model (i.e. reference, control, target model). If the system
property is respected for each design stage model, then the models are transformed correctly.

Our contributions in this chapter will be as follows:

• we formulate an end-to-end framework for designing a network control system.
This framework preserves the modelled system’s properties under hardware/software
constraints;

• we identify the transformation rules between the framework design stages;

• we formulate a typical AHU control system as a case-study of the framework;

• we empirically check that our framework preserves the system’s requirements R by
applying it to an Air Handling Unit (AHU) model as a case-study.

The remainder of the chapter is organized as follows: Section 2 provides a survey covering the
related work and discusses our contribution comparing to the state-of-the-art. The framework
architecture and the description for each design stage modelling are discussed in Section 3.
The model transformation rules between the design stages are explained in Section 4. The
application domain for the case-study are highlighted in Section 5, and its experiments design
is shown in Section 6. We end in Section 7 by giving a discussion of our work and outlining
future perspectives.

2. Related work

Modelling Frameworks: Modeling languages define a representation method for expressing
system design. Given the heterogeneity of engineering design tasks, modelling languages
consequently cover a wide range of approaches, from informal graphical notations (e.g., the
object modelling technique (OMT) Rumbaugh et al. (1991)), to formal textual languages (e.g.,
Alloy for software modelling Jackson (2002)).

Semantic meta-modelling is a way to uniformly abstract away model specificities while
consolidating model commonalities in the semantics meta-model. This meta-modelling
results in a mechanism to analyze and design complex systems without renouncing the
properties of the system components. Meta-modelling enables the comparison of different
models, provides the mathematical machinery to prove design properties, and supports
platform-based design.

An abstract semantics provides an abstraction of the system model that can be refined into any
model of interest Lee & Sangiovanni-Vincentelli (1998). One important semantic meta-model

393An End-to-End Framework for Designing Networked Control Systems

4 Will-be-set-by-IN-TECH

framework is the tagged signal model (TSM) Lee & Sangiovanni-Vincentelli (1998), which can
compare system models and derive new ones.

There are several prior studies on the translational semantics approach. For example, Chen
et al. (2005) use the approach to define the semantic anchoring to well-established formal
models (such as finite state machines, data flow, and discrete event systems) built upon AsmL
Gurevich et al. (2005). Further, they use the transformation language GME/GReAT (Graph
Rewriting And Transformation language) Balasubramanian et al. (2006). This work, through
its well-defined sets of semantic units, provides a basis for similar work in semantic anchoring
that enables for future (conventional) anchoring efforts.

Tools Several embedded systems design tools that use a component-based approach have
been developed, e.g., MetaH Vestal (1996), ModelHx Hardebolle & Boulanger (2008),
Model-Integrated Computing (MIC) Sztipanovits & Karsai (1997), Ptolemy Lee et al. (2003),
and Metropolis Balarin et al. (2003). These tools provide functionality analogous to the
well-known engineering tool MATLAB/Simulink. In particular, Metropolis and Ptolemy
II are based on semantic metamodelling, and hence obtain the entailed abstract semantics
(and related abstract metamodels) of the approach. In these tools, all models conforming to
the operational versions of the TSM’s abstract semantics also conform to the TSM’s abstract
semantics. One drawback of these tools is that “components" can be assembled only in the
supporting tool. As a consequence, different systems and components must all be developed
in the same environment (tool) to stay compatible. However, the most recent version of
Metropolis, Metropolis II, can integrate foreign tools and heterogeneous descriptions.

One tool that is closely related to our approach is the Behaviour Interaction Priority (BIP)
tool Basu et al. (2006). BIP can combine model components displaying heterogeneous
interactions for generating code for robotics embedded applications. BIP components are
described using three layers, denoting behaviour, component connections and interaction
priorities. Our approach focuses more on the higher-level aspects, in that it uses two levels of
meta-model (i.e., meta-model and meta-meta-model) to define all underlying specifications.
Moreover, our approach considers the consistency check between the system model and the
hardware/software constraints for the embedded platform.

To our knowledge, our approach is unique in its use of two levels of meta-models, a
single centralized reference model with a hybrid systems semantics, and its generation of
embeddable code directly from the centralized meta-model considering hardware/software
constrains.

3. Modelling framework architecture

In this section, we provide a global description for modelling framework. In addition, each
design stage of our framework is formulated.

3.1 Modeling objectives

Our objective is to abstract the essential properties of the control generation process so that we
can automate the process. It is clear that the process has two quite different types of inputs:

394 Automation

An End-to-End Framework for Designing Networked Control Systems 5

Control constraints The control-theoretic aspects concern sequences of actions and their
effects on the plant. These constraints cover order of execution, times for actions to be
executed, and notions of forbidden states, etc. Note that these constraints assume infinite
computational power to actually compute and effect to stated control actions.

Embedded System constraints These aspects concern the capabilities of the hardware and
software platforms, and are independent of the applications being executed on the
platform.

It is clear that both property types are needed. Because of the significant different between the
two types, we must use different constraint representations for each type. As a consequence,
we then must use a two-step process to enforce each constraint type. This is reflected in the
fact that we have a two-step model-generation process. Step 1 maps from a reference model
φR to a control model φC using mapping rules RC; the second step maps φC to φE using
mapping rules RE. If we represent this transformation process such that φC = f (φR,RC), and
φE = f (φC,RE), then we must have the full process represented by φE = f (f (φR,RC),RE).

3.2 Meta-meta-model formal definition

The meta-meta-model is formulated using a typical hierarchal component-based modelling
Denckla & Mosterman (2005), as shown in Fig. 2. We can define a meta-meta-model Γ as
Γ = 〈C, Υ〉. C represents a set model components, where control components CC, plant
components CP and building-use components CB are C instances, i.e., C ∈ {CC, CP, CB}. The
connection between the components C are described by Υ.

