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1. Introduction

This chapter presents an overview of a specific application of computational intelligence
techniques, specifically, fuzzy systems: fuzzy model based advanced control systems design.
In the last two decades, fuzzy systems have been useful for identification and control of
complex nonlinear dynamical systems. This rapid growth, and the interest in this discussion
is motivated by the fact that the practical control design, due to the presence of nonlinearity
and uncertainty in the dynamical system, fuzzy models are capable of representing the
dynamic behavior well enough so that the real controllers designed based on such models
can garantee, mathematically, stability and robustness of the control system (Åström et al.,
2001; Castillo-Toledo & Meda-Campaña, 2004; Kadmiry & Driankov, 2004; Ren & Chen, 2004;
Tong & Li, 2002; Wang & Luoh, 2004; Yoneyama, 2004).

Automatic control systems have become an essential part of our daily life. They are applied
in an electroelectronic equipment and up to even at most complex problem as aircraft and
rockets. There are different control systems schemes, but in common, all of them have
the function to handle a dynamic system to meet certain performance specifications. An
intermediate and important control systems design step, is to obtain some knowledge of the
plant to be controlled, this is, the dynamic behavior of the plant under different operating
conditions. If such knowledge is not available, it becomes difficult to create an efficient control
law so that the control system presents the desired performance. A practical approach for
controllers design is from the mathematical model of the plant to be controlled.

Mathematical modeling is a set of heuristic and/or computational procedures properly
established on a real plant in order to obtain a mathematical equation (models) to represent
accurately its dynamic behavior in operation. There are three basic approaches for
mathematical modeling:

• White box modeling. In this case, such models can be satisfactorily obtained from
the physical laws governing the dynamic behavior of the plant. However, this may be
a limiting factor in practice, considering plants with uncertainties, nonlinearities, time
delay, parametric variations, among other dynamic complexity characteristics. The poor
understanding of physical phenomena that govern the plant behavior and the resulting
model complexity, makes the white box approach a difficult and time consuming task.
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In addition, a complete understanding of the physical behavior of a real plant is almost
impossible in many practical applications.

• Black box modeling. In this case, if such models, from the physical laws, are difficult
or even impossible to obtain, is necessary the task of extracting a model from experimental
data related to dynamic behavior of the plant. The modeling problem consists in choosing
an appropriate structure for the model, so that enough information about the dynamic
behavior of the plant can be extracted efficiently from the experimental data. Once the
structure was determined, there is the parameters estimation problem so that a quadratic
cost function of the approximation error between the outputs of the plant and the model
is minimized. This problem is known as systems identification and several techniques
have been proposed for linear and nonlinear plant modeling. A limitation of this approach
is that the structure and parameters of the obtained models usually do not have physical
meaning and they are not associated to physical variables of the plant.

• Gray box modeling. In this case some information on the dynamic behavior of the
plant is available, but the model structure and parameters must be determined from
experimental data. This approach, also known as hybrid modeling, combines the features
of the white box and black box approaches.

The area of mathematical modeling covers topics from linear regression up to sofisticated
concepts related to qualitative information from expert, and great attention have been given
to this issue in the academy and industry (Abonyi et al., 2000; Brown & Harris, 1994; Pedrycz
& Gomide, 1998; Wang, 1996). A mathematical model can be used for:

• Analysis and better understanding of phenomena (models in engineering, economics,
biology, sociology, physics and chemistry);

• Estimate quantities from indirect measurements, where no sensor is available;

• Hypothesis testing (fault diagnostics, medical diagnostics and quality control);

• Teaching through simulators for aircraft, plants in the area of nuclear energy and patients
in critical conditions of health;

• Prediction of behavior (adaptive control of time-varying plants);

• Control and regulation around some operating point, optimal control and robust control;

• Signal processing (cancellation of noise, filtering and interpolation);

Modeling techniques are widely used in the control systems design, and successful
applications have appeared over the past two decades. There are cases in which the
identification procedure is implemented in real time as part of the controller design. This
technique, known as adaptive control, is suitable for nonlinear and/or time varying plants. In
adaptive control schemes, the plant model, valid in several operating conditions is identified
on-line. The controller is designed in accordance to current identified model, in order to
garantee the performance specifications. There is a vast literature on modeling and control
design (Åström & Wittenmark, 1995; Keesman, 2011; Sastry & Bodson, 1989; Isermann &
Münchhof, 2011; Zhu, 2011; Chalam, 1987; Ioannou, 1996; Lewis & Syrmos, 1995; Ljung, 1999;
Söderström & Stoica, 1989; Van Overschee & De Moor, 1996; Walter & Pronzato, 1997). Most
approaches have a focus on models and controllers described by linear differential or finite
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differences equations, based on transfer functions or state space representation. Moreover,
motivated by the fact that all plant present some type of nonlinear behavior, there are several
approaches to analysis, modeling and control of nonlinear plants (Tee et al., 2011; Isidori,
1995; Khalil, 2002; Sjöberg et al., 1995; Ogunfunmi, 2007; Vidyasagar, 2002), and one of the
key elements for these applications are the fuzzy systems (Lee et al., 2011; Hellendoorn
& Driankov, 1997; Grigorie, 2010; Vukadinovic, 2011; Michels, 2006; Serra & Ferreira, 2011;
Nelles, 2011).

