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1. Introduction

A repetitive system is one that continuously repeats a finite-duration procedure (operation)
along the time. This kind of systems can be found in several industrial fields such as
robot manipulation (Tan, Huang, Lee & Tay, 2003), injection molding (Yao, Gao & Allgower,
2008), batch processes (Bonvin et al., 2006; Lee & Lee, 1999; 2003) and semiconductor
processes (Moyne, Castillo, & Hurwitz, 2003). Because of the repetitive characteristic,
these systems have two count indexes or time scales: one for the time running within the
interval each operation lasts, and the other for the number of operations or repetitions in
the continuous sequence. Consequently, it can be said that a control strategy for repetitive
systems requires accounting for two different objectives: a short-term disturbance rejection
during a finite-duration single operation in the continuous sequence (this frequently means
the tracking of a predetermined optimal trajectory) and the long-term disturbance rejection
from operation to operation (i.e., considering each operation as a single point of a continuous
process'). Since in essence, the continuous process basically repeats the operations (assuming
that long-term disturbances are negligible), the key point to develop a control strategy that
accounts for the second objective is to use the information from previous operations to
improve the tracking performance of the future sequence.

Despite the finite-time nature of every individual operation, the within-operation control
is usually handled by strategies typically used on continuous process systems, such as
PID ((Adam, 2007)) or more sophisticated alternatives as Model Predictive Control (MPC)
(Gonzalez et al., 2009a;b). The main difficulty arising in these applications is associated to the
stability analysis, since the distinctive finite-time characteristic requires an approach different
from the traditional one; this was clearly established in (Srinivasan & Bonvin, 2007). The
operations sequence control can be handled by strategies similar to the standard Iterative
Learning Control (ILC), which uses information from previous operations. However, the ILC
exhibits the limitation of running open-loop with respect to the current operation, since no
feedback corrections are made during the time interval the operation lasts.

In order to handle batch processes (Lee et al., 2000) proposed the Q-ILC, which considers
a model-based controller in the iterative learning control framework. As usual in the ILC
literature, only the iteration-to-iteration convergence is analyzed, as the complete input and

! In this context, continuous process means one that has not an end time.
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output profiles of a given operation are considered as fix vectors (open-loop control with
respect to the current operation). Another example is an MPC with learning properties
presented in (Tan, Huang, Lee & Tay, 2003), where a predictive controller that iteratively
improves the disturbance estimation is proposed. Form the point of view of the learning
procedure, any detected state or output disturbance is taken like parameters that are updated
iteration to iteration. Then, in (Lee & Lee, 1997;1999) and (Lee et al., 2000), a real-time feedback
control is incorporated into the Q-ILC (BMPC). As the authors declare, some cares must be
taken when combining ILC with MPC. In fact, as read in Lee and Lee 2003, a simple-minded
combination of ILC updating the nominal input trajectory for MPC before each operation does
not work.

The MPC proposed in this Chapter is formulated under a closed-loop paradigm (Rossiter,
2003). The basic idea of a closed-loop paradigm is to choose a stabilizing control law and
assume that this law (underlying input sequence) is present throughout the predictions.
More precisely, the MPC propose here is an Infinite Horizon MPC (IHMPC) that includes
an underlying control sequence as a (deficient) reference candidate to be improved for the
tracking control. Then, by solving on line a constrained optimization problem, the input
sequence is corrected, and so the learning updating is performed.

1.1 ILC overview

Iterative Learning Control (ILC) associates three main concepts. The concept Iterative refers
to a process that executes the same operation over and over again. The concept Learning
refers to the idea that by repeating the same thing, the system should be able to improve the
performance. Finally, the concept control emphasizes that the result of the learning procedure
is used to control the plant.

The ILC scheme was initially developed as a feedforward action applied directly to the
open-loop system ( (Arimoto et al., 1984) ; (Kurek & Zaremba, 1993); among others). However,
if the system is integrator or unstable to open loop, or well, it has wrong initial condition,
the ILC scheme to open loop can be inappropriate. Thus, the feedback-based ILC has been
suggested in the literature as a more adequate structure ((Roover, 1996); (Moon et al., 1998);
(Doh et al., 1999); (Tayebi & Zaremba, 2003)). The basic idea is shown in Fig. 1.

This scheme, in its discrete version time, operates as follows. Consider a plant which is
operated iteratively with the same set-point trajectory, y"(k), with k going from 0 to a final
finite value Ty, over and over again, as a robot or an industrial batch process. During the

i-th trail an input sequence u’(k), with k going from 0 to a final finite value Ty, is applied to

the plant, producing the output sequence v’ (k). Both sequences, that we will call u’ and ¥/,
respectively, are stored in the memory devise. Thus, two vectors with length T are available

for the next iteration. If the system of Fig. 1 operates in open loop, using u' in the (i + 1)-th
trail, it is possible to obtain the same output again and again. But, if at the i 4 1 iteration

information about both, u’ and e’ = y' —y’, where y" = [yr(O),- x ,yr(Tf)} , is considered,

then new sequences u'*! and y'*!, can be obtained. The key point of the input sequence
modification is to reduce the tracking error as the iterations are progressively increased. The
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Fig. 1. Feedback-based ILC diagram. Here, continuous lines denote the sequence used
during the i-th trail and dashed lines denote sequence that will be used in the next iteration.

purpose of an ILC algorithm is then to find a unique input sequence u® which minimizes the
tracking error.