Each component c ∈ C is represented as c = 〈Pio, φ, C〉, where Pio
2 is a set of component

input/output ports and φ describes the relation between the input and output ports.
Moreover, c can contain a set of components C to represent hierarchical component levels.
Relation φ can be expressed based on the use (application domain) of the framework. In
this article, we consider four meta-model instances of φ: φ ∈ {φR, φC, φE, φT}, where φR is
the reference meta-model, φC is the control meta-model, φE is the embedded meta-model
and φT is the target embedded meta-model. Each of these meta-models captures the DSML
abstraction for the framework design stage. In this case, for each design stage we can
use any Domain-Specific Modelling Language (DSML) that can be represented using the
corresponding meta-model. In this article we have selected the DMSLs that support designing
NCS for BAS system. However, this design methodology can be adapted to match any other
application domain.

3.3 Reference meta-model formal definition

In the context of BAS modelling, Hybrid Systems (HS) are used to create our reference model
φR. We have used HS to present BAS models as it captures both discrete (e.g. presence
detection) and continuous (e.g. heat dissipation) dynamics, where the continuous dynamic
is represented using algebraic/differential equation. Hence, Linear Hybrid Automata (LHA)
become a suitable HS candidate for this model.

2 In our framework, we assume that the used ports are unidirectional ports.

395An End-to-End Framework for Designing Networked Control Systems

6 Will-be-set-by-IN-TECH

System

Component Connection

I/O Port

Relation

0..*1..*

0..*

1

0..*

0..*

0..*

read write

Reference

Model
Control Model

0..1 0..1

Embedded

Model
Target Model

0..1 0..1

N
et

w
o
rk

 T
o
p
o
lo

g
y

0..* 1..*

Composite Primitive

Fig. 2. Framework Meta-Meta-Model

The reference meta-model is considered as one instance of the component relation φ = φR. As
shown in Fig. 3, we represent φR as a standard LHA (φR = H) representation, as described in
Def. 3.1.

Definition 3.1. [Linear Hybrid Automata] A linear hybrid automaton H is a 3-tuple, i.e. H =
〈V, Ms, E〉, with the following structural extensions:

• V is a finite set of component binding variables. It is used to bind/connect the component ports

Pio with φ. V is represented as following: V̄ = {v̄1, ..., v̄n} for real-valued variables, where n is

the dimension of H. V̇ = {v̇1, ..., v̇n} represents the first derivatives during continuous change.

V́ = {v́1, ..., v́n} represents values at the conclusion of discrete change.

• Ms is a set of hierarchical system-level modes that describe the system statuses. ms ∈ Ms captures

the system-level status using either H or single mode m, i.e., ms ∈ {H, m}. m can be diagnosis

mode md or control mode mc, i.e. m ∈ {md, mc} . We assume that mc controls nominal system

behaviour and does not consider fault modes (e.g., fault actuation). Two vertex functions assigned

to each mode m ∈ M or ms ∈ Ms. Invariant (inv(m)) condition is a predicate whose free variables

396 Automation

An End-to-End Framework for Designing Networked Control Systems 7

0..1

Reference

Model

Binding

Variable
Switch Mode

Linear Hybrid

Automata

1

1..*

0..*
0..*

Invariant

Algebraic

Equation

Differential

Equation

Event Guard Flow Dynamic
Probabilistic

Guard

0..10..*

0..* 0..*

0..1
0..1

0..1

Fig. 3. Meta-Model for the Framework Reference Model

are from V and flow dynamic f low(m) is described using algebraic equation f lowalg(m) and/or

differential equation f lowdi f (m) for V̄ ∪ V̇ binding variables.

• E is set of switches (edges). An edge labelling function j that assigns to each switch e ∈ E a

predicate. E is also assigned to a set Σ of events, where event σ ∈ Σ is executed if the corresponding

predicate j is true, where j can be presented using probabilistic or deterministic predicate. Each

jump/guard condition j ∈ J is a predicate whose free variables are from V̄ ∪ V́. For example,

e(mi, ml) is a switch that moves from mode mi to ml under a guard j then executes σ, i.e.,

e(mi, ml) : mi
j/σ
−−→ ml .

3.4 Control meta-model formal definition

The control meta-model φC aims to capture the control components CC in a discrete behaviour.
Therefore, Fig. 4 shows a Finite-State Machine (FSM) F that used to describe the components
relation φ = φC. In Def. 3.2, we formally define the control meta-model using FSM, i.e.,
φC = F.

Definition 3.2. [Finite-State Machine] A finite-state machine F is a 3-tuple, i.e. H = 〈V, S, T〉,
with the following structural extensions:

• V is a finite set of component binding variables. It is used to bind/connect the component ports Pio

with φ. V is represented as discrete change only.

• S is a set of states that used to identify the execution position.

• T is set of transitions to move from one state s to another. Similar to E in LHA, a set Σ of events

(actions) and jump/guard condition J are assigned to T. For example, a transition t(si, sl) ∈ T is

397An End-to-End Framework for Designing Networked Control Systems

8 Will-be-set-by-IN-TECH

Control Model

Binding

Variable
Transition State

Finite State

Machine

1

1..*

0..*
0..*

Action Guard
Probabilistic

Guard

0..1
0..1

0..1

Fig. 4. Meta-Model for the Framework Control Model

used to reflect the move from state si to sl under a guard j (i.e., deterministic or probabilistic) then

executing σ, i.e., t(si, sl) : si
j/σ
−−→ sl .

3.5 Embedded meta-model formal definition

In order to check the consistency between our control model and the hardware/software
constrains, we identify the embedded model following its corresponding meta-model φE

shown in Fig. 5. One standard modelling language that can present our embedded model
is Analysis and Design Language (AADL)3 (i.e., SAE Standard). However, any other
language/tool that can capture φE elements can be used in the hardware/software consistency
check.

Definition 3.3. [Embedded Model] An embedded model φE is a 5-tuple, i.e. φE =
〈Mem, Pro, Bus, Thr, Dev〉, with the following structural extensions:

• Mem is a RAM memory identification used in the embedded platform during the control algorithm

execution. This memory contains 3-tuple used to identify the memory specification, i.e., Mem =
〈Spc, Wrd, Prt〉, where Spc identifies the memory space size, Wrd identifies the memory word size,

and Prt identifies the memory communication protocol (i.e., read, write, read/write).

