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1Jiangxi Normal University, Nanchang,  

2University of Shanghai for Science and Technology, Shanghai,  
China 

1. Introduction 

The optical techniques are widely used in the automatic measurement and test. In the 
precision dimension measurement, there are some optical instruments that are widely 
applied for the microscale or nanoscale dimension measurement, such as the grating, the 
homodyne interferometer, and the heterodyne interferometer. An optical instrument system 
is often divided into two main subsystems: the optical subsystem and the electrical 
subsystem. Moreover, some optical instrument systems also have the mechanical subsystem 
and the computer subsystems. The optical subsystem includes optical source and other 
optical elements, such as the polarizing beam splitter, the quarter-wave plate, and so on. The 
electronic subsystem turns the received optical signals into the electrical signals by the 
photoelectric receiver, and uses the analog signal system and the digital signal system to 
process the received signals. A typical structure of the optical instruments is shown as Fig.1. 

 

Fig. 1. A typical structure of optical instruments: ADC, analog-digital converter. 

In the performance evaluation of the optical measurement instrument, the resolution and 
the precision (JCGM, 2008) are two important parameters. The resolution describes the 
ability of a measurement system to resolve detail in the object that is measured. The 
precision of a measurement system, also called reproducibility or repeatability, is the degree 
to show the same results when the measurement process is repeated under the unchanged 
conditions. This chapter mainly discusses two topics: the signal processing method for the 
improvement of measurement resolution and the elimination errors for the improvement of 
measurement precision. Generally speaking, the optical source, the design of optical path, 
and the signal processing are the main factors to improve the measurement resolution. For 
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example, in a heterodyne Michelson interferometer with double path optical difference that 
is shown as Fig.2, the traveling distance of the micro-displacement platform L is as follows: 

 
02

  ,
Tλ

L fdt  (1) 

where λ is the wavelength of laser, and Δf is the Doppler frequency shift. Obviously, λ is 
smaller, the measurement resolution is higher. 

 

Fig. 2. A heterodyne Michelson interferometer with double path optical difference: BS, beam 
splitter; PBS, polarizing beam splitter; P, polarization analyzer. 

 
Fig. 3. A heterodyne Michelson interferometer with fourfold path optical difference: BS, 
beam splitter; PBS, polarizing beam splitter; P, polarization analyzer; QWP, quarter-wave 
plate. 

The multiple reflection of optical path, also called the optical subdivision, is the second 
factor to influence the measurement resolution. A heterodyne Michelson interferometer 
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with fourfold path optical difference is shown as Fig.3. When the micro-displacement 
platform M2 moves the same distance L in Fig.2 and Fig.3, the Doppler frequency shift Δf in 
Fig.3 is twice as large as Δf in Fig.2. In the same configuration of laser source and electrical 
signal processing system, the measurement resolution in Fig.3 is twice as large as the 
measurement resolution in Fig.2. Therefore, the optical subdivision relies on the optical path 
design of optical system and can be realized by the multiple reflections in the optical path 
(Cheng et al., 2006). 

The third method is the electrical signal processing. Because of the light attenuation in 
optical parts, the optical subdivision is hard to realize the high subdivision number. 
Moreover, the measurement error from the nonideal characters and arrangement of optical 
parts is gradually increased when the number of optical subdivision is added. So the 
electrical signal processing becomes the most useful method to improve the measurement 
resolution.  

Moreover, the detection and elimination of errors is the important research targets for the 
improvement of measurement precision. These errors have very serious influence on the 
measurement precision. In this chapter we discuss electrical signal processing of orthogonal 
signals (fringes), which is widely used in the optical gratings, the homodyne 
interferometers, and other optical instruments. 

2. Signal preprocessing 

In the optical gratings and the homodyne interferometers, the photoelectric converter turns 
the intensity of light into the electrical signal. Because of the requirement of the direction 
recognition when the measured object moves, the orthogonal signals whose phase 
difference is π/2 are used in these instruments. In order to obtain the orthogonal signals, 4-
channel signal receiving systems are designed in the optical systems. Fig.4 shows a typical 4-
channel signal receiving systems (Keem et al., 2004). 