The ILC formulation uses an iterative updating formula for the control sequence, given by

uH—l = f(yf” yl/ 2eey yi_ll ui/ ui—l/ ceey ui_l)’ Z’l 2 O (1)

This formula can be categorized according to how the information from previous iteration is
used. Thus, (Norrlof, 2000) among other authors define,

DEFINITION 0.1. An ILC updating formula that only uses measurements from previous iteration is
called first order ILC. On the other hand, when the ILC updating formula uses measurements from
more than previous iteration, it is called a high order ILC.

The most common algorithm suggested by several authors ((Arimoto et al., 1984); (Horowitz,
1993); (Bien & Xu, 1998); (Tayebi & Zaremba, 2003); among others), is that whose structure is
given by . . ‘

Vit = Q(z) (V' + C(z)EY), )
where V1 = 0, C(z) denotes the controller transfer function and Q(z) is a linear filter.

Six postulates were originally formulated by different authors ((Chen & Wen, 1999); (Norrlof,
2000); (Scholten, 2000), among others).

Every iteration ends in a fixed discrete time of duration Ty.

The plant dynamics are invariant throughout the iterations.

The reference or set-point, y’, is given a priori.

For each trail or run the initial states are the same. That means that x'(0) = x°(0),i > 0.

The plant output y(k) is measurable.

A

There exists a unique input sequence, u®, that yields the plant output sequence, y, with a
minimum tracking error with respect to the set-point, e*.

Regarding the last postulate, we present now the key concept of perfect control.
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DEFINITION 0.2. The perfect control input trajectory,

T
upgrf . uperfT uperfT
R e e ' O B

is one that, if injected into the system, produces a null output error trajectory

el = [eﬁT...eiTTf}T: [0...0].

It is interesting to note that the impossibility of achieving discrete perfect control, at least for
discrete nominal non-delayed linear models, is exclusively related to the input and/or states
limits, which are always present in real systems and should be consistent with the control
problem constraints. In this regard, a system with slow dynamic might require high input
values and input increments to track an abrupt output reference change, producing in this way
the constraint activation. If we assume a non-delayed linear model without model mismatch,
the perfect control sequence can be found as the solution of the following (unconstrained)
open-loop optimization problem
; 2

el -

Ty
u”’"f = arg min ) ‘
wok=1

On the other hand, for the constrained case, the best possible input sequence, i.e., u®, is
obtained from:

2
, s.t. ue U},

i
Ck

Ty
u® = arg{min ) _ ‘
wok=1
where U represents the input sequence limits, and will be discussed later.

A no evident consequence of the theoretical concept of perfect control is that only a controller
that takes into account the input constraints could be capable of actually approach the perfect
control, i.e. to approximate the perfect control up to the point where some of the constraints
become active. A controller which does not account for constraints can maintain the system
apart from those limits by means of a conservative tuning only. This fact open the possibility
to apply a constrained Model Predictive Control (MPC) strategy to account for this kind of
problems.

1.2 MPC overview

As was already said, a promising strategy to be used to approach good performances in an
iterative learning scheme is the constrained model predictive control, or receding horizon
control. This strategy solves, at each time step, an optimization problem to obtain the control
action to be applied to the system at the next time. The optimization attempt to minimizes
the difference between the desired variable trajectories and a forecast of the system variables,
which is made based on a model, subject to the variable constraints (Camacho & Bordons,
2009). So, the first stage to design an MPC is to choose a model. Here, the linear model will
be given by:

Xk+1 = Axy + Buy 3)
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dpy1 = dg (4)
yr = Cxy +dj (5)

where x; € R" is the state at time k, u;y € R™ is the manipulated input, y; € R! is the
controlled output, A, B and C are matrices of appropriate dimension, and d;y € R/ is an
integrating output disturbance (Gonzédlez, Adam & Marchetti, 2008).

Furthermore, and as a part of the system description, input (and possibly input increment)
constraints are considered in the following inclusion:

uel, (6)

where U is given by:
u:{uelRmil/tmm Sugumax}.

A simplified version of the optimization problem that solves on-line (at each time k) a typical
stable MPC is as follows:

Problem PO
N-1
min  Vp=) ¢ <€k+j\kr ”k+j\k> +F (ek+N|k>
{tgr M N-1k } j=0
subjet to:
Crpjik = CXiejik + ditj = Yirjr j=0,...,N,
Xt j1lk = AXpepjlic + Bl j=0,...,N—-1,
Mk+j|kEU, jZO,l,...,N—l,
where (e, 1) := |le||% + ||u||%, E(e) := ||e||>. Matrices Q and R are such that Q > 0 and
Q P

R > 0. Furthermore, a terminal constraint of the form x; njx € ), where ) is a specific
set, is usually included to assure stability. In this general context, some conditions should be
tulfilled by the different "components" of the formulation (i.e., the terminal matrix penalization
P, the terminal set, (), etc) to achieve the closed loop stability and the recursive feasibility 2
((Rawlings and Mayne, 2009)). In the next sections, this basic formulation will be modified to
account for learning properties in the context of repetitive systems.

2. Preliminaries

2.1 Problem index definition

As was previously stated, the control strategy proposed in this chapter consists of a basic MPC
with learning properties. Then, to clarify the notation to be used along the chapter (that comes
form the ILC and the MPC literature), we start by defining the following index variables:

¢ i:is the iteration or run index, where i = 0 is the first run. It goes from 0 to co.

2 Recursive feasibility refers to the guarantee that once a feasible initial condition is provided, the
controller will guide the system trough a feasible path
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* k: is the discrete time into a single run. For a given run, it goes from 0 to Ty (thatis, T
time instants).