• Pro is a processor identification used in the embedded platform to execute the control algorithm. In

φE, the Pro specification is identified using the processor clock period Clk, i.e., Pro = 〈Clk〉.

• Bus is a bus identification used to communicate between different hardware components, such as

Mem and Pro. This Bus contains 2-tuple to identify its specification such as the bus latency Lcy

and massage size Msg, i.e., Bus = 〈Lcy, Msg〉.

3 http://www.aadl.info/

398 Automation

An End-to-End Framework for Designing Networked Control Systems 9

Memory

Embedded

Model

0..*

Processor Bus DeviceThread

Space Size Word Size Protocol Clock Period Latency Message Size
Dispatch

Protocol

Period

Execution Time

1

1

1

1
1

1

1

0..* 0..*

0..*

1..*

Read Write Read/Write

1

Periodic Sporadic

1

Communication

Device

Sensing Device

Dispatch

Protocol

Period

Periodic Sporadic

1

0..1

0..1

0..1

1 1

0..*

0..*

Fig. 5. Meta-Model for the Framework Embedded Model

• Thr is a thread identification used to run/execute the control algorithm over Pro. This Thr contains

a 2-tuple to identify its specification, such as the dispatch protocol Dprt and execution time Tex,

i.e., Thr = 〈Dprt, Tex〉. The Dprt can be either sporadic or periodic. In case of periodic dispatch

protocol, we need to identify the period for the thread switching.

• Dev is a device identification used to sense/actuate the physical plant, or activate (sending or

receiving) the wireless communication devices. In Dev, we identify dispatch protocol Dprt to

trigger Dev, i.e., Dev = 〈Dprt〉. The Dprt can be either sporadic or periodic. In case of periodic

dispatch protocol, we need to identify the Dev activating period.

We can deduce that the hardware/software constraints needed for the consistency check are:

1. Memory space size.

2. Memory word size.

3. Memory communication protocol.

4. Processor clock period (CPU).

5. Bus latency.

6. Bus massage size.

7. Each thread execution time.

8. Each thread switching protocol.

9. Device activation/fire protocol.

The embedded model evaluates:

1. The binding consistency between the hardware and software description, considering the
hardware/software constrains.

2. The processing capacity, i.e., how much the described processor is loaded with the
execution for the described software. This evaluation factor must be less than 100%,
otherwise the designer has to increase the processing resources (e.g., number of the
processors).

399An End-to-End Framework for Designing Networked Control Systems

10 Will-be-set-by-IN-TECH

3.6 Target embedded meta-model formal definition

The target embedded model presents the embedded code that will be deployed on the
embedded platform. Fig. 6 depicts the meta-model φT for the target embedded model.
This φT captures the primitive building elements that needed to describe an embedded code.
Consequently, we can use any embedded language by identifying the corresponding semantic
for each φT element. In this article, we focus on embedded Java for Sun-SPOT4 sensors and
base-station.

Sensor/Actuator

Node

Target

Embedded Model

0..1

Switch

Condition ActionState

Send

Assignment Sensing Actuating
Wired

Command

Receive

Wireless

Command

Send Receive Sensor Type Actuator Type

Thread

Property

Base Station

Switch

Condition ActionState

Send

Assignment

Receive

Wireless

Command

Thread

Property

0..1

1..*
1..*

0..*
0..*

0..*
1..*

1..*

0..* 0..*
1..* 0..*

0..*

1..* 1..* 1..* 1..*
1..* 1..*

0..* 1..*

0..*
1..*

1..*

Binding

Variable

1..*

Binding

Variable

1..*

Fig. 6. Meta-Model for the Framework Targeted Model

The target embedded meta-model can formally be described as in Def. 3.4.

Definition 3.4. [Target Embedded Model] An embedded model φT is a 2-tuple, i.e. φT = 〈NS, NB〉,
where NS = 〈T, Thr, V〉 and NB = 〈T, Thr, V〉 are the semantic definitions needed in case of sensor

node and base-station deployment, respectively, with the following structural extensions:

• T is a set of switch semantic definition. Considering a switch t ∈ T, t = 〈j, s, σ〉, where j is the

predicate that allows executing the action σ, and s the a Boolean variable to identify the execution

position. State s is included in the semantic of j and σ, as following:

if (state && condition){

action;

assignment(s);

}

The action σ semantic can contain wireless/wired commands, typical assignment, and/or

sensing/actuation commands. However, at this stage some hardware/software constrains are needed

4 http://www.sunspotworld.com/

400 Automation

An End-to-End Framework for Designing Networked Control Systems 11

in order to identify the sensor/actuator type and the sensors ID, which identified from the network

topology. For example, in case of sending a wireless data from sensor node, the semantic is as

follows:

try {

SendDg.reset();

SendDg.writeInt(NodeID);

SendDg.writeDouble(DataToBeSent);

SendConn.send(SendDg);

}

catch (Exception e) {

throw e;

}

• The thread Thr is used to identify the semantics of a thread as follows.5

public class Thread_name extends Thread{

public void run(){

while(true/SynchCond){

Switches semantics;

}

}

}

Thread_name.sleep(period);

• V is a finite set of binding variables that can be identified as Integer, Double, Boolean.

Regarding the base-station node NB, it has the same aforementioned description with less
actions. Typically, NB is used to communicate wirelessly between the sensors and the actuator,
therefore its action contains the wireless command and assignment semantics only.

4. Model transformation

In this section, we provide the transformation rules R used to transform an instance φ of
the source relation to the corresponding instance of the target representation. As mentioned
before, the developed framework aims to generate control code, therefore R considers the
control components CC (i.e., sensor, actuator, controller, base-station). The connections Υ and
Ports Pio that identified in the meta-meta-model remain the same. However, each model
has a corresponding representation for Υ and Pio. For example, in the reference model the
components can be connected through a variable, whereas in the target model the connection
can be a wireless channel.

5 If there is only one thread under execution, the thread doesn’t have a critical role in this case. Moreover,
Thr has a period property to be identified.