2. Fuzzy inference systems

The theory of fuzzy systems has been proposed by Lotfi A. Zadeh (Zadeh, 1965; 1973), as
a way of processing vague, imprecise or linguistic information, and since 1970 presents
wide industrial application. This theory provides the basis for knowledge representation
and developing the essential mechanisms to infer decisions about appropriate actions to be
taken on a real problem. Fuzzy inference systems are typical examples of techniques that
make use of human knowledge and deductive process. Its structure allows the mathematical
modeling of a large class of dynamical behavior, in many applications, and provides greater
flexibility in designing high-performance control with a certain degree of transparency for
interpretation and analysis, that is, they can be used to explain solutions or be built from
expert knowledge in a particular field of interest. For example, although it does not know
the exact mathematical model of an oven, one can describe their behavior as follows: " IF

is applied more power on the heater THEN the temperature increases", where more and
increases are linguistic terms that, while imprecise, they are important information about
the behavior of the oven. In fact, for many control problems, an expert can determine a
set of efficient control rules based on linguistic descriptions of the plant to be controlled.
Mathematical models can not incorporate the traditional linguistic descriptions directly into
their formulations. Fuzzy inference systems are powerful tools to achieve this goal, since
the logical structure of its IF <antecedent proposition> THEN <consequent proposition>
rules facilitates the understanding and analysis of the problem in question. According to
consequent proposition, there are two types of fuzzy inference systems:

• Mamdani Fuzzy Inference Systems: In this type of fuzzy inference system, the antecedent and
consequent propositions are linguistic informations.

• Takagi-Sugeno Fuzzy Inference Systems: In this type of fuzzy inference system, the antecedent
proposition is a linguistic information and the consequent proposition is a functional
expression of the linguistic variables defined in the antecedent proposition.

2.1 Mamdani fuzzy inference systems

The Mamdani fuzzy inference system was proposed by E. H. Mamdani (Mamdani, 1977) to
capture the qualitative knowledge available in a given application. Without loss of generality,
this inference system presents a set of rules of the form:

R
i : IF x̃1 is Fi

j|x̃1
AND . . . AND x̃n is Fi

j|x̃n
THEN ỹ is Gi

j|ỹ (1)

In each rule i |[i=1,2,...,l], where l is the number of rules, x̃1, x̃2, . . . , x̃n are the linguistic
variables of the antecedent (input) and ỹ is the linguistic variable of the consequent (output),

3Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design



4 Will-be-set-by-IN-TECH

defined, respectively, in the own universe of discourse Ux̃1 , . . . ,Ux̃n
e Y . The fuzzy sets

Fi
j|x̃1

, Fi
j|x̃2

, . . . , Fi
j|x̃n

e Gi
j|ỹ, are the linguistic values (terms) used to partition the unierse of

discourse of the linguistic variables of antecedent and consequent in the inference system,
that is, Fi

j|x̃t
∈ {Fi

1|x̃t
, Fi

2|x̃t
, . . . , Fi

px̃t
|x̃t
}t=1,2,...,n and Gi

j|ỹ ∈ {Gi
1|ỹ, Gi

2|ỹ, . . . , Gi
pỹ|ỹ

}, where px̃t

and pỹ are the partitions number of the universes of discourses associated to the linguistic
variables x̃t and ỹ, respectively. The variable x̃t belongs to the fuzzy set Fi

j|x̃t
with a value µi

Fj|x̃t

defined by the membership function µi
x̃t

: R → [0, 1], where µi
Fj|x̃t

∈ {µi
F1|x̃t

, µi
F2|x̃t

, . . . , µi
Fpx̃t

|x̃t
}.

The variable ỹ belongs to the fuzzy set Gi
j|ỹ

with a value µi
Gj|ỹ

defined by the membership

function µi
ỹ : R → [0, 1] where µi

Gj|ỹ
∈ {µi

G1|ỹ
, µi

G2|ỹ
, . . . , µi

Gpỹ|ỹ
}. Each rule is interpreted by a

fuzzy implication
R

i : µi
Fj|x̃1

⋆ µi
Fj|x̃2

⋆ . . . ⋆ µi
Fj|x̃n

→ µi
Gj|ỹ

(2)

where ⋆ is a T-norm, µi
Fj|x̃1

⋆ µi
Fj|x̃2

⋆ . . . ⋆ µi
Fj|x̃n

is the fuzzy relation between the linguistic inputs,

on the universes of discourses Ux̃1 × Ux̃2 × . . . × Ux̃n
, and µi

Gj|ỹ
is the linguistic output defined

on the universe of discourseY . The Mamdani inference systems can represent MISO (Multiple
Input and Single Output) systems directly, and the set of implications correspond to a unique
fuzzy relation in Ux̃1 × Ux̃2 × . . . × Ux̃n

×Y of the form

RMISO :
l
∨

i=1

[µi
Fj|x̃1

⋆ µi
Fj|x̃2

⋆ . . . ⋆ µi
Fj|x̃n

⋆ µi
Gj|ỹ

] (3)

where
∨

is a S-norm.

The fuzzy output m |[m=1,2,...,r] is given by

G(ỹm) = RMISO ◦ (µi
Fj|x̃∗1

⋆ µi
Fj|x̃∗2

⋆ . . . ⋆ µi
Fj|x̃∗n

) (4)

where ◦ is a inference based composition operator, which can be of the type max-min or
max-product, and x̃∗t is any point in Uxt . The Mamdani inference systems can represent MIMO
(Multiple Input and Multple Output) systems of r outputs by a set of r MISO sub-rules coupled
base R

j
MISO |[j=1,2,...,l], that is,

G(ỹ) = RMI MO ◦ (µi
Fj|x̃∗1

⋆ µi
Fj|x̃∗2

⋆ . . . ⋆ µi
Fj|x̃∗n

) (5)

with G(ỹ) = [G(ỹ1), . . . , G(ỹr)]
T and

RMI MO :
r
⋃

m=1

{
l
∨

i=1

[µi
Fj|x̃1

⋆ µi
Fj|x̃2

⋆ . . . ⋆ µi
Fj|x̃n

⋆ µi
Gj|ỹm

]} (6)

where the operator
⋃

represents the set of all fuzzy relations Rj
MISO associated to each output

ỹm.
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2.2 Takagi-Sugeno fuzzy inference systems