¢ j: is the discrete time for the MPC predictions. For a given run i, and a given time instant
k, it goes from 0 to H = Ty — k. To clearly state that j represents the time of a prediction
made at a given time instant k, the notation k + j|k, wich is usual in MPC literature, will be
used.

The control objective for an individual run i is to find an input sequence defined by

. e 1T
u' = [uf) ---”lefl} (7)
which derives in an output sequence

T

; T T
y' = [vb v ®)
as close as possible to a output reference trajectory
T
T T
A Rl I ©)

Furthermore, assume that for a given run i there exists an input reference sequence (an input
candidate) given by

e '7T T T T
u = [u6 ...u’Tf_l ] (10)

and that the output disturbance profile,

. . 71T
i_ |7 1T}
d = [y ..dp |,
is known. During the learning process the disturbance profile is assumed to remain

unchanged for several operations. Furthermore, the value uiTrffl represents a stationary input

value, satisfying u’Tffl =G! (]/Tf - de)i, for every i, with G = [C(I — A)~!B].

2.2 Convergence analysis
In the context of repetitive systems, we will consider two convergence analyses:

DEFINITION 0.3 (Intra-run convergence). It concerns the decreasing of a Lyapunov function
(associated to the output error) along the run time k, that is, V (y;( 1~ Y +1> <V (y;( - y{()

fork =1,...,Tf 4, for every single run. If the execution of the control algorithm goes beyond Ty,
with k — oo, and the output reference remains constant at the final reference value (y; = yr, for
Ty < k < o0) then the intra-run convergence concerns the convergence of the output to the final value

of the output reference trajectory (y}( 41 — Yy as k — oo). This convergence was proved in (Gonzdlez

et al., 2009a) and presented in this chapter.

DEFINITION 0.4 (Inter-run convergence). It concerns the convergence of the output trajectory to
the complete reference trajectory from one run to the next one, that is, considering the output of a given
run as a vector of Ty components (y' — y" as i — o0).
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3. Basic formulation

In this subsection, a first approach to a new MPC design, which includes learning properties,
is presented. It will be assumed that an appropriate input reference sequence u’ is available
(otherwise, it is possible to use a null constant value), and the disturbance d;( as well as the
states x;q ; are estimated. Given that the operation lasts Ty time instants, it is assumed here a
shrinking output horizon defined as the distance between the current time k and the final time
Ty, thatis, H := Ty — k (See Figure 2). Under these assumptions the optimization problem to
be solved at time k, as part of the single run i, is described as follows:

Problem P1 |
{u;ck"'tlzi?Nslk}Vlg B ];) ‘ (e;(ﬂlk/ﬁiﬂ‘k) o (E;&H'k)
subjet to:
e;c+j|k = Cx;c—f—j‘k + d§<+]’ - y1r<+jr j=0,...,H,
xlic+j+1\k = Axf&j\k + B”?&j\kr j=0,...,H-1,
ey € U, j=01,...,H-1, (11)
u;chj\k = Uiy +E;<+j\k' j=01,....,H-1, (12)
T =0, j> N, (13)

where the (also shrinking) control horizon N; is given by Ny = min(H, N) and N is the fixed
control horizon introduced before (it is in fact a controller parameter). Notice that predictions
with indexes given by k + H|k, which are equivalent to T¢|k, are in fact prediction for a fixed
future time (in the sense that the horizon does not recedes). Because this formulation contains
some new concepts, a few remarks are needed to clarify the key points:

Remark 0.1. In the ith-operation, Ty optimization problems P1 must be solved (from k = 0 to k =

Ty —1). Each problem gives an optimal input sequence u}f_}:j‘k, forj=20,---,H—1, and following

l‘opt

the typical MPC policy, only the first input of the sequence, e

is applied to the system.

o . . _1 . . l'?’
Remark 0.2. The decision variables i 1|k @re a correction to the input reference sequence uy__ ].(see

Equation (12)), attempting to improve the closed loop predicted performance. u;: 4j can be seen as the

control action of an underlying stabilizing controller acting along the whole output horizon, which
could be corrected, if necessary, by the control actions u; ik Besides, because of constraints (13),
ﬁ;{ Hilk is different from zero only in the first N steps (or predictions) and so, the optimization problem
P1 has N; decision variables (See Figure 2). All along every single run, the input and output references,

u;: +i and yj j a8 well as the disturbance d;{ +j may be interpreted as a set of fixed parameters.

Remark 0.3. The convergence analysis for the operation sequence assumes that once the disturbance
appears it remains unchanged for the operations that follow. In this way the cost remains bounded
despite it represents an infinite summation; this happens because the model used to compute the
predictions leads to a final input (and state) that matches (erf — diff). Thus, the model output is

Quided to (erf - din), and the system output is Quided to erf.
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Fig. 2. Diagram representing the MPC optimization problem at a given time k.

3.1 Decreasing properties of the closed-loop cost for a single run

The concept of stability for a finite-duration process is different from the traditional one since,
except for some special cases such finite-time escape, boundless of the disturbance effect is
trivially guaranteed. In (Srinivasan & Bonvin, 2007), the authors define a quantitative concept
of stability by defining a variability index as the induced norm of the variation around a
reference (state) trajectory, caused by a variation in the initial condition. Here, we will show
two controller properties (Theorem 0.1). 1) The optimal IHMPC cost monotonically decreases
w.r.t time k, and 2) if the control algorithm execution goes beyond Tf with k — oo, and the
output reference remains constant at the final reference value (v} = y’Tf for k > Ty ) then, the

IHMPC cost goes to zero as k — oo , which implies that yf{ — erf as k — oo.