401An End-to-End Framework for Designing Networked Control Systems

12 Will-be-set-by-IN-TECH

4.1 Reference model to control model transformation

The transformation rules RC transforms a φR model to a φC model. For simplifying the
transformation rules RC, we have used the same symbols for the unchanged terms between
φR and φC. Using RC, the control model can be generated from the reference model as
φC = f (φR, RC), where RC abstracts the flow dynamics, invariants, and hierarchy in φR. In
this section, we have highlighted the transformation rules as follows:

• Binding variables V in H are transformed to an equivalent format in F, i.e., VH RC−→ VF. In
this case, the continuous change variables in H will be updated discretely in F.

• The control modes Mc in H are transformed to states S in F, i.e., MH
c

RC−→ SF. In this
case, the states S capture the positions of Mc without its operations (e.g. invariant, flow
dynamics). This transformation assumes that there is no fault control modes, therefore the
diagnosis modes Md (presenting faulty modes) is not transformed.

• The switches E in H (EH) are transformed to transitions T in F, i.e., EH RC−→ TF.

• The invariant inv(m) and flow dynamics equations f low(m) for each mode in H are

transformed in F to a transition from/to the same state, i.e., t(s, s) : s
j/σ
−−→ s. The transition

guard j is triggered if the mode invariant is true. In order to avoid activating multiple
transitions at the same time, we add (logical and) to j the set J̀ of the inverse guards
for the transitions moving out from state s, i.e., j = inv(m) ∧ ¯̀J, where J̀ is the guards
of the transitions leaving s, i.e., t(s, ∗). This multiple transitions activation can happen if
the invariant and any other transition guard are true, which is acceptable in H but not
in F. The flow dynamics equations f low(m) are transformed to the transition action σ,

i.e., f low(m)
RC−→ σ. However, differential equations f lowdi f (m) in the form of ˙x(t) = f

are approximated to discrete behaviuor using Euler’s method, i.e., x(k + h) = x(k) + f h,
where k is the step number and h is the model resolution that reflects the time step (as
much h is small, as the approximation is accurate).

These rules can be summarised as: f low(m), inv(m)
RC−→ t(s, s) : s

inv(m)∧ ¯̀J/ f low(m)
−−−−−−−−−−−→ s.

The aforementioned rules do not consider the hierarchical feature in the system-level modes
Ms. Given a system-level mode ms ∈ Ms that contains a set of inherited control modes Mc,
i.e., ms 	 Mc. An initial control mode minit is identified in Mc, minit is the first mode under
execution whenever ms is triggered. The transformation of these hierarchical modes is as
follows:

• The set of control modes Mc in ms is transformed to a set of states Sc. Consequently, minit

is transformed to sinit.

• The union of: (a) the set of switches EH
c that enters minit, i.e., EH

c (∗, minit); and (b) the set of
the switches EH

s that enters ms, i.e., EH
s (∗, ms) is transformed to a set of transitions Tc in F

that enters the initial state sinit, called TF
c (∗, sinit). Therefore, EH

c (∗, minit) ∪ EH
s (∗, ms)

RC−→
TF

c (∗, sinit).

402 Automation

An End-to-End Framework for Designing Networked Control Systems 13

• The set of switches EH
c that enters mc ∈ Mc, i.e., EH

c (∗, mc) is transformed to a set of

transitions Tc in F that enters sc ∈ Sc \ sinit
6, i.e., TF

c (∗, sc). Therefore, EH
c (∗, mc)

RC−→
TF

c (∗, sc).

• The set of switches EH
c that exits mc, i.e., EH

c (mc, ∗), is transformed to a set of transitions

Tc in F that exits sc ∈ Sc, called TF
c (sc, ∗). Therefore, EH

c (mc, ∗)
RC−→ TF

c (sc, ∗). However,
in order to give a higher priority to the system transitions in case of activating control
and system transitions at the same time, we introduce the inverse of the condition for the
system transition to J of TF

c (sc, ∗), i.e., J(TF
c (sc, ∗)) = J(EH

c (mc, ∗)) ∧ J(EH
s (mc, ∗)).

• The set of the switches EH
s that exits ms, i.e., EH

s (ms, ∗) is transformed to be added to the

set of transitions Tc in F that exits sc ∈ Sc. Therefore, EH
s (ms, ∗)

RC−→ TF
c (sc, ∗).

• The invariants inv(mc) and inv(ms), and flow dynamics equations f low(mc) and f low(ms)
for mc and ms, respectively, are transformed in F to a transition from/to the same state,

i.e., t(sc, sc) : sc
j/σ
−−→ sc. The transition guard j is triggered if the mode invariant for

mc or ms, and ¯̀J (explained earlier) are true, i.e., j = (inv(ms) ∨ inv(mc)) ∧
¯̀J. The

flow dynamics equations f low(mc) and f low(ms) are assigned to t(sc, sc) action σ, i.e.,

f low(mc) ⊎ f low(ms)
RC−→ σ.

4.2 Control model to embedded model transformation

The embedded model is performed from the control model as φE = φC
⊗

RE and can be
performed from the reference model as φE = φR

⊗

(RC
⊕

RE), where the transformation rules
RE considers the hardware/software constrains and the hardware/software architecture.

As mentioned before, the control model φC focuses on the control components CC. In a BAS
system, CC can be classified to a set of sensor component instances CS

C, actuator component
instances CA

C and processing/controller component instances CP
C (which execute the control

algorithm), i.e., CC ∈ {CS
C, CA

C , CP
C}. Based on the type of the CC instance, φE creates the

corresponding hardware architecture, e.g., Fig. 7, Fig. 8, and Fig. 9 show a sensor component
architecture, an actuator component architecture, and a processing/controller component
architecture, where each architecture contains the appropriate Pro, Mem, Bus, Dev. As shown
in Fig. 5, each of these hardware components has its own hardware/software constrains.

In order to add the software impact to this architecture, we consider a transformation rule
RE from control model φC. Typically, each control model φC contains only one F, therefore F

transformed to a thread in φE, i.e., F
RE−→ ThrE, where ThrE captures the algorithm execution

constrains.

The multi-threading appears in case if a control component CC contains several inherited
components. In this case, each component is transformed to a thread and all the transformed
threads will be executed under the same processor.