The Takagi-Sugeno fuzzy inference system uses in the consequent proposition, a functional
expression of the linguistic variables defined in the antecedent proposition (Takagi & Sugeno,
1985). Without loss of generality, the i |[i=1,2,...,l]-th rule of this inference system, where l is the
maximum number of rules, is given by:

Ri : IF x̃1 is Fi
j|x̃1

AND . . . AND x̃n is Fi
j|x̃n

THEN ỹi = fi(x̃) (7)

The vector x̃ ∈ ℜn contains the linguistic variables of the antecedent proposition. Each
linguistic variable has its own universe of discourse Ux̃1 , . . . ,Ux̃n

partitioned by fuzzy sets
which represent the linguistic terms. The variable x̃t |t=1,2,...,n belongs to the fuzzy set
Fi

j|x̃t
with value µi

Fj|x̃t
defined by a membership function µi

x̃t
: R → [0, 1], with µi

Fj|x̃t
∈

{µi
F1|x̃t

, µi
F2|x̃t

, . . . , µi
Fpx̃t

|x̃t
}, where px̃t

is the partitions number of the universe of discourse

associated to the linguistic variable x̃t. The activation degree hi of the rule i is given by:

hi(x̃) = µi
Fj|x̃∗1

⋆ µi
Fj|x̃∗2

⋆ . . . ⋆ µi
Fj|x̃∗n

(8)

where x̃∗t is any point in Ux̃t
. The normalized activation degree of the rule i is defined as:

γi(x̃) =
hi(x̃)

∑
l
r=1 hr(x̃)

(9)

This normalization implies that

l

∑
i=1

γi(x̃) = 1 (10)

The response of the Takagi-Sugeno fuzzy inference system is a weighted sum of the functional
expressions defined on the consequent proposition of each rule, that is, a convex combination
of local functions fi:

y =
l

∑
i=1

γi(x̃) fi(x̃) (11)

Such inference system can be seen as linear parameter varying system. In this sense, the
Takagi-Sugeno fuzzy inference system can be considered as a mapping from antecedent space
(input) to the convex region (polytope) defined on the local functional expressions in the
consequent space. This property allows the analysis of the Takagi-Sugeno fuzzy inference
system as a robust system which can be applied in modeling and controllers design for
complex plants.

3. Fuzzy computational modeling based control

Many human skills are learned from examples. Therefore, it is natural establish this "didactic
principle" in a computer program, so that it can learn how to provide the desired output as
function of a given input. The Computational intelligence techniques, basically derived from

5Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design
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the theory of Fuzzy Systems, associated to computer programs, are able to process numerical
data and/or linguistic information, whose parameters can be adjusted from examples. The
examples represent what these systems should respond when subjected to a particular input.
These techniques use a numeric representation of knowledge, demonstrate adaptability and
fault tolerance in contrast to the classical theory of artificial intelligence that uses symbolic
representation of knowledge. The human knowledge, in turn, can be classified into two
categories:

1. Objective knowledge: This kind of knowledge is used in the engineering problems
formulation and is defined by mathematical equations (mathematical model of a
submarine, aircraft or robot; statistics analysis of the communication channel behaviour;
Newton’s laws for motion analysis and Kirchhoff’s Laws for circuit analysis).

2. Subjective knowledge: This kind of knowledge represents the linguistic informations defined
through set of rules, knowledge from expert and design specifications, which are usually
impossible to be described quantitatively.

Fuzzy systems are able to coordinate both types of knowledge to solve real problems. The
necessity of expert and engineers to deal with increasingly complex control systems problems,
has enabled via computational intelligence techniques, the identification and control of real
plants with difficult mathematical modeling. The computational intelligence techniques,
once related to classical and modern control techniques, allow the use of constraints in
its formulation and satisfaction of robustness and stability requirements in an efficient and
practical form. The implementation of intelligent systems, especially from 70’s, has been
characterized by the growing need to improve the efficiency of industrial control systems in
the following aspects: increasing product quality, reduced losses, and other factors related to
the improvement of the disabilities of the identification and control methods. The intelligent
identification and control methodologies are based on techniques motivated by biological
systems, human intelligence, and have been introduced exploring alternative representations
schemes from the natural language, rules, semantic networks or qualitative models.

The research on fuzzy inference systems has been developed in two main directions. The first
direction is the linguistic or qualitative information, in which the fuzzy inference system is
developed from a collection of rules (propositions). The second direction is the quantitative
information and is related to the theory of classical and modern systems. The combination
of the qualitative and quantitative informations, which is the main motivation for the use
of intelligent systems, has resulted in several contributions on stability and robustness of
advanced control systems. In (Ding, 2011) is addressed the output feedback predictive control
for a fuzzy system with bounded noise. The controller optimizes an infinite-horizon objective
function respecting the input and state constraints. The control law is parameterized as a
dynamic output feedback that is dependent on the membership functions, and the closed-loop
stability is specified by the notion of quadratic boundedness. In (Wang et al., 2011) is
considered the problem of fuzzy control design for a class of nonlinear distributed parameter
systems that is described by first-order hyperbolic partial differential equations (PDEs), where
the control actuators are continuously distributed in space. The goal of this methodology is to
develop a fuzzy state-feedback control design methodology for these systems by employing
a combination of PDE theory and concepts from Takagi-Sugeno fuzzy control. First, the
Takagi-Sugeno fuzzy hyperbolic PDE model is proposed to accurately represent the nonlinear