Theorem 0.1 (intra-run convergence). Let assume that the disturbance remains constant from one
run to the next. Then, for the system (3-5), and the constraint (6), by using the control law derived
from the on-line execution of problem P1 in a shrinking horizon manner, the cost is decreasing, that is,

Vki‘”” — Vléu—ptl + E(e;'(_l,ﬂf(_l) <0,for0<k<Tf—1
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”en

Furthermore, the last cost of a given operation "i” is given by:

jopt . jopt —jopt
VTff1 = g(eTf_1\Tf—1f”Tf—1|Tf—1) + F(eTf\Tf—1>'

and since current and one steps predictions are coincident with the actual values, it follows that:

jopt jort —jopt

Vi1 = ey, 1,7, ) + Flery). (14)

Proof See the Appendix. [

Remark 0.4. The cost Vkiow of Problem P1 is not a strict Lyapunov function, because the output horizon
is not fixed and then, V,fm(e;'() changes as k increases (in fact, as k increases the cost becomes less
demanding because the output horizon is smaller). However, if a virtual infinite output horizon for
predictions is defined, and stationary values of output and input references are assumed for Ty < oo
(ie. ul, = (C(I — A)71B)~Y(yL, — di,), where di, is the output disturbance at T¢), then by selecting

the terminal cost F( to be the sum of the stage penalization ((-,-) from Ty to oo, it is possible to

er, k)
associate V,im (el) with a fixed (infinite) output horizon. In this way Vkiow (el) becomes a Lyapunov
function since it is an implicit function of the actual output error ej. To make the terminal cost the
infinite tail of the output predictions, it must be defined as

. , , 2 . 112 © 12
Fege) = (Ol = s [, = o+ 28| crpe = X it e
1=0,1,...,Tf -1,
where xi;, = (I — A)"'Buly and CTPC is the solution of the following Lyapunov equation:

ATCTPCA = CTPC — CTQC. With this choice of the terminal matrix P, the stability results of
Theorem 0.1 is stronger since the closed loop becomes Lyapunov stable.

3.2 Discussion about the stability of the closed-loop cost for a single run

Theorem 0.1, together with the assumptions of Remark 0.4, shows convergence characteristics
of the Lyapunov function defined by the IHMPC strategy. These concepts can be extended
to determine a variability index in order to establish a quantitative concept of stability
(B-stability), as it was highlighted by (Srinivasan & Bonvin, 2007). To formulate this extension,
the MPC stability conditions (rather than convergence conditions) must be defined, following
the stability results presented in ((Scokaert et al., 1997)). An extension of this remark is shown
below.

First, we will recall the following exponential stability results.

Theorem 0.2 ((Scokaert et al., 1997)). Let assume for simplicity that state reference x;_is provided,
such that y; = Cxy, fork = 0,..., Ty — 1, and no disturbance is present. If there exist constants a,
Ay, by, cx, ¢y and dy such that the stage cost {(x,u), the terminal cost F(x), and the model matrices
A, B and C, in Problem P1, fulfill the following conditions:

TN < 00 u) = xlfG + el < exellx )+ eulull” (15)
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sopt .
H”;cj_]"kH < by||xk|l, for j=0,...,H—1 (16)
HAX—}-BL{H SaxHxH—f—auHuH (17)

F(x) < dxHXHU (18)

then, the optimal cost V,fow (xx) satisfies
ropt _
Tllxel” < VET () < 7l (19)

copt
V" () < = llxell” (20)

with?y = (cx. ):fi’ol af + N.cy.by + dx.oc‘{\,>, aj = ax.aj 1+ ay.by and oy = ay + a,.by,.

Proof The proof of this theorem can be seen in (Scokaert et al., 1997). U

Condition (15) is easy to determine in terms of the eigenvalues of matrices Q and R. Condition
(16), which are related to the Lipschitz continuity of the input, holds true under certain
regularity conditions of the optimization problem.

Now, we define the following variability index, which is an induced norm, similar to the one
presented in (Srinivasan & Bonvin, 2007):

Tf—l jort

¢ = max —Zk:o Vi
opt Viopf
Vi =6 0

for a small value of § > 0. With the last definition, the concept of § -stability for finite-duration
systems is as follows.

DEFINITION 0.5 ((Scokaert et al., 1997)). The closed-loop system obtained with the proposed IHMPC
controller is intra-run B-stable around the state trajectory x;_ if there exists & > 0 such that { < B.

Theorem 0.3 (quantitative j -stability). Let assume for simplicity that a state reference, x; , is
provided, such that y; = Cxj, k =0,..., Ty — 1, and no disturbance is present. If there exist constants
Ay, Ay, by, cx, cy and dy as in Theorem 0.2, then, the closed-loop system obtained with system(3) -(5)
and the proposed IHMPC controller law is intra-run B-stable around the state trajectory x; , with

s 0]
v

Proof See the Appendix. []

4. IHMPC with learning properties

In the last section we studied the single-operation control problem, where we have assumed
that an input reference is available and the output disturbance is known. However, one
alternative is defining the input reference and disturbance as the input and disturbance
obtained during the last operation (i.e. the last implemented input and the last estimated
disturbance, beginning with a constant sequence and a zero value, respectively). In this way,
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a dual MPC with learning properties accounting for the operations sequence control can be
derived. The details of this development are presented next.

4.1 Additional MPC constraints to induce learning properties

For a given operation i, consider the problem P1 with the following additional constraints:

_ i1 A _ P _
u =l k=0T, j=0,... H-1 o1
1 .
di, =d L, k=1,...,Ty, j=0,... H

where dl L j represents the disturbance estimation. The first constraint requires updating the

input reference for 0perat1on i with the last optimal sequence executed in operatlon i—1(ie.
u' =u"!, fori = 1,2,---, with an initial value given by u’ := [G~! y - G~ yT ]). The

second one updates the dlsturbance proﬁle for operation i with the last estlmated sequence in

operationi — 1 (i.e. d=d" forz =1,2,---, with an initial value given by d’=10---0]).