6 This rule does not consider sinit

403An End-to-End Framework for Designing Networked Control Systems

14 Will-be-set-by-IN-TECH

Processor Memory

Sensing

Device

Transmitting

Device

Buss

Fig. 7. Sensor Hardware Architecture

Processor Memory

Actuating

Device

Receiving

Device

Buss

Fig. 8. Actuator Hardware Architecture

Processor Memory

Transmitting

Device

Receiving

Device

Buss

Fig. 9. Controller Hardware Architecture

4.3 Control model to target embedded model transformation

The target embedded model is performed from the control model as φT = φC
⊗

RT and
can be performed from the reference model as φT = φR

⊗

(RC
⊕

RT). The transformation
rules RT considers only the hardware/software constrain, whereas RE considers both
hardware/software constrains and architecture. The RT considers only constrains as φT

directly uses the hardware architecture on the targeted platform.

In this section, we show the transformation rules RT between the control model φC and the
target embedded model φT , as follows:

• The set of binding variables V of φC (called VC) is transformed to an equivalent set of
variables of corresponding type (e.g., Double, Integer, Boolean) in the binding variables

VT of φT , i.e., VC RT−→ VT .

404 Automation

An End-to-End Framework for Designing Networked Control Systems 15

• The set of transitions T in φC (called TC) is transformed to a set of switches TT of φT , i.e.,

TC RT−→ TT .

• The set of guards J, including probabilistic and deterministic, of TC is transformed to a set

of conditions J of TT , i.e., J(TC)
RT−→ J(TT).

• The set of actions Σ of φC is transformed to a set of actions Σ of φT , i.e., Σ(TC)
RT−→ Σ(TT).

However, additional Pio constrains of NB and NS are needed to RT for identifying the Pio

specification. For example, for a sensor node NB one port should read from a sensor, this
port name should be identified and the corresponding sensor type. Therefore, whenever
an action reads from this port, a sensor reading action is added. The same is done for
the ports read/write from/to a wireless network, and these ports are identified with the
connected ID node, where this process identifies the network topology.

• The set of states S of φC is transformed to a set of states (i.e., Boolean variables) in φT ,

i.e., SC RT−→ ST . In addition, the set of transitions TT(sT , ∗) that exiting sT ∈ ST includes
sT in its conditions and sT = f alse in its actions. The set of transitions TT(∗, sT) that
enter sT includes sT = true in its actions. This transformation rule should be followed in
the specified order, which means starting from the transitions exiting the states and then
applying the ones entering the states.

5. Application domain

Heating, Ventilating, and Air-Conditioning (HVAC) systems provide a specified ambient
environment for occupants with comfortable temperature, humidity, etc. One way to regulate
the temperature in a room is Air Handling Unit (AHU), it is a set of devices used to condition
and circulate air as part of an HVAC system. Several control strategies have been introduced
to control the temperature regulation, where an operating scheduling is pre-defined. In
this context, standard PI control algorithms are adequate for the control of HVAC processes
Dounis & Caraiscos (2009). Therefore, we consider an AHU model used to regulate the
temperature for a single room, as out framework case-study. The AHU heating/cooling coils
are controlled using a PI algorithm, where the switch between cooling and heating coil is
performed using a system level decision.

We describe in this section the system specification for the used model and evaluation metrics
for the system property. Moreover, we apply the end-to-end transformation process for the
system reference model.

5.1 System evaluation metric

In this case-study, we regulate the temperature (for maintaining thermal comfort) with respect
to user discomfort. The expected discomfort metric penalizes the difference between the
measured indoor air temperature y(k) at time-step k (where k varies from ks to k f), and the
reference temperature r(k). We use the Root Mean Square Error (RMSE) to reflect the indoor
temperature variation around the reference temperature in oC, during only the scheduling
period p(k) = 1:

405An End-to-End Framework for Designing Networked Control Systems

16 Will-be-set-by-IN-TECH

DI =

√

√

√

√

k f

∑
k=ks

(y(k)− r(k))2

k f
p(k) (1)

In order to validate the transformation rules between the models, each generated model7 has
to respect the system property DI ≤ 2 oC.

5.2 System specification

As shown in Fig. 10, an AHU uses coils to heat or cool the indoor temperature. The
heated/cooled air is pumped to the room using a supply-air fan. In order to use the
heated/cooled indoor air more efficiently, the AHU recycles some of the return air via an
air loop, which has a return-air fan to mix the indoor air with the outdoor air, as controlled by
three dampers. In our case-study, we assume fixed settings for the fan speeds and the damper
settings, and we control only the valve settings for the coils.

Outside Air

Exhaust Air
Exhaust-air Damper

Outside-air Damper

Return Air

Return-a ir

Damper

Supply Air

Supply-air

Fan

Return-air

Fan

Single-Zone Room

Heating

 Coil
Cooling

Coil

Fig. 10. AHU Structure

Fig. 11 shows the reference model that used as our framework case-study. This model contains
two main groups of components: (a) environment/plant components reflect the plant physics
(e.g., walls, coils); (b) control components show the control/sensing algorithm that used to
modify/monitor the environment.

5.2.1 Environment components

All models described below are lumped-parameter models. Two variables are identified
to evaluate the model behaviour: external temperature Text and set-point temperature
Tsp. Moreover, five environment/plant components have been used: Wall, Window,
Heating/Cooling Coil, Return Air and Indoor Air models, as follows:

7 This rule will not be applied to embedded model φE, as this model used to validate the
hardware/software consistency

406 Automation

An End-to-End Framework for Designing Networked Control Systems 17

External

Temperature
Wall Model Window Model

Indoor Air Model
Temperature

Sensor

Controller

Set-Point

Temperature

walltemp.

indoor temp.

window temp.

indoor

temp.indoor

temp.

sensed

temp.
valve

actuation

Environment

Components

Control

Components

Heating Coil

Model

Cooling Coil

Model

Supply-air Fan

Speed

Return-air Fan

Speed

Return-air Damper

Occlusion

Return Air Model

return-air

temp.

coil

temp.