 

Fig. 4. 4-channel signal receiving systems: BS, beam splitter; PBS, polarizing beam splitter; 
QWP: quarter-wave plate; HWP: half-wave plate; 

When the measured object moves forward, the 4-channel electrical signals are collected from 
the photosensors and shown as follows: 

 

1 1 1

2 2 2

3 3 3

4 4 4

 
  
  
  

sin

cos

sin

cos

I A B θ
I A B θ
I A B θ
I A B θ

,  (2) 
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where An is the DC component of channel n, Bn is the amplitude of AC component of 
channel n, and θ is the change of phase that is related to the displacement ΔL when the 
measured object moves, respectively. In the homodyne interferometer with two path optical 
differences, the relationship between θ and ΔL is shown as follows: 

 
4

 
πθ L
λ

, (3) 

where λ is the wavelength of laser. 

Two signals Ix and Iy can be obtained by subtracting: 

 
1 3

4 2

 


 

y

x

I I I

I I I
. (4) 

From Eqs.2 and Eqs. 4, 

 
1 3 1 3

4 2 2 4

   


   

( )sin

( )cos

y

x

I A A B B θ

I A A B B θ
. (5) 

Under the ideal condition, A2=A4, A1=A3 and B2+B4 = B1+B3. So, two orthogonal signals are 
obtained as follows when the measured object moves forward: 

 





sin

cos

y

x

I B θ

I B θ
, (6) 

where B=B1+B3=B2+B4. 

Similarly, the 4-channel signals are shown as follows when the measured object moves 
backward: 

 

1 1 1

2 2 2

3 3 3

4 4 4

 
  
  
  

sin

cos

sin

cos

I A B θ
I A B θ
I A B θ
I A B θ

, (7) 

where the parameters of Eqs.7 are the same as the parameters of Eqs.2. Similarly, from Eqs.4 
and Eqs.7, two orthogonal signals are obtained as follows when the measured object moves 
backward: 

 



 

sin

cos

y

x

I B θ

I B θ
, (8) 

where B=B1+B3=B2+B4. 

So, ΔL is obtained by using the half periodic counting of orthogonal signals and the 
calculation of θ as follows: 
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2

  
λ

L N ε , (9) 

with 

4




θε λ
π

, 

where λ is the wavelength of laser, N is the counting value of half period, and ε is the 
additional displacement value that is shorter than λ/2 and can be calculated from the 
orthogonal signals, respectively. For the improvement of measurement resolution, some 
bidirectional subdivision methods are studied to raise the resolution of N and ε. 

3. Bidirectional subdivision 

3.1 λ/4 bidirectional subdivision 

The simplest bidirectional subdivision method (Yoshizawa, 2005) is shown as Fig.5. This 
method is applied on both the analog orthogonal signals and the digital orthogonal signals. 
The principle of this method is shown in the right part in Fig.5. During the measured object 
moves forward, when signal u2 crosses zero from positive to negative, signal u1 is positive; 
when signal u1 crosses zero from positive to negative, signal u2 is negative; when signal u2 

crosses zero from negative to positive, signal u1 is negative; when signal u1 crosses zero from 
negative to positive, signal u2f is positive. Therefore, the counting of four times in a period 
for forward movement is realized. 

Similarly, during the measured object moves backward, when signal u2 crosses zero from 
negative to positive, signal u1 is positive; when signal u1 crosses zero from positive to 
negative, signal u2 is positive; when signal u2 crosses zero from positive to negative, signal 
u1 is negative; when signal u1 crosses zero from negative to positive, signal u2 is negative. 
From the above detection, the counting of four times in a period for bidirectional movement 
is realized. 

 

Fig. 5. λ/4 bidirectional subdivision 
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3.2 λ/8 bidirectional subdivision 

In order to realize the counting of more than four times in a period, some methods are 
studied. The first method uses two thresholds to realize λ/8 bidirectional subdivision by 
(Chu et al., 2003). The method defines two thresholds Th and Tl . Th is the amplitude of 
normalized signal in the π/4 phase while Tl is the negative of Th. When u1 cross across Th 
from the bottom to the top, the movement direction is positive if u2 is positive at the same 
time or negative if u2 is negative at the same time. Similarly, when u1 cross across Tl from the 
bottom to the top, the movement direction is positive if u2 is positive at the same time or 
negative if u2 is negative at the same time. By combination between λ/4 bidirectional 
subdivision and two thresholds detection, the λ/8 bidirectional subdivision is realized. 