Besides, notice that the vector of differences between two consecutive control trajectories,
. . . . optT ot ) )

6 = u —ul, is given by §' = _6{3 e T;f 1T } i.e., the elements of this vector are

the collection of first control movements of the solutions of each optimization problem P1, for
k=0,---,Tf—1.

Remark 0.5. The input reference update, together with the correction presented in Remark 0.2, has
the following consequence: the learning procedure is not achieved by correcting the implemented input
action with past information but, by correcting the predicted input sequence with the past input profile
, which represents here the learning parameter. In this way better output forecast will be made because
the optimization cost has predetermined input information. Figure 3 shows the difference between these
two learning procedures.

u"l u'’
yr—b MPC —wb System y = v » MPC d P System y >
3‘(! L )"(r' ‘
Observer [€——— Observer [€——
(a) Proposed learning procedures. (b) Typical learning procedures.

Fig. 3. Learning procedures.

Remark 0.6. The proposed disturbance update implies that the profile estimated by the observer at
operation i — 1 is not used at operation i — 1, but at operation i. This disturbance update works properly
when the disturbance remains unmodified for several operations, i.e., when permanent disturbances, or
model mismatch, are considered. If the disturbance substantially changes from one operation to next
(that is, the disturbance magnitude or the time instant in which the disturbance enter the system
change), it is possible to use an additional "current” disturbance correction given by . This correction
is then added to permanent disturbance profile at each time k of the operation i.
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4.2 MPC formulation and proposed run cost
Let us consider the following optimization problem:

Problem P2
~ min Vi
{ﬂhk'--vﬁhrruk}
subject to (3 - 13) and (21): Run to run convergence means that both, the output error trajectory
e’ and the input difference between two consecutive implemented inputs, §' = u’' — u 1
converges to zero as i — oo. Following an Iterative Learning Control nomenclature, this
means that the implemented input, u’, converges to the perfect control input u?®’f.

To show this convergence, we will define a cost associated to each run, which penalizes the
output error. As it was said, Tf MPC optimization problems are solved at each run i, that is,
fromk=0tok = Tf — 1. So, a candidate to describe the run cost is as follows:

-1
= YV 22)
k=0

where V]éom represents the optimal cost of the on-line MPC optimization problem at time k,
corresponding to the run i.

Notice that, once the optimization problem P2 is solved and an optimal input sequence is

obtained, this MPC cost is a function of only ez’z = (y;:ﬁ; — y,ﬁ) = e;;. Therefore, it makes

sense using (22) to define a run cost, since it represents a (finite) sum of positive penalizations
of the current output error, i.e., a positive function of ¢'. However, since the new run index
is made of outputs predictions rather than of actual errors, some cares must be taken into
consideration. Firstly, as occurs with usual indexes, we should demonstrate that null output
error vectors produce null costs (which is not trivial because of predictions). Then, we should
demonstrate that the perfect control input corresponds to a null cost. These two properties,
together with an additional one, are presented in the next subsection.

4.3 Some properties of the formulation

One interesting point is to answer what happens if the MPC controller receives as input
reference trajectory the perfect control sequence presented in the first section. The simplest
answer is to associate this situation with a null MPC cost. However, since the proposed
MPC controller does not add the input reference (given by the past control profile) to the
implemented inputs but to the predicted ones, some care must be taken. Property 0.1, below,
assures that for this input reference the MPC cost is null. Without loss of generality we
consider in what follows that no disturbances enter the system.

Property 0.1. If the MPC cost penalization matrices, Q and R, are definite positive (Q > 0 and
R = 0) and the perfect control input trajectory is a feasible trajectory, then u” = uP®’f V,;ow =0
fork = O,...,Tf — 1; where

H-1
iupt o jort _l'opt iopt
Vi = Z;,) ! (ek+j|k’uk+j|k> +F (xk+H|k>'
]:
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Proof See the Appendix. []
This property allow as to formulate the following one:

Property 0.2. If the MPC cost penalization matrices, Q and R, are definite positive (Q > 0and R >~ 0)
and perfect control input trajectory is a feasible trajectory, cost (12), which is an implicit function of €',
is such that, ¢’ =0« [; = 0.

Proof See the Appendix. []
Finally, as trivial corollary of the last two properties, it follows that:

Property 0.3. If the MPC cost penalization matrices, Q and R, are definite positive, then u' =
uberf o Jt = 0. Otherwise, u* # uPe’f = J £ 0.

Proof It follows from Property 0.1 and Property 0.2. [

4.4 Main convergence result
Now, we are ready to establish the run to run convergence with the following theorem.

Theorem 0.4. For the system (3)-(5), by using the control law derived from the on-line execution of
problem P2 in a shrinking horizon manner, together with the learning updating (21), and assuming
that a feasible perfect control input trajectory there exists, the output error trajectory e’ converges to
zero as i — oo. In addition, &' converges to zero as i — oo which means that the reference trajectory
u' converges to uP®’f.

Remark 0.7. In most real systems a perfect control input trajectory is not possible to reach (which
represents a system limitation rather than a controller limitation). In this case, the costs V,éow will
converge to a non-null finite value as i — oo ,and then, since the operation cost J' is decreasing (see
previous proof), it will converge to the smallest possible value. Given that, as was already said, the
impossibility to reach perfect control is exclusively related to the input and/or states limits (which
should be consistent with the control problem constraints), the proposed strategqy will find the best
approximation to the perfect control, which constitutes an important advantage of the method.