6 Frontiers in Advanced Control Systems
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first-order hyperbolic PDE system. Subsequently, based on the Takagi-Sugeno fuzzy-PDE
model, a Lyapunov technique is used to analyze the closed-loop exponential stability with a
given decay rate. Then, a fuzzy state-feedback control design procedure is developed in terms
of a set of spatial differential linear matrix inequalities (SDLMIs) from the resulting stability
conditions. The developed design methodology is successfully applied to the control of a
nonisothermal plug-flow reactor. In (Sadeghian & Fatehi, 2011) is used a nonlinear system
identification method to predict and detect process fault of a cement rotary kiln from the
White Saveh Cement Company. After selecting proper inputs and output, an inputŰoutput
locally linear neuro-fuzzy (LLNF) model is identified for the plant in various operation points
in the kiln. In (Li & Lee, 2011) an observer-based adaptive controller is developed from a
hierarchical fuzzy-neural network (HFNN) is employed to solve the controller time-delay
problem for a class of multi-input multi-output(MIMO) non-affine nonlinear systems under
the constraint that only system outputs are available for measurement. By using the implicit
function theorem and Taylor series expansion, the observer-based control law and the weight
update law of the HFNN adaptive controller are derived. According to the design of the
HFNN hierarchical fuzzy-neural network, the observer-based adaptive controller can alleviate
the online computation burden and can guarantee that all signals involved are bounded and
that the outputs of the closed-loop system track asymptotically the desired output trajectories.

Fuzzy inference systems are widely found in the following areas: Control Applications
- aircraft (Rockwell Corp.), cement industry and motor/valve control (Asea Brown
Boveri Ltd.), water treatment and robots control (Fuji Electric), subway system (Hitachi),
board control (Nissan), washing machines (Matsushita, Hitachi), air conditioning system
(Mitsubishi); Medical Technology - cancer diagnosis (Kawasaki medical School); Modeling
and Optimization - prediction system for earthquakes recognition (Institute of Seismology
Bureau of Metrology, Japan); Signal Processing For Adjustment and Interpretation -
vibration compensation in video camera (Matsushita), video image stabilization (Matsushita
/ Panasonic), object and voice recognition (CSK, Hitachi Hosa Univ., Ricoh), adjustment of
images on TV (Sony). Due to the development, the many practical possibilities and the
commercial success of their applications, the theory of fuzzy systems have a wide acceptance
in academic community as well as industrial applications for modeling and advanced control
systems design.

4. Takagi-Sugeno fuzzy black box modeling

This section aims to illustrate the problem of black box modeling, well known as systems
identification, addressing the use of Takagi-Sugeno fuzzy inference systems. The nonlinear
input-output representation is often used for building TS fuzzy models from data, where the
regression vector is represented by a finite number of past inputs and outputs of the system.
In this work, the nonlinear autoregressive with exogenous input (NARX) structure model is
used. This model is applied in most nonlinear identification methods such as neural networks,
radial basis functions, cerebellar model articulation controller (CMAC), and also fuzzy logic.
The NARX model establishes a relation between the collection of past scalar input-output data
and the predicted output

yk+1 = F[yk, . . . , yk−ny+1, uk, . . . , . . . , uk−nu+1] (12)

7Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design
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where k denotes discrete time samples, ny and nu are integers related to the system’s order. In
terms of rules, the model is given by

Ri : IF yk is Fi
1 AND · · · AND yk−ny+1 is Fi

ny
AND uk is Gi

1 AND · · · AND uk−nu+1 is Gi
nu

THEN ŷi
k+1 =

ny

∑
j=1

ai,jyk−j+1 +
nu

∑
j=1

bi,juk−j+1 + ci (13)

where ai,j, bi,j and ci are the consequent parameters to be determined. The inference formula
of the TS fuzzy model is a straightforward extension of (11) and is given by

yk+1 =

l

∑
i=1

hi(x)ŷ
i
k+1

l

∑
i=1

hi(x)

(14)

or

yk+1 =
l

∑
i=1

γi(x)ŷ
i
k+1 (15)

with

x = [yk, . . . , yk−ny+1, uk, . . . , uk−nu+1] (16)

and hi(x) is given as (8). This NARX model represents multiple input and single output
(MISO) systems directly and multiple input and multiple output (MIMO) systems in a
decomposed form as a set of coupled MISO models.

4.1 Antecedent parameters estimation problem

The experimental data based antecedent parameters estimation can be done by fuzzy clustring
algorithms. A cluster is a group of similar objects. The term "similarity" should be understood
as mathematical similarity measured in some well-define sense. In metric spaces, similarity
is often defined by means of a distance norm. Distance can be measured from data vector to
some cluster prototypical (center). Data can reveal clusters of different geometric shapes, sizes
and densities. The clusters also can be characterized as linear and nonlinear subspaces of the
data space.

The objective of clustering is partitioning the data set Z into c clusters. Assume that c is
known, based on priori knowledge. The fuzzy partition of Z can be defined as a family of
subsets {Ai|1 ≤ i ≤ c} ⊂ P(Z), with the following properties:

c
⋃

i=1

Ai = Z (17)

Ai ∩ Aj = 0 (18)

8 Frontiers in Advanced Control Systems
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0 ⊂ Ai ⊂ Zi (19)

Equation (17) means that the subsets Ai collectively contain all the data in Z. The subsets
must be disjoint, as stated by (18), and none off them is empty nor contains all the data in Z,
as stated by (19). In terms of membership functions, µAi

is the membership function of Ai. To
simplifly the notation, in this paper is used µik instead of µi (zk). The c × N matrix U = [µik]
represents a fuzzy partitioning space if and only if:

M f c =

{

U ∈ ℜc×N |µik ∈ [0, 1] , ∀i, k;
c

∑
i=1

µik = 1, ∀k; 0 <

N

∑
k=1

µik < N, ∀i

}

(20)

The i-th row of the fuzzy partition matrix U contains values of the i-th membership function
of the fuzzy subset Ai of Z. The clustering algorithm optimizes an initial set of centroids by
minimizing a cost function J in an iterative process. This function is usually formulated as:

J (Z; U, V, A) =
c

∑
i=1

N

∑
k=1

µm
ikD2

ikAi
(21)

where, Z = {z1, z2, · · · , zN} is a finite data set. U = [µik] ∈ M f c is a fuzzy partition of Z.
V = {v1, v2, · · · , vc} , vi ∈ ℜn, is a vector of cluster prototypes (centers). A denote a c-tuple of
the norm-induting matrices: A = (A1,A2, · · · ,Ac). D2

ikAi
is a square inner-product distance

norm. The m ∈ [1, ∞) is a weighting exponent which determines the fuzziness of the clusters.
The clustering algorithms differ in the choice of the norm distance. The norm metric influences
the clustering criterion by changing the measure of dissimilarity. The Euclidean norm induces
hiperspherical clusters. It’s characterizes the FCM algorithm, where the norm-inducing matrix
AiFCM

is equal to identity matrix (AiFCM
= I), which strictly imposes a circular shape to all

clusters. The Euclidean Norm is given by:

D2
ikFCM

= (zk − vi)
T AiFCM

(zk − vi) (22)

An adaptative distance norm in order to detect clusters of different geometrical shapes in a
data set characterizes the GK algorithm:

D2
ikGK

= (zk − vi)
T
AiGK

(zk − vi) (23)

In this algorithm, each cluster has its own norm-inducing matrix AiGK
, where each cluster

adapts the distance norm to the local topological structure of the data set. AiGK
is given by:

AiGK
= [ρidet (Fi)]

1/n
F−1

i , (24)

where ρi is cluster volume, usually fixed in 1. The n is data dimension. The Fi is fuzzy
covariance matrix of the i-th cluster defined by:

Fi =

N

∑
k=1

(µik)
m (zk − vi) (zk − vi)

T

N

∑
k=1

(µik)
m

(25)

9Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design
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The eigenstructure of the cluster covariance matrix provides information about the shape and
orientation cluster. The ratio of the hyperellipsoid axes is given by the ratio of the square
roots of the eigenvalues of Fi. The directions of the axes are given by the eigenvectores of
Fi. The eigenvector corresponding to the smallest eigenvalue determines the normal to the
hyperplane, and it can be used to compute optimal local linear models from the covariance
matrix. The fuzzy maximum likelihood estimates (FLME) algorithm employs a distance norm
based on maximum lekelihood estimates:

DikFLME
=

√

GiFLME

Pi
exp

[

1
2
(zk − vi)

T
F−1

iFLME
(zk − vi)

]

(26)

Note that, contrary to the GK algorithm, this distance norm involves an exponential term and
decreases faster than the inner-product norm. The FiFLME

denotes the fuzzy covariance matrix
of the i-th cluster, given by (25). When m is equal to 1, it has a strict algorithm FLME. If m

is greater than 1, it has a extended algorithm FLME, or Gath-Geva (GG) algorithm. Gath
and Geva reported that the FLME algorithm is able to detect clusters of varying shapes,
sizes and densities. This is because the cluster covariance matrix is used in conjuncion with
an "exponential" distance, and the clusters are not constrained in volume. Pi is the prior
probability of selecting cluster i, given by:

Pi =
1
N

N

∑
k=1

(µik)
m (27)

4.2 Consequent parameters estimation problem

The inference formula of the TS fuzzy model in (15) can be expressed as

yk+1 = γ1(xk)[a1,1yk + . . . + a1,nyyk−ny+1 + b1,1uk + . . . + b1,nuuk−nu+1 + c1] +

γ2(xk)[a2,1yk + . . . + a2,nyyk−ny+1 + b2,1uk + . . . + b2,nuuk−nu+1 + c2] +

...

γl(xk)[al,1yk + . . . + al,nyyk−ny+1 + bl,1uk + . . . + bl,nuuk−nu+1 + cl ] (28)

which is linear in the consequent parameters: a, b and c. For a set of N input-output data
pairs {(xk, yk)|i = 1, 2, . . . , N} available, the following vetorial form is obtained

Y = [ψ1X ,ψ2X , . . . ,ψlX ]θ+ Ξ (29)

where ψi = diag(γi(xk)) ∈ ℜN×N , X = [yk, . . . , yk−ny+1,uk, . . . ,uk−nu+1,1] ∈

ℜN×(ny+nu+1), Y ∈ ℜN×1, Ξ ∈ ℜN×1 and θ ∈ ℜl(ny+nu+1)×1 are the normalized membership
degree matrix of (9), the data matrix, the output vector, the approximation error vector and
the estimated parameters vector, respectively. If the unknown parameters associated variables
are exactly known quantities, then the least squares method can be used efficiently. However,
in practice, and in the present context, the elements of X are no exactly known quantities so
that its value can be expressed as

yk = χT
k θ+ ηk (30)

10 Frontiers in Advanced Control Systems
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where, at the k-th sampling instant, χT
k = [γ1

k(xk + ξk), . . . , γl
k(xk + ξk)] is the vector of the

data with error in variables, xk = [yk−1, . . . , yk−ny
, uk−1, . . . , uk−nu

, 1]T is the vector of the
data with exactly known quantities, e.g., free noise input-output data, ξk is a vector of noise
associated with the observation of xk, and ηk is a disturbance noise.