(Cui et al., 2000) proposes a method to realize λ/8 bidirectional subdivision by the 
constructed function. The constructed function is as follows: 

 1 2 f u u . (10) 

Fig.6 shows the function images of u1, u2 and f. According to the change of sign of u1, u2 and 
f, λ/8 bidirectional subdivision is achieved. The principle of this method is as shown in Fig.7.  

 
Fig. 6. Function images of u1, u2 and f 

 
Fig. 7. Principle of λ/8 bidirectional subdivision by Eq.10 
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3.3 λ/16 bidirectional subdivision 

Similar to (Cui et al., 2000), (Chen et al., 2005) proposes another constructed function and 
status code method to achieve λ/16 bidirectional subdivision. The difference from (Cui et al., 
2000), (Chen et al., 2005) uses 4 bits code as status parameter. 

3.4 λ/2
n+2

 bidirectional subdivision 

(Hu et al., 2009) and (Hu & Zhang, 2012) proposes a method of λ/2n+2 bidirectional 
subdivision that uses both the constructed function and the cross-zero detection. The λ/8 
and λ/16 bidirectional subdivision methods are simply introduced at first. Commonly, two 
orthogonal signals are defined as follows when the measured object moves forward: 

 
1 0

2 0


 

sin

cos

f

f

u U θ

u U θ
, (11) 

where U0 is the amplitude of the orthogonal signals, and θ is the change of phase that is 
related to the displacement when the measured object moves. 

The following two relative functions are constructed to be the reference signals in order to 
achieve the bidirectional subdivision: 

 
11 0 0

12 0 0

 
  

sin cos

sin cos

f

f

r U θ U θ

r U θ U θ
.  (12) 

Reference signals r11f and r12f can be acquired by the digital adder. Therefore, the λ/8 
subdivision of the two orthogonal signals can be realized easily by the zero-cross detection 
which consists of the orthogonal signals and the reference signals. 

Based on the λ/4 bidirectional subdivision When the positive voltage drives the measured 
object to move forward, reference signal r12f crosses zero from negative to positive, signals 
u1f and u2f are positive; when reference signal r11f crosses zero from positive to negative, 
signal u1f is positive and signal u2f is negative; when reference signal r12f crosses zero from 
positive to negative, signals u1f and u2f are negative; when reference signal r11f crosses zero 
from negative to positive; signal u1f is negative and signal u2f is positive; Therefore, the 
counting of eight times in a period for the forward movement is realized. 

The same to the forward counting, it’s easy to realize the counting of eight times in a period 
for the backward movement. When the measured object moves backward, the two 
orthogonal signals are defined as follows: 

 1 0

2 0


  

sin

cos
b

b

u U θ
u U θ

. (13) 

The same to Eqs.12, the two relative functions are constructed to be the reference signals: 

 11 0 0

12 0 0

 
  

sin cos

sin cos
b

b

r U θ U θ
r U θ U θ

. (14) 
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Similarly, the counting of eight times in a period for the backward movement is also 
achieved. So, a set of reference signals are only built as follows: 

 11 1 2

12 1 2

 
  

r u u

r u u
. (15) 

The bidirectional subdivision of λ/8 can be realized by the zero-cross detection of the 
orthogonal signals and the reference signals. 

On the basis of the λ/8 subdivision, a group of the reference signals is built which is 
constituted by the two sets of reference signals. During the time of forward counting, the 
reference signal sets are defined as follows: 

 
11 0 0

12 0 0

 
  

sin cos

sin cos

f

f

r U θ U θ

r U θ U θ
, (16) 

 
21 0 0

22 0 0

2 2

2 2

 
  

sin cos

sin cos

f

f

r U θ U θ

r U θ U θ
. (17) 

In order to calculate the reference signals r21f and r22f, the two orthogonal signals are used to 
express them. r21f is obtained as follows: 

  21 0 0 02 2 2 1    sin cos cos (sin cos )fr U θ U θ U θ θ θ . (18) 

Similarly, r22f is obtained as follows: 