Valve Actuator

Fig. 11. AHU Component-Based Model

1. Wall Model: One of the room walls is facing the building façade, which implies heat
exchanges between the outdoor and indoor environments. In general, a wall can be
modelled using several layers, where greater fidelity is obtained with increased layers in
the wall model. In our case, four layers have been considered to reflect sufficient fidelity
Yu & van Paassen (2004), using the following differential equation; Eq. 2:

ρwallVwallcwall
dTwall

dt
= αwall Awall(Text − Twall) (2)

ρwall is the wall density [kg/m3], Vwall is the wall geometric volume [m3], cwall is the wall
specific heat capacity [J/kg.K], Twall is the wall temperature [oC], αwall is the wall thermal
conductance [W/(m2.K)], Awall is the wall geometric area [m2] and Text is the outdoor
temperature [oC].

2. Heating/Cooling Coil Model: The coil model uses the temperature difference between the
water-in and water-out in order to heat/cool the room. In this case, the temperature is
controlled through the radiator water flow using the valve occlusion (called actuation
variable u). Moreover the coil exchanges temperature with its environment, such as the
indoor air temperature and returned air temperature (considering the supply fan speed)
as shown in equations: Eq. 3 and Eq. 4.

Mwtrcwtr
dTcoil

dt
= m.

wtrcwtr(Twtrin − Twtrout)− Q (3)

Q = αair Acoil(Tcoil − Tair) + m.
sup f ancair(Tcoil − Tretair) (4)

Where, Mwtr is water mass [kg], cwtr is water specific heat capacity [J/kg.K], Tcoil is coil
temperature [oC], m.

wtr is water mass flow rate throw the coil valve [kg/s], Twtrin is water
temperature going to the coil [oC], Twtrout is water temperature leaving from the coil [oC],
αair is air thermal conductance [W/(m2.K)], Acoil is coil geometric area [m2], Tair is indoor

407An End-to-End Framework for Designing Networked Control Systems

18 Will-be-set-by-IN-TECH

air temperature [oC], m.
sup f an is air mass flow rate throw the supply-air fan [kg/s], cair is

air specific heat capacity [J/kg.K], and Treair is returned air temperature [oC].

3. Return Air Model: This model acts as an air mixer between the indoor air flow and the
external air based on return-air damper occlusion ε, as shown in equations: Eq. 5.

Tretair = Tair + ε(
m.

ret f an

m.
sup f an

)(Tair − Text) (5)

Where, m.
ret f an is air mass flow rate throw the return-air fan [kg/s].

4. Indoor Air Model: In order to model the indoor temperature Tair propagation, all HVAC
components have to be considered as they exchange heat with the air inside the controlled
room following equation 6 .

ρairVaircair
dTair

dt
= Qair + Qwall + Qwindow (6)

Qwall = αair Awall(Twall − Tair) (7)

Qair = m.
sup f ancair(Tcoil − Tair) (8)

Qwindow = αair Awindow(Twindow − Tair) (9)

Where, ρair is air density [kg/m3], Vair is air geometric volume [m3], Awindow is window
geometric area [m2], and Twindow is window temperature [oC].

5. Window Model: A window has been modelled to calculate the effects of glass on the indoor
environment. Since the glass capacity is very small, the window has been modelled as an
algebraic equation, Eq. 10, that calculates the heat transfer at the window node.

αair(Text − Twindow) + αair(Tair − Twindow) = 0 (10)

5.2.2 Control components

A temperature sensor, PI-controller, and valve actuator are used to monitor, control and
actuate the environment model, respectively. The temperature sensor samples the indoor
temperature (Ts=1 min) and sends the sampled value to the controller. In case the
sampled value within the operating time slot (identified by the operating schedule), then the
PI-controller calculates the next actuation value and sends it to the valve actuator in order to
adjust the coil valve occlusion.

The reference model for the control algorithm has two levels of hierarchy, as shown in Fig. 12.
The high level represents the system modes of the system decisions, where the heating mode
is activated if Text is greater than Tsp, and the cooling mode is activated if Tsp is greater than
Text. In these system modes, a PI-control algorithm is used to adjust the valve occlusion for
the corresponding coil and deactivate the other coil. Consequently, the controller updates the
actuation value each sampling period implemented using a continuous variable to present the
controller timer.

408 Automation

An End-to-End Framework for Designing Networked Control Systems 19

In this document, we consider the controller component as an example to apply the
end-to-end transformation rules. Fig. 12 shows the reference model for the controller
component with its transitions, actions, invariants and flow dynamics. However, we have
used the same design approach to design the reference model for the sensor and actuator
components.

j1 : ControlTime > SamplingPeriod ∧ Schedule

σ1 : ControlTime = 0

: uheating = fPI(Tsp, Tair)

: ucooling = 0

j2 : ControlTime > SamplingPeriod ∧ Schedule

σ2 : ControlTime = 0

: uheating = 0

: ucooling = 0

f lowdi f 1 :
dControlTime

dt
= 1

inv1 : ControlTime ≤ SamplingPeriod

Fig. 12. Reference model for the controller component, where the high level automata
describes the system level modes MC and the inherited level represents the control modes
MC.

Where, ControlTime is a continuous variable used to reflect the controller time,
SamplingPeriod is the sampling period needed to receive the sensor sample and then update
the actuator, Schedule is a Boolean variable to indentify if the operation schedule is triggered or
not, uheating is the valve occlusion value for the heating-coil, fPI is the heating PI optimization
function, and ucooling is the valve occlusion value for the cooling-coil.

The cooling system mode uses similar LHA as in heating. However, it actuates on ucooling

using f̀PI instead of uheating, where f̀PI is the cooling PI optimization function.

5.3 Case-study control model

We have followed the transformation rules RC in Sec. 4.1 to transform the controller reference
model in Fig. 12 to the controller control model in Fig. 13 with the corresponding transition
conditions J and actions Σ.