Remark 0.8. In the same way that the intra-run convergence can be extended to determine a
variability index in order to establish a quantitative concept of stability (B-stability), for finite-
duration systems (Theroem 0.3); the inter-run convergence can be extended to establish stability
conditions similar to the ones presented in (Srinivasan & Bonvin, 2007).

5. llustrative examples

Example 1. In order to evaluate the proposed controller performance, we consider first a linear
system (Lee & Lee, 1997) given by G(s) = 1/ 1552 + 8s + 1. The MPC parameters were tuned
as Q = 1500, R = 0.5and T = 1. Figure 4 shows the obtained performance in the controlled
variable where the difference with the reference is undistinguished. Given that the problem
assumes that no information about the input reference is available, the input sequence u and
u are equals.
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Fig. 4. Reference, output response according to the input variables u and u
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Fig. 5. Normalized MPC cost function. Here, the normalized cost function is obtained as
Vk/ Vkmax-

The MPC cost function is showed in Fig. 5. According to the proof of Theorem 0.1 (nominal
case), this cost function is monotonically decreasing.

Example 2. Consider now a nonlinear-batch reactor where an exothermic and irreversible
chemical reaction takes place, (Lee & Lee, 1997). The idea is to control the reactor temperature
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by manipulating the inlet coolant temperature. Furthermore, the manipulated variable has
minimum and maximum constrains given by: Teyin < Tc < Tcmax, where Tepin = —25[°C],
Temax = 25[°C] and, Tc is written in deviation variable. In addition, to show how the
MPC controller works, it is assumed that a previous information about the cooling jacked
temperature (u = Tc) is available.

Here the proposed MPC was implemented and the MPC parameters were tuned as, Q = 1000
, R =5and T = 1[min]. The nominal linear model used for predictions is the same proposed
by (Adam, 2007).

Figure 6 shows both the reference and the temperature of the batch reactor are expressed in
deviation variable. Furthermore, the manipulated variable and the correction made by the
MPC, u are shown.

Notice that, 1) the cooling jacked temperature reaches the maximum value and as a
consequence the input constraints becomes active in the time interval from 41 minutes to
46 minutes; 2) similarly, when the cooling jacked temperature reaches the minimum value,
the other constraint becomes active in the time interval from 72 minutes to 73 minutes; 3)
the performance is quite satisfactory in spite of the problem is considerably nonlinear and, 4)
given that it is assumed that a previous information about the cooling jacked temperature is
available, the correction u is somewhat smaller than u (Fig. 6).

10 | | | |
8 Batch Reactor Temperature
> 6
O o4
é Reference Temperature
| | | |
0 10 20 30 40 50 60 70 80 90

20 | |

20 Cooling Jacket Temperature
i | | !

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90
Time ([min])
Fig. 6. Temperature reference and controlled temperature of the batch reactor. Also, the
cooling jacked temperature (u) and the correction (i) are showed.

Example 3. In order to evaluate the proposed controller performance we assume a true and
nominal process given by (Lee et al., 2000; Lee & Lee, 1997) G(s) = 1/15s%> + 8s + 1 and
G(s) = 0.8/12s% + 7s + 1, respectively. The sampling time adopted to develop the discrete
state space model is T = 1 and the final batch time is given by Ty = 90T. The proposed
strategy achieves a good control performance in the first two or three iterations, with a rather
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Fig. 7. Output and input responses.

reduced control horizon. The controller parameters are as follows: Q = 1500, R = 0.05, N = 5.
Figure 7 shows the output response together with the output reference, and the inputs u' and
', for the first and third iteration. At the first iteration, since the input reference is a constant
value (ul%f_1 = 0), u' and 7' are the same, and the output performance is quite poor (mainly
because of the model mismatch). At the third iteration, however, given that a disturbance
state is estimated from the previous run, the output response and the output reference are
undistinguishable. As expected, the batch error is reduced drastically from run 1 to run 3,
while the MPC cost is decreasing (as was established in Theorem 0.1) for each run (Fig. 8a).

Notice that the MPC cost is normalized taking into account the maximal value (V]é / Vrilax>,

0.8
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o
c:

0.2 |- —

I
=
Normalized H, norm of the error (||e?||,)

o
[N}

Normalized V° and V3,
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(a) Error and MPC cost. (b) Norm of the iteration error.

Fig. 8. Error and MPC cost, and Norm of the iteration error for the example 3.
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where V1. =~ 1.10° and V., ~ 286.5. This shows that the MPC cost J* decrease from one
run to the next, as was stated in Theorem 0.4. Finally, Fig. 8b shows the normalized norm of
the error corresponding to each run.

6. Conclusion

In this paper a different formulation of a stable IHMPC with learning properties applied to
batch processes is presented. For the case in which the process parameters remain unmodified
for several batch runs, the formulation allows a repetitive learning algorithm, which updates
the control variable sequence to achieve nominal perfect control performance. Two extension
of the present work can be considered. The easier one is the extension to linear-time- variant
(LTV) models, which would allow representing the non-linear behavior of the batch processes
better. A second extension is to consider the robust case (e.g. by incorporating multi model
uncertainty into the MPC formulation). These two issues will be studied in future works.