  22 0 2 1  sin (sin cos )fr U θ θ θ . (19) 

U0=1 is still assumed. The function images of the two orthogonal signals and reference 
signals for the λ/16 subdivision are shown in Fig. 8 and Fig. 9 during the time of the 
forward counting and the backward counting. The same as the λ/8 subdivision, the cross-
zero detection is also used to realize the bidirectional subdivision of λ/16. Therefore, on the 
basis of the λ/8 subdivision, the bidirectional subdivision of λ/16 for the orthogonal signals 
is realized by adding a set of reference signals: 

 

 

 

2
21 1 2 0

0

1
22 1 2 0

0

2

2

   

   


u
r u u U

U

u
r u u U

U

. (20) 

Based on the λ/8 subdivision and the λ/16 subdivision, n sets of reference signals can be 
built to realize the λ/2n+2 bidirectional subdivision as follows: 

 
1 1

1 0 0

1 1

2 0 0

2 2

2 2

 

 

  


 

sin cos

sin cos

n n
n

n n
n

r U θ U θ

r U θ U θ
, (21) 
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where n is integer and n>0. 

 

Fig. 8. Forward orthogonal signals and reference signals for λ/16 subdivision 

 

Fig. 9. Backward orthogonal signals and reference signals for λ/16 subdivision 

From Euler's formula: 

  cos sinjθe θ j θ , (22) 

the following equation is obtained: 

    cos sin (cos sin )jnθ ne nθ j nθ θ j θ . (23) 

Then Eq. 23 is expanded as follows: 
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1 2 2 2

0 1 2

        
            

       
cos sin cos cos sin cos sin sinn n n n nn n n n

nθ j nθ θ j θ θ j θ θ j θ
n

 

 

1

1

1

1

4
0 1

4 1
0 1

4 2
0 1

0 1









     
        

     
     

         
     
     

         
     
   

   
   







cos cos sin sin ,

cos cos sin sin ,

cos cos sin sin ,

cos cos

n n n

n n n

n n n

n n

n n n
θ j θ θ θ n N

n

n n n
θ j θ θ j θ n N

n

n n n
θ j θ θ θ n N

n

n n
θ j 4 3











  

     
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sin sin ,nn
θ θ j θ n N

n

, (24) 

where N is integer and N≥0. 

From Eqs.24, the following equations are obtained: 

 2 2

2 2

2




 

sin sin cos

cos cos sin

θ θ θ

θ θ θ
 (25) 

 

1 3 3 1

2 2

1 3 1
4

2

  



      
                

        





sin cos sin cos sin cos sin

,

cos cos cos sin sin

n n n

n n n

n n n
nθ θ θ θ θ θ θ

n
n N

n
nθ θ θ θ θ

, (26) 

where N is integer and N≥1. 

So, from Eqs.16, Eqs.25 and Eqs.26, the following equations are obtained: 

 
11 0 0

12 0 0

1
 

  

sin cos
,

sin cos

r U θ U θ
n

r U θ U θ , (27) 
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 
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        
      

cos sin cos
,

sin sin cos

r U θ θ θ
n

r U θ θ θ , (28) 
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(29) 

where n is integer. 
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The same as the λ/8 subdivision and the λ/16 subdivision, u1 and u2 are used to express rn1 
and rn2: 

 11 1 2

12 1 2

1
 

  
,

r u u
n

r u u
, (30) 
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u
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, (31) 
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,
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n

n n n n

n
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n

n n

n
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U

n

r u u u u u u
U

, (32) 

where n is integer. 

For n=1, the number of subdivision times is 8.  

For n=2, the number of subdivision times is 16. This is just shown in Fig.9 during the time of 
the forward counting and Fig.10 during the time of the backward counting. 

Similarly, the λ/32, λ/64, λ/128, …, λ/2n+2 subdivision can be obtained where n is integer 
and n>2.  

Consequently, a conclusion is obtained as follows: 

On the basis of the λ/2n+1 bidirectional subdivision, the λ/2n+2 bidirectional subdivision of 
the orthogonal signals can be realized by adding the two reference signals rn1 and rn2 and 
their zero-cross detection. The zero-cross detection uses the original orthogonal signals and 
the reference signals r11, r12, r21, r22, …, r(n-1)1 and r(n-1)2 as the positive-negative judgment 
items for the forward counting and the backward counting. 