409An End-to-End Framework for Designing Networked Control Systems

20 Will-be-set-by-IN-TECH

We can deduce that system modes hierarchy has been removed by adding the complement
of its transition conditions to the conditions in the control model transitions. Moreover, the
mode dynamic flow and invariant are transformed to t3(j3, σ3).

j1 : ControlTime > SamplingPeriod ∧ Schedule ∧ Text > Tsp

σ1 : ControlTime = 0

: uheating = fPI(Tsp, Tair)

: ucooling = 0

j2 : ControlTime > SamplingPeriod ∧ Schedule ∧ Text > Tsp

σ2 : ControlTime = 0

: uheating = 0

: ucooling = 0

j3 : ControlTime ≤ SamplingPeriod ∧ Text > Tsp

σ3 : ControlTime = ControlTime + h

j7 : Text > Tsp

σ7 : ControlTime = 0

Fig. 13. Control model for the controller component, where the system mode hierarchy,
continuous variables are abstracted.

The rest of the control model transitions follow the same conditions and actions as the
aforementioned transitions, but for the cooling-coil.

5.4 Case-study embedded model

In our case-study, we create the controller component hardware architecture for the embedded
model as in Fig. 9 following RE in Sec. 4.2. We have emulated the embedded model using
Sun-SPOTs with the following hardware specifications: (a) CPU=180MHz, 32 bit ARM 920T
Processor, and (b) RAM=512 Kbyte. Therefore, hardware/software constraints captured by
the embedded model as follows:

1. Memory space size: Spc(Mem) = 512kbyte.

2. Memory word size: Spc(Wrd) = 32bit.

410 Automation

An End-to-End Framework for Designing Networked Control Systems 21

3. Memory communication protocol: Spc(Prt) = read/write.

4. Processor clock period (CPU): Clk(Pro) = 1/180M .

5. Bus latency: Lcy(Bus) = 11ns.

6. Bus massage size: Msg(Bus) = 32bit.

7. Thread execution time: Tex(Thr) = 5 − 10ms. In this example, we have considered only
one thread as the controller component is a primitive component. However, in case of a
composite component, it is translated to multi-thread.

8. Thread switching protocol: Dprt(Thr) = periodic with switch period 20ms. This constrain
is not critical for our case-study as the processor execute only one thread.

9. Sending/Receiving Communication Device activation/fire protocol: Dprt(Dev) =
periodic with a period equals to the network sampling rate Ts.

5.5 Case-study target embedded model

In the target embedded model, we follow RT in Sec. 4.3 to generate the embedded language
semantic. In our case-study we have used embedded Java for Sun-SPOT devices. In the
controller component, uheating, ucooling and Tair are identified as the component wireless Pio,
which are corresponding to u_heating, u_cooling, and IndoorTemp variables in Fig. 14,
respectively. These Pio identifications are transformed to wireless communication commands
in case of reading/writing from/to Pio. Moreover, the sending/receiving IDs are identified for
each port in order to structure the network topology, and consequently these IDs are included
in the wireless commands. For example, Fig. 14 shows the first transition transformation
from the control model, where sensorID is the sensor ID that sends Tair (IndoorTemp) to the
controller and the controller ID is identified as hostID.

6. Experimental design

In order to check if the developed framework preserves the systems properties, we run a set
of experiments for the AHU system as a case-study at each model (i.e., reference, control, and
target). Then, we evaluate if each model respects the identified system property R = DI ≤
2oC.

In our case-study, we vary external temperature and the set point temperature (Text, Tsp) and
then evaluate the corresponding DI. For example, if we have an input 2-tuple (15, 23) to
present (Text, Tsp), we will measure outputs DI = 0.73oC.

6.1 Dependent/independent variables

In our case-study, we evaluate each model over the domains of the independent variables as
follows:

1. External Temperature Text ∈ {5, 10, 15, 20};

2. Set-point Temperature Tsp ∈ {18, 20, 23};

where some constraints are identified for the variables’ search space to eliminate the
physically unrealizable solutions as | Text − Tsp |≤ Tmax, Tmax = 13oC is the maximum
allowable temperature difference and Text
= Tsp.

411An End-to-End Framework for Designing Networked Control Systems

22 Will-be-set-by-IN-TECH

i f (Heating_Control && ControlTime > SamplingPeriod && Schedule
&& ! (ExternalTemp > OptimalTemp)) {

ControlTime = 0 . 0 ;
/ / R e c e i v i n g i n d o o r t e m p e r a t u r e from s e n s o r wi th ID : s e n s o r I D .
t r y {

RecConn . r e c e i v e (RecDg) ;
recAddr = RecDg . getAddress () ;
sensorID=RecDg . readInt () ;
i f (ID=sensorID) IndoorTemp = RecDg . readDouble () ;

} ca tch (Exception e) {
throw e ;

}
/ / Updating t h e h e a t i n g a c t u a t i o n v a l u e us ing PI a l g o r i t h m .
u_heating=heat ingPIOptimizat ion (OptimalTemp , IndoorTemp) ;
/ / Sending t h e h e a t i n g a c t u a t i o n v a l u e p a c k e t t o t h e a c t u a t o r
/ / wi th t h e b a s e s t a t i o n ID (hos t ID) .
t r y {

recAddr = RecDg . getAddress () ;
SendDg . r e s e t () ;
SendDg . w r i t e I n t (hostID) ;
SendDg . writeDouble (u_heating) ;
SendConn . send (SendDg) ;

} ca tch (Exception e) {
throw e ;

}
/ / D e a c t i v a t i n g t h e c o o l i n g−c o i l .
u_cooling = 0 . 0 ;
/ / Sending t h e a c t u a t i o n v a l u e p a c k e t t o t h e a c t u a t o r
/ / wi th t h e b a s e s t a t i o n ID (hos t ID) .
t r y {

recAddr = RecDg . getAddress () ;
SendDg . r e s e t () ;
SendDg . w r i t e I n t (hostID) ;
SendDg . writeDouble (u_cooling) ;
SendConn . send (SendDg) ;

} ca tch (Exception e) {
throw e ;

}
/ / Update t h e e x e c u t i o n s t a t e .
Heating_Control=true ;
Cooling_Control= f a l s e ;

}

Fig. 14. Target embedded model of the first transition t1 of the controller component.

412 Automation

An End-to-End Framework for Designing Networked Control Systems 23

The dependent variable for each model is the average of DI over the independent variable
cross-product space given by Text × Tsp.