The normal equations are formulated as

[
k

∑
j=1

χjχ
T
j ]θ̂k =

k

∑
j=1

χjyj (31)

and multiplying by
1
k

gives

{
1
k

k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)][γ
1
j (xj + ξj), . . . , γl

j(xj + ξj)]
T}θ̂k =

1
k

k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)]yj (32)

Noting that yj = χT
j θ+ ηj,

{
1
k

k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)][γ
1
j (xj + ξj), . . . , γl

j(xj + ξj)]
T}θ̂k =

1
k

k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)][γ
1
j (xj + ξj), . . . , γl

j(xj + ξj)]
Tθ +

1
k

k

∑
j=1

[γ1
j (xj+

ξj), . . . , γl
j(xj + ξj)]ηj (33)

and

θ̃k = {
1
k

k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)][γ
1
j (xj + ξj), . . . , γl

j(xj + ξj)]
T}−1 1

k

k

∑
j=1

[γ1
j (xj+

ξj), . . . , γl
j(xj + ξj)]ηj(34)

where θ̃k = θ̂k − θ is the parameter error. Taking the probability in the limit as k → ∞,

p.lim θ̃k = p.lim {
1
k
C−1

k

1
k
bk} (35)

with

Ck =
k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)][γ
1
j (xj + ξj), . . . , γl

j(xj + ξj)]
T

bk =
k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)]ηj

11Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design
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Applying Slutsky’s theorem and assuming that the elements of
1
k
Ck and 1

kbk converge in

probability, we have

p.lim θ̃k = p.lim
1
k
C−1

k p.lim
1
k
bk (36)

Thus,

p.lim
1
k
Ck =p.lim

1
k

k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)][γ
1
j (xj + ξj), . . . , γl

j(xj + ξj)]
T

p.lim
1
k
Ck =p.lim

1
k

k

∑
j=1

(γ1
j )

2(xj + ξj)(xj + ξj)
T + . . . + p.lim

1
k

k

∑
j=1

(γl
j)

2(xj + ξj)(xj + ξj)
T

Assuming xj and ξj statistically independent,

p.lim
1
k
Ck =p.lim

1
k

k

∑
j=1

(γ1
j )

2[xjx
T
j + ξjξ

T
j ] + . . . + p.lim

1
k

k

∑
j=1

(γl
j)

2[xjx
T
j + ξjξ

T
j ]

p.lim
1
k
Ck =p.lim

1
k

k

∑
j=1

xjx
T
j [(γ

1
j )

2 + . . . + (γl
j)

2] + p.lim
1
k

k

∑
j=1

ξjξ
T
j [(γ

1
j )

2 + . . . + (γl
j)

2](37)

with
l

∑
i=1

γi
j = 1. Hence, the asymptotic analysis of the TS fuzzy model consequent parameters

estimation is based in a weighted sum of the fuzzy covariance matrices of x and ξ. Similarly,

p.lim
1
k
bk = p.lim

1
k

k

∑
j=1

[γ1
j (xj + ξj), . . . , γl

j(xj + ξj)]ηj

p.lim
1
k
bk = p.lim

1
k

k

∑
j=1

[γ1
j ξjηj, . . . , γl

jξjηj] (38)

Substituting from (37) and (38) in (36), results

p.lim θ̃k = {p.lim
1
k

k

∑
j=1

xjx
T
j [(γ

1
j )

2 + . . . + (γl
j)

2] + p.lim
1
k

k

∑
j=1

ξjξ
T
j [(γ

1
j )

2 + . . .

+(γl
j)

2]}−1p.lim
1
k

k

∑
j=1

[γ1
j ξjηj, . . . , γl

jξjηj] (39)

with
l

∑
i=1

γi
j = 1. For the case of only one rule (l = 1), the analysis is simplified to the linear one,

with γi
j |

i=1
j=1,...,k= 1. Thus, this analysis, which is a contribution of this article, is an extension of

the standard linear one, from which can result several studies for fuzzy filtering and modeling
in a noisy environment, fuzzy signal enhancement in communication channel, and so forth.
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Provided that the input uk continues to excite the process and, at the same time, the coefficients
in the submodels from the consequent are not all zero, then the output yk will exist for all k

observation intervals. As a result, the fuzzy covariance matrix
k

∑
j=1

xjx
T
j [(γ

1
j )

2 + . . . + (γl
j)

2]

will also be non-singular and its inverse will exist. Thus, the only way in which the asymptotic
error can be zero is for ξjηj identically zero. But, in general, ξj and ηj are correlated, the
asymptotic error will not be zero and the least squares estimates will be asymptotically biased
to an extent determined by the relative ratio of noise to signal variances. In other words, least
squares method is not appropriate to estimate the TS fuzzy model consequent parameters in
a noisy environment because the estimates will be inconsistent and the bias error will remain
no matter how much data can be used in the estimation.