4. Error detection and elimination 

In the ideal conditions, the phase difference of the orthogonal signals is π/2. However, 
because of the imperfect design and manufacture of measurement system, the 
environmental disturbance and the system noise, the signals often have some errors, such as 
the nonorthogonality, the non-equality of amplitude, the drift of DC signals, and so on 
(Heydemann, 1981), which have very serious influence on the precision of the fringe 
subdivision. The typical orthogonal signals with errors are shown as follows: 
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where p,q are drift of DC, r is non-equality of amplitude coefficient, α is nonorthogonal error, 
respectively. 

(Heydemann, 1981) proposes a universal method to compensate the errors. From Eqs.33, 
another equation is obtained as follows: 

 
2

2 2

1 2 1 0

1 1      
 

( ) cos sinu p u α u α q U
r r

, (34) 

and 

 

2

2 22 1
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   
   

  

( ) ( )sin
( )
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d d
d u q r u p α

u p U
α

. (35) 

From Eq.35, the error factors are obtained as follows: 

 2 2

1 2 1 2 1 2 1    d d d d d dAu Bu Cu u Du Eu , (36) 

where 
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E Ar rq p α

,  

respectively. Obviously this is an elliptic function express. The parameter A, B, C, D, and E 
are called the error factors. Therefore, if the error factors A, B, C, D, and E are obtained, p, q, 
r, α are calculated as follows: 
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From Eqs.37, u1 and u2 are obtained as follows: 
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(Heydemann, 1981) sets up a complete method for the error compensation. This method 
needs at least a period of signals for the calculation of the error factors. Therefore it has the 
poor real-time performance. (Zumberge et al., 2004, Eom et al., 2001) also calculate error 
factors for the compensation by least-squares fitting. (Song et al., 2000) uses phase-
modulated grating to compensate for nonorthogonal errors. (Keem et al., 2004) uses Jones 
matrix calculation to investigate the remaining error of a homodyne interferometer with a 
quadrature detector system. (Cheng et al., 2009) uses the normalized waveforms to eliminate 
DC offsets and amplitude variation. (Hu & Zhang, 2011) proposes a method for detection 
and elimination of the nonorthogonal errors based on digital sampled signals as follows 
when (Hu et al., 2009, Hu & Zhang, 2012) are applied in the fringe subdivision. 

In (Birch, 1990), when the measured object moves forward, the two orthogonal signals 
which only contain nonorthogonality error are shown as follows: 

 
1 0

2 0
2





   
φ

sin

sin( )f

u U θ
π

u U θ
, (39) 

where Δφ is the nonorthogonality error. Similarly, when the measured object moves backward, 
the original signals which only contain the nonorthogonality error are shown as follows: 
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The detection method of Δφ is as follows: 

At first, a counter is defined as C that records the sample number of the original signal u2. 
Then, in the forward movement of the measured object, when the original signal u1 crosses 
zero from negative to positive, the counter C resets itself and begins to count. When the 
original signal u2 crosses zero, the value of the counter Ce is saved, and the counter C goes on 
counting. When the original signal u1 crosses zero from positive to negative, the value of the 
counter Chp is saved. Consequently, the nonorthogonality error of two original signals can be 
calculated as follows: 
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π

C
. (41) 

Similarly, when the measured object moves backward, the counter C resets itself and begins 
to count. When the original signal u2 crosses zero, the value of the counter Ceb is saved and 
the counter C goes on counting. When the original signal u1 crosses zero from positive to 
negative, the value of the counter Chp is saved. the nonorthogonality error of two original 
signals is calculated as follows: 
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The precision of Δφ is related with the sample number in the half period obviously. When 

the sample number in the half period is higher, the precision of Δφ is higher. Moreover, the 

multiple-averaging technique can be used based on sampling many times to improve the 

computational accuracy. 