7. Appendix

Proof of Theorem 0.1

—qopt L _opt —jopt jort jort jort
Proof Letu_, := {”k—1|k—1' ceey ”k+NS—2|k—1'O' .. .,O} andx;_; = {xk71|k71' . "xk+Tf|k—1}
be the optimal input and state sequence that are the solution to problem P1 at time k — 1, with
k=1,---,Tf — N (that means that the last N optimization problem of a given run i are not
considered). The cost corresponding to these variables are

jort o stl jort —jopt H-1 jort jort
Vict =L ¢ (ek+j—l|k—1'uk+j—1\k—1> +Lion, ¢ (ek+j—1|k—l’0> tF <xk+H—1|k—l>

H-1 opt jopt opt (23)
— — i° —i° i°
=Yoot <ek+j—1|k—1’uk+j—1|k—1> +F <fo|k—1) :

—i feas

Notice that at time k — 1, H = Tf —k + 1, since H is a shrinking horizon. Now, let uj  :=
{ﬁf‘rz_l, .. ,,ﬁZi th—2|k—1’0" } .,0} be a feasible solution to problem P1 at time k. Since no

new input is injected to the system from time k — 1 to time k, and no unknown disturbance is
considered, the predicted state at time k, using the feasible input sequence, will be given by

_Z'feas iopt iopt iopt _ l'upt iopt iopt
Xe o T k=1 Mk H-1 k=1 Yk H=1 f T V=1 Kk Ty =1 Xk T k-1 - Then, the

cost at time k corresponding to the feasible solution " is as follows:
l'feas . ]\[571 jort —jopt H-1 jort jort
Vi =LiS ¢ (ek+j|k—1’uk+j\k—1> +Ln, ¢ (ek—s—j\k—l’o) +F (ek+H|k—l)

_ wH—1 [ ort —jopt jopt
= Ej:o ¢ (ek+j|k—1’uk+j|kfl) +F (eTf|k71) :

(24)

Notice that now H = Ty — k, because predictions are referred to time k. Now, subtracting (23)
from (24) we have

Z'feas l'opt o l'opt _l'opt
Vi = Vi =t (ek—l\kfl'ukfl\kfl> :
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This means that the optimal cost at time k, which is not grater than the feasible one at the same
time, satisfies

jopt jopt jort —jopt
Vii =Vila t 4 (ek—1|k—1'uk—1|k—1) <0.

Finally, notice that e;:it”k_l and ﬁ;:it” 11 represent actual (not only predicted) variables. Thus,
we can write

Vi i (G T < 25

ko~ Vi1 T G- tg—1 ) = 0. (25)

This shows that, whatever the output error is different from zero, the cost decreases when
time k increases.

Finally, the decreasing property for k = Tr — N +1,---,Tf — 1, and the last part of the
theorem, can be proved following similar steps as before (i.e., finding a feasible solution).
O

Proof of Theorem 0.3

Proof From the recursive use of (25), together with (15), (19) and (20), we have
jopt jopt T —_ T — — —
VI < VI =1 (3,8 < TR - 217 = (7 - IR

fork = O,...,Tf — 2. So we can write:

-1 Tr—1

op . .
Y Ve < |r+ )y (" IRl
k=0 n=1

Therefore,
Ti—1 - w0 _ Tf—l _
o [T EL -]

Vé'apt — Z ’
since 7.|xo[| is a lower bound of Vi (that is, 7 llx0)” < Vi,
Finally,
— Tf—l \_ n
B ()]
Y :
|

Proof of Property 0.1

Proof <) Let us assume that V,fupt =0,fork =0,.., Tf — 1. Then, the optimal predicted
jort .
0, for j =

k+jlk
o,.., Tf — 1, respectively. If e;:j_t].‘ k adn E,:j_t].‘ =0 simultaneously; it follows that u;: = u,;zerf for

=07=0,., Tf and ﬁ;:m

output error and input will be given by e ik =

k=0,...,Tr — 1, since it is the only input sequence that produces null predicted output error
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> 0 and

(otherwise, the optimization will necessarily find an equilibrium such that

=) Let us assume that u}Z = u,’ferf . Because of the definition of the perfect control input, the
optimization problem without any input correction will produce a sequence of null output
error predictions given by

iopt
Ck-+1]k
—jopt

U || > 0, provided that Q > 0 and R > 0 by hypothesis). Consequently, u’ = urerf,

i
ek‘k—O

. - . A . perf [
e;c—H\k N Cx;<+1|k Y1 =C [Ax;c\k + Buy } ~ Y1 =0

] — Cyl — Ty i perf perf _
ek = Sk~ Ykar, = C [A I+ ABu - ‘B”k+Tf—1} ~ Y1, = 0.
Consequently, the optimal sequence of decision variables (predicted inputs) will be H;jj_’;‘k =0

fork = 0,..., Tf —landj =0,..., Tf — 1, since no correction is needed to achieve null
predicted output error. This means that Vkiaw =0fork=0,..., Tf —1.O

Proof of Property 0.2

iupt
k|k /
that the input reference vector is different from the perfect control input, u’” # u??"f, and
consider the output error predictions necessary to compute the MPC cost V/:

Proof =) Let us assume that e! = 0. This means that ¢!|, =0, fork =0,..., Tf. Now, assume

i
ek‘k—O

i1k = CXerqpp — Yo = C [Axi\k + Bup + B%k] /T

Since u” is not an element of the perfect control input, then [Ax;{‘ et Buﬂ # 0. Consequently,

l‘apt

(assuming that CB is invertible) the input ﬁ;q ; ecessary to make e, K

= 0, will be given by:

= (CB) ™Y v,y — C [Axlye+Buf ),

which is a non null value. However, the optimization will necessary find an equilibrium
iopt _Z'opt —j* . .
k+1\kH > (0 and Huk|kH < H”k|k , since Q > 0 and R > 0 by hypothesis.
l'opt o eiopt
k+1k — Ck+1lk+1

solution such that ||e

This implies that 3e
error.