As a consequence of this analysis, the definition of the vector [β1
j zj, . . . , βl

jzj] as fuzzy

instrumental variable vector or simply the fuzzy instrumental variable (FIV) is proposed. Clearly,
with the use of the FIV vector in the form suggested, becomes possible to eliminate the
asymptotic bias while preserving the existence of a solution. However, the statistical
efficiency of the solution is dependent on the degree of correlation between [β1

j zj, . . . , βl
jzj]

and [γ1
j xj, . . . , γl

jxj]. In particular, the lowest variance estimates obtained from this approach

occur only when zj = xj and βi
j |

i=1,...,l
j=1,...,k= γi

j |
i=1,...,l
j=1,...,k , i.e., when the zj are equal to the dynamic

system “free noise” variables, which are unavailable in practice. According to situation,
several fuzzy instrumental variables can be chosen. An effective choice of FIV would be the
one based on the delayed input sequence

zj = [uk−τ, . . . , uk−τ−n, uk, . . . , uk−n]
T

where τ is chosen so that the elements of the fuzzy covariance matrix Czx are maximized. In
this case, the input signal is considered persistently exciting, e.g., it continuously perturbs or
excites the system. Another FIV would be the one based on the delayed input-output sequence

zj = [yk−1−dl, · · · , yk−ny−dl , uk−1−dl, · · · , uk−nu−dl]
T

where dl is the applied delay. Other FIV could be the one based in the input-output from
a "fuzzy auxiliar model" with the same structure of the one used to identify the nonlinear
dynamic system. Thus,

zj = [ŷk−1, · · · , ŷk−ny
, uk−1, · · · , uk−nu

]T

where ŷk is the output of the fuzzy auxiliar model, and uk is the input of the dynamic system.
The inference formula of this fuzzy auxiliar model is given by

ŷk+1 = β1(zk)[α1,1ŷk + . . . + α1,nyŷk−ny+1 + ρ1,1uk + . . . + ρ1,nuuk−nu+1 + δ1] +

β2(zk)[α2,1ŷk + . . . + α2,nyŷk−ny+1 + ρ2,1uk + . . . + ρ2,nuuk−nu+1 + δ2] +

...

βl(zk)[αl,1ŷk + . . . + αl,nyŷk−ny+1 + ρl,1uk + . . . + ρl,nuuk−nu+1 + δl ] (40)

13Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design
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which is also linear in the consequent parameters: α, ρ and δ. The closer these parameters are
to the actual, but unknown, system parameters (a, b, c), more correlated zk and xk will be,
and the obtained FIV estimates closer to the optimum.

4.2.1 Batch processing scheme

The normal equations are formulated as

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T θ̂k −

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj = 0 (41)

or, with ζ j = [β1
jzj, . . . , βl

jzj],

[
k

∑
j=1

ζ jχ
T
j ]θ̂k −

k

∑
j=1

ζ jyj = 0 (42)

so that the FIV estimate is obtained as

θ̂k = {
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj (43)

and, in vectorial form, the interest problem may be placed as

θ̂ = (ΓTΣ)−1ΓTY (44)

where ΓT ∈ ℜl(ny+nu+1)×N is the fuzzy extended instrumental variable matrix with rows
given by ζ j, Σ ∈ ℜN×l(ny+nu+1) is the fuzzy extended data matrix with rows given by χj and

Y ∈ ℜN×1 is the output vector and θ̂ ∈ ℜl(ny+nu+1)×1 is the parameters vector. The models
can be obtained by the following two approaches:

• Global approach : In this approach all linear consequent parameters are estimated
simultaneously, minimizing the criterion:

θ̂ = arg min ‖ ΓTΣθ − ΓTY ‖2
2 (45)

• Local approach : In this approach the consequent parameters are estimated for each rule i,
and hence independently of each other, minimizing a set of weighted local criteria (i =
1, 2, . . . , l):

θ̂i = arg min ‖ ZTΨiXθi −ZTΨiY ‖2
2 (46)

where ZT has rows given by zj and Ψi is the normalized membership degree diagonal
matrix according to zj.

Example 1. So that the readers can understand the definitions of global and local fuzzy
modeling estimations, consider the following second-order polynomial given by

y = 2u2
k − 4uk + 3 (47)

14 Frontiers in Advanced Control Systems
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where uk is the input and yk is the output, respectively. The TS fuzzy model used to
approximate this polynomial has the following structure with 2 rules:

Ri : IF uk is Fi THEN ŷk = a0 + a1uk

where i = 1, 2. It was choosen the points uk = −0.5 and uk = 0.5 to analysis the consequent
models obtained by global and local estimation, and it was defined triangular membership
functions for −0.5 ≤ uk ≤ 0.5 in the antecedent. The following rules were obtained:

Local estimation:

R1 : IF uk is − 0.5 THEN ŷ = 3.1000 − 4.4012uk

R2 : IF uk is + 0.5 THEN ŷ = 3.1000 − 3.5988uk

Global estimation:

R1 : IF uk is − 0.5 THEN ŷ = 4.6051 − 1.7503uk

R2 : IF uk is + 0.5 THEN ŷ = 1.3464 + 0.3807uk

The application of local and global estimation to the TS fuzzy model results in the consequent
models given in Fig. 1. The consequent models obtained by local estimation describe properly
the local behavior of the function and the fuzzy model can easily be interpreted in terms of the
local behavior (the rule consequents). The consequent models obtained by global estimation
are not relevant for the local behavior of the nonlinear function. The fit of the function is

−1 −0.5 0 0.5 1
0

2

4

6

8

10

u
k

y
k

−1 −0.5 0 0.5 1
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u
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k
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k

y
k
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y
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k

y
k
 = 3.1 − 3.5988u

k

Fig. 1. The nonlinear function and the result of global (top) and local (bottom) estimation of
the consequent parameters of the TS fuzzy models.

shown in Fig. 2. The global estimation gives a good fit and a minimal prediction error, but
it bias the estimates of the consequent as parameters of local models. In the local estimation
a larger prediction error is obtained than with global estimation, but it gives locally relevant
parameters of the consequent. This is the tradeoff between local and global estimation. All
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the results of the Example 1 can be extended for any nonlinear estimation problem and they
would be considered for computational and experimental results analysis in this paper.

−1 −0.5 0 0.5 1
0

2

4

6

8

10
nonlinear function

global estimation

−1 −0.5 0 0.5 1
0

2

4

6

8

10
nonlinear function

local estimation

Fig. 2. The nonlinear function approximation result by global (top) and local (bottom)
estimation of the consequent parameters of the TS fuzzy models.