If d is defined as the displacement value when the original signal moves a period, the 

relationship between the displacement L and the phase θ is as follows: 

 0 2
2

  , [ , )
θ

L Nd d θ π
π , (43) 

where N is the number of periods when the measured object moves, which can be obtained 

by the cross-zero detection, and θ can be acquired by the method of subdivision and the 

counting. If the nonorthogonality error does not exist, Eq. 43 can be represented by the λ/8 

bidirectional subdivision from (Hu et al., 2009) as follows: 

 
8 4

0
8 4
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N d θ π

L d θ
π , (44) 

where N8 is the number of 1/8 periods when the counting system uses λ/8 subdivision 

algorithm, and  

 
8

8


N
N . (45) 

When the nonorthogonality error exists, the algorithm can not divide a signal period into 

eight subintervals evenly. Therefore Eq.44 is useless if the nonorthogonality error exists. The 

relationship of the displacement L and θ has to be redefined. 

Cp is defined as the sampling value of the signal in a period and can be obtained by means of 

the cross-zero detection and the counting for the original signals. When the 

nonorthogonality error does not exist, Eqs.43 and 44 can be shown as follows:  

     , ,p p
p

n
L Nd d n C C

C
, (46) 

and 
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, (47) 

where n is positive when the measured object moves forward or negative when the 

measured object moves backward. In the Eq. 46, n is the count value of the original signal 

when the original signal does not pass through a complete period. Similarly, in the Eq.47, n 

is the count value of the original signal when the original signal does not pass through one 

eighth periods. 
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Fig. 10. Subintervals of nonorthogonal signals in λ/8 subdivision 

When the nonorthogonality error exists, eight subintervals can be arranged in two groups. It 
is shown as Fig. 12. The first group includes the subinterval I, II, V, and VI, while the second 
group includes the subinterval III, IV, VII, and VIII. Every subinterval in a same group has 
the same interval length. So the interval length of eight subintervals can be obtained as 
Table 1: 

 

Number of 
subinterval 

Range of θ in [0,2π)  Interval length 

I 
0

4 2
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VIII 7
2
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4 2



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Table 1. The interval length of eight subintervals 
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So the displacement L can be calculated when the nonorthogonality error exists: 

 8 8

2 2

8 8

   
  ( )a b

p

π φ π φ n
L N N d d

π π C
, (48) 

where N8a is the count value of the subinterval when the original signal passes by the 
subinterval I, II, V, and VI, N8b is the count value of the subinterval when the original signal 
passes by the subinterval III, IV, VII, and VIII, and n is the count value of the original signal 
when the original signal does not pass through a subinterval. N8a, N8b, and n are positive 
when the measurement platform moves forward or negative when the measurement 
platform moves backward. 

Therefore, without the extra compensation for the nonorthogonality error, the displacement 
L can be also calculated and the influence of the nonorthogonality error can be eliminated by 
means of Eq.48. 

5. Implementation platform 

With the development of electronic and computer technologies, many platforms are widely 
used in the signal processing for orthogonal signals, such as the hardware (Birch, 1990, 
Downs & Birch, 1983), FPGA (Hu et al., 2009), the software programming (Zhang et al., 
1994, Su et al., 2000), LabVIEW (Yacoot et al., 2001), DSP(Zumberge et al., 2004), and so on. 
Besides the analog signal processing and the digital signal processing, the image processing 
is also an important method to realize the fringe analysis (Takeda et al., 1982, Qian, 2004). 
The image processing system often get data from the CMOS or CCD cameras, and use 
digital image processing methods to calculate the phase shift. The image processing 
technique offers many new solutions for the fringe analysis (Patorski & Styk, 2006, 
Marengo-Rodriguez et al., 2007, Bernini et al., 2009, Larkin et al., 2001, Pokorski & Patorski, 
2010, Zhang, 2011) and extends the application fields of fringe analysis (Geng, 2011, 
Riphagen et al., 2008). 

6. Summary 

In this chapter the signal processing methods for orthogonal signals are introduced. The 
orthogonal signals are widely used in the optical grating and the homodyne interferometers. 
In order to improve the resolution of these optical instruments, some bidirectional 
subdivision methods are introduced. Besides the subdivision methods, the algorithms for 
error detection and elimination are also stated for improving the measurement precision. 
With the development of the hardware technology and the software technology, the 
precision dimension measurement technology will be further developed and improved on 
the resolution, the precision, the real-time characteristics, the applicability, and the 
maneuverability. 
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