# 0, contradicting the initial assumption of null output

From this reasoning for subsequent output errors, it follows that the only possible input
reference to achieve ¢’ = 0 will be the perfect control input (u’ = uPf). If this is the case, it
follows that V]fuw =0,fork=0,..., Tf (Property 0.1), and so, | =0

3 Note that for the nominal case is e}( et = e;'( ik
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<) Let us assume that J' = i = 0. Then, Vl = = 0, which implies that el’ =0,fork=0,.. Tf

k+ jlk
and forj =0, .., Tf . Particularly, ek|k =0,fork=0,..., Tf, which implies el =0.0

Proof of Theorem 0.4

opt

Proof The idea here is to show that V} V]f_low fork=0,...,Tf —landso, J; < J;—1. First,
let us consider the case in which the sequence of Ty optimization problems P2 do nothing at a
given run i. That is, we will consider the case in which

i jort optT . T
3 = [”00 . qu 1T— 1] =10...0]",

for a given run i. So, for the nominal case, the total actual input will be given by

B R B Y o A P U L
0 T,—1 Yol U 1|71

and the run cost corresponding to this (fictitious) input sequence will be given by

Ty
]l — Z V]é/
k=1
where
=0
. N.—1 _jom —_—— H-1 vt Lot
. 0 —i i— i—1°
Vi = Z%) ¢ k+]|k+] Uppilksj | T X]:\] £< Cktjlk+j’ 0) +F (xk+H\k+H—1>
= J=1Ns

S ) () =

Since the input reference, u;_ i that uses each optlmlzatlon problems is given by ”k 4=

;<+1|k+ i k+]|k+] = ek+] forj = 0., H.
In other words, the open loop output error predictions made by the MPC opt1m1zat10n at
each time k, for a given run i, will be the actual (implemented) output error of the past run
i — 1. Here it must be noticed that ¢, i L refers to the actual error of the system, that is, the
i1
k+] 1k+j—1"
proposed inter run convergence constraint, the implemented input will be uT 1 forj > H.

then the resulting output error will be given by ei’

error produced by the implemented input ”k + i1 = Moreover, because of the

Let now consider the optimal MPC costs corresponding to k = 0,..., Tf —1, of a given run
i — 1. From the recursive use of (12) we have

Vl 1”+£<1 1—1 1)<V1 107
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1opt

i—10 i
Vi +£(eT Lt 2) < Vil

Then, adding the second term of the left hand side of each inequality to both sides of the next
one, and rearranging the terms, we can write

1opf

VI (e, m ) e (e m) < Vi (27)
From (14), the cost V%f__lalpt, which is the cost at the end of the run i — 1, will be given by,
1opt
Vil = e (e ity )+ F () (28)
Therefore, by substituting (28) in (27), we have
-1 —i—1 1 1 —1 1 i—1°%"
() + e (e ity )+ 41 (e )<V (29)
Now, the pseudo cost (26) at time k = 0, Vé, can be written as
Tr—1
i i—1 i—1
= L1 (7h0) +F (x5)
j=0
Zl( L)) - T | ()

and from the comparison of the left hand side of inequahty (29) with (30), it follows that

~i . i*lopt
vi=vi" -

Repeating now this reasoning for k = 1, ..., Tr — 1 we conclude that

~1~ 4 i_lopt
Vi=v, 1" -

k:O,...,Tf—l

Therefore, from the definition of the run cost ] i we have*

Tr—1Tf—1

Ji<Jioi— ), Z‘

k=0 j=k

! H . (31)

4 Notice that, if the run i implements the manipulated variable u; = u;'-_l + H;'-_l, j=01,..., Tf —1and

H;fl # 0 for some j; then, according to 31 Ji < Jia1. Unnaturally, to have found a non null optimal
solution in the run 7 — 1 is sufficient to have a strictly smaller cost for the run i.
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The MPC costs V,i is such that V,iow < V]Z, since the solution ﬁ;{ ik = 0,forj=0,...,Hisa
feasible solution for problem P2 at each time k. This implies that

Ji <J. (32)
From (31) and (32) we have
i T—1Tj—1 :
i<h<ia-Y ¥ =7 (33)
k=0 j=k

which means that the run costs are strictly decreasing if at least one of the optimization

. . . . —i—1 .
problems corresponding to the run i — 1 find a solution ik # 0. As a result, two options

arise:

I) Let us assume that u’ # urerf, Then, by property 0.3, | i # 0 and following the reasoning
used in the proof of Property 0.2, ﬁ;- # 0, forsome 1l < j < Tf. Then, according to 33,

~ Te—1 Tr—1 i .
Jiv1 <Jiv1 < Ji— Tl Z,-ik ‘ ui|| > Oforsome 1 <j<Tf—1.

i with |

= 0. In addiction, if Z]Ti 51 ‘ ﬁ;'. =0,
then u’’ = u”®"f, which implies that J; = 0. Therefore: lim;_,, J; = 0, which, by Property 0.2

implies that lim; ,, e; = 0.

The sequence ]! will stop decreasing only if Z]Ti 51 ’

—i
Uj

Notice that the last limit implies that lim;_, 6! = 0and consequently, lim; 4, u’ = urrf,

IT) Let us assume that u/’ = u?®f. Then, by Corollary 0.3, J; = 0, and according to (33),
Jiv1 = Jix1 = J; = 0. Consequently, by Property 0.2, e’ = 0. [J
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