6.2 Empirical results

Fig. 15, 16 and 17 show the DI experiments for φR, φC, and φT . The reference and control
models are empirically evaluated using the CHARON tool 8, whereas the target embedded
model is emulated using Sun-SPOT nodes, with the following hardware specifications: (a)
CPU=180MHz, 32 bit ARM 920T Processor, and (b) RAM=512 Kbyte. The embedded model is
captured using the AADL language and then evaluated using the OSATE tool9.

Figs. 15, 16 and 17 show that the DI decreases when the difference between Text and Tsp

decreases, as the initial overshoot the settling time decreases. Moreover, we see that control
model gives the worst DI values, the reference model improves the DI and the target model
gives the best DI values. Because of the model resolution h for updating the dynamic flow
(f lowdi f , f lowalg) decreases in case of the target model (in range of msec) in comparison to the
reference mode (in range of sec), and it increases for the control model (in range of 3 sec) over
the reference model. However, the average of DI for all models respects the system property
DI ≤ 2oC, where DI = 0.95, 2, 0.44oC for φR, φC, and φT , respectively.

We have evaluated the binding consistency and the processing capacity for the embedded
model φE to show a consistency binding and 50% processing capacity.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 6 8 10 12 14 16 18 20

U
se

r
D

is
co

m
fo

rt
 I

n
d
ic

at
o
r

(D
I)

 [
C

]

External Tempreture [C]

Reference Model
Control Model

Target Embedded Model

Fig. 15. User Discomfort Evaluation of Framework Models for Tsp = 18

8 http://rtg.cis.upenn.edu/mobies/charon/index.html
9 http://www.aadl.info/aadl/currentsite/tool/index.html

413An End-to-End Framework for Designing Networked Control Systems

24 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 10 11 12 13 14 15

U
se

r
D

is
co

m
fo

rt
 I

n
d
ic

at
o
r

(D
I)

 [
C

]

External Tempreture [C]

Reference Model
Control Model

Target Embedded Model

Fig. 16. User Discomfort Evaluation of Framework Models for Tsp = 20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 12 14 16 18 20

U
se

r
D

is
co

m
fo

rt
 I

n
d
ic

at
o
r

(D
I)

 [
C

]

External Tempreture [C]

Reference Model
Control Model

Target Embedded Model

Fig. 17. User Discomfort Evaluation of Framework Models for Tsp = 23

414 Automation

An End-to-End Framework for Designing Networked Control Systems 25

7. Conclusion

In this article, we have proposed a novel end-to-end framework for designing an NCS for BAS
system embedded over a distributed WSAN. This framework considers the design flow stages
along from modelling to embedded control-code generation. The developed framework is
empirically validated using AHU system as a case-study.

A future trend of this framework is integrating a de facto standard tool, such as Simulink, to
the reference model. Moreover, we need to consider the timing and delay for the generated
embedded code.

8. References

Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C. & Sangiovanni-Vincentelli, A.
(2003). Metropolis: An integrated electronic system design environment, Computer

pp. 45–52.
Balasubramanian, D., Narayanan, A., van Buskirk, C. & Karsai, G. (2006). The graph rewriting

and transformation language: Great, Electronic Communications of the EASST 1.
Basu, A., Bozga, M. & Sifakis, J. (2006). Modeling heterogeneous real-time components in BIP,

SEFM, Vol. 6, Citeseer, pp. 3–12.
Chen, K., Sztipanovits, J. & Neema, S. (2005). Toward a semantic anchoring infrastructure

for domain-specific modeling languages, Proceedings of the 5th ACM international

conference on Embedded software, ACM New York, NY, USA, pp. 35–43.
Denckla, B. & Mosterman, P. (2005). Formalizing causal block diagrams for modeling a class

of hybrid dynamic systems, Proc. 44th IEEE Conference on Decision and Control,and

European Control Conference (CDC-ECC’05) pp. 4193–4198.
Dounis, A. & Caraiscos, C. (2009). Advanced control systems engineering for energy and

comfort management in a building environment-a review, Proc. of Renewable and

Sustainable Energy Reviews pp. 1246–1261.
Gurevich, Y., Rossman, B. & Schulte, W. (2005). Semantic essence of AsmL, Theoretical

Computer Science 343(3): 370–412.
Hardebolle, C. & Boulanger, F. (2008). ModHel’X: A component-oriented approach to

multi-formalism modeling, Lecture Notes In Computer Science 5002: 247–258.
Henzinger, T. (1996). The theory of hybrid automata, Proc. 11th Annual IEEE Symposium on

Logic in Computer Science (LICS 96) pp. 278–292.
Jackson, D. (2002). Alloy: a lightweight object modelling notation, ACM Transactions on

Software Engineering and Methodology (TOSEM) 11(2): 256–290.
Lee, E., Neuendorffer, S. & Wirthlin, M. (2003). Actor-oriented design of embedded hardware

and software systems, Journal Of Circuits Systems And Computers 12(3): 231–260.
Lee, E. & Sangiovanni-Vincentelli, A. (1998). A framework for comparing models of

computation, IEEE Transactions on computer-aided design of integrated circuits and

systems 17(12): 1217–1229.
Mady, A. & Provan, G. (2011). Co-design of wireless sensor-actuator networks for building

controls, the 50th IEEE Conference on Decision and Control and European Control

Conference (IEEE CDC-ECC).

415An End-to-End Framework for Designing Networked Control Systems

26 Will-be-set-by-IN-TECH

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991). Object oriented

modeling and design, Prentice Hall, Book Distribution Center, 110 Brookhill Drive,
West Nyack, NY 10995-9901(USA).

Sztipanovits, J. & Karsai, G. (1997). Model-integrated computing, IEEE computer

30(4): 110–111.
Vestal, S. (1996). MetaH programmerŠs manual, Technical report, Version 1.09. Technical

Report, Honeywell Technology Center.
Yu, B. & van Paassen, A. (2004). Simulink and bond graph modeling of an air-conditioned

room, Simulation Modelling Practice and Theory, Elsevier .

416 Automation

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