4.2.2 Recursive processing scheme

An on line FIV scheme can be obtained by utilizing the recursive solution to the FIV equations
and then updating the fuzzy auxiliar model continuously on the basis of these recursive
consequent parameters estimates. The FIV estimate in (43) can take the form

θ̂k = Pkbk (48)

where

Pk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1

and

bk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj

which can be expressed as

P−1
k = P−1

k−1 + [β1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T (49)

and
bk = bk−1 + [β1

kzk, . . . , βl
kzk]yk (50)
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respectively. Pre-multiplying (49) by Pk and post-multiplying by Pk−1 gives

Pk−1 = Pk +Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1 (51)

then post-multiplying (51) by the FIV vector [β1
j zj, . . . , βl

jzj], results

Pk−1[β
1
kzk, . . . , βl

jzk] = Pk[β
1
kzk, . . . , βl

jzk] +Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk+

ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk](52)

Pk−1[β
1
kzk, . . . , βl

jzk] = Pk[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1

[β1
kzk, . . . , βl

jzk]}(53)

Then, post-multiplying by

{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}
−1[γ1

j (xk + ξk), . . . ,

γl
k(xk + ξk)]

TPk−1 (54)

we obtain

Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}
−1

[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1 =

Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1 (55)

Substituting (51) in (55), we have

Pk = Pk−1 −Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1

[β1
kzk, . . . , βl

jzk]}
−1[γ1

j (xk + ξk), . . . , γl
k(xk + ξk)]

TPk−1 (56)

Substituting (56) and (50) in (48), the recursive consequent parameters estimates will be:

θ̂k = {Pk−1 −Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1

[β1
kzk, . . . , βl

jzk]}
−1[γ1

j (xk + ξk), . . . , γl
k(xk + ξk)]

TPk−1}{bk−1 + [β1
kzk, . . . , βl

kzk]yk} (57)

so that finally,

θ̂k = θ̂k−1 −Kk{[γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T θ̂k−1 − yk} (58)

where

Kk = Pk−1[β
1
kzk, . . . , βl

kzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}
−1(59)

Equations (56)-(59) compose the recursive algorithm to be implemented so the consequent
parameters of a Takagi-Sugeno fuzzy model can be estimated from experimental data.
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5. Results

In the sequel, some results will be presented to demonstrate the effectiveness of black box
fuzzy modeling for advanced control systems design.

5.1 Computational results

5.1.1 Stochastic nonlinear SISO system identification

The plant to be identified consists on a second order highly nonlinear discrete-time system

yk+1 =
ykyk−1(yk + 2.5)

1 + y2
k + y2

k−1
+ uk + ek (60)

which is a benchmark problem in neural and fuzzy modeling, where yk is the output and
uk = sin( 2πk

25 ) is the applied input. In this case ek is a white noise with zero mean and variance
σ2. The TS model has two inputs yk and yk−1 and a single output yk+1, and the antecedent
part of the fuzzy model (the fuzzy sets) is designed based on the evolving clustering method
(ECM). The model is composed of rules of the form:

Ri : IF yk is Fi
1 AND yk−1 is Fi

2 THEN

ŷi
k+1 = ai,1yk + ai,2yk−1 + bi,1uk + ci (61)

where Fi
1,2 are gaussian fuzzy sets.

Experimental data sets of N points each are created from (60), with σ2 ∈ [0, 0.20]. This means
that the noise applied take values between 0 and ±30% of the output nominal value, which
is an acceptable practical percentage of noise. These data sets are presented to the proposed
algorithm, for obtaining an IV fuzzy model, and to the LS based algorithm, for obtaining a LS
fuzzy model. The models are obtained by the global and local approaches as in (45) and (46),
repectively. The noise influence is analized according to the difference between the outputs
of the fuzzy models, obtained from the noisy experimental data, and the output of the plant
without noise. The antecedent parameters and the structure of the fuzzy models are the same
in the experiments, while the consequent parameters are obtained by the proposed method
and by the LS method. Thus, the obtained results are due to these algorithms and accuracy
conclusions will be derived about the proposed algorithm performance in the presence of
noise. Two criteria, widely used in experimental data analysis, are applied to avaliate the
obtained fuzzy models fit: Variance Accounted For (VAF)

VAF(%) = 100 ×

[

1 −
var(Y − Ŷ)

var(Y)

]

(62)

where Y is the nominal plant output, Ŷ is the fuzzy model output and var means signal
variance, and Mean Square Error (MSE)

MSE =
1
N

N

∑
k=1

(yk − ŷk)
2 (63)
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where yk is the nominal plant output, ŷk is the fuzzy model output and N is the number of
points. Once obtained these values, a comparative analysis will be established between the
proposed algorithm, based on IV, and the algorithm based on LS according to the approaches
presented above. In the performance of the TS models obtained off-line according to (45)
and (46), the number of points is 500, the proposed algorithm used λ equal to 0.99; the
number of rules is 4, the structure is the presented in (61) and the antecedent parameters
are obtained by the ECM method for both algorithms. The proposed algorithm performs
better than the LS algorithm for the two approaches as it is more robust to noise. This
is due to the chosen instrumental variable matrix, with dl = 1, to satisfy the convergence
conditions as well as possible. In the global approach, for low noise variance, both algorithms
presented similar performance with VAF and MSE of 99.50% and 0.0071 for the proposed
algorithm and of 99.56% and 0.0027 for the LS based algorithm, respectively. However, when
the noise variance increases, the chosen instrumental variable matrix satisfies the convergence
conditions, and as a consequence the proposed algorithm becomes more robust to the noise
with VAF and MSE of 98.81% and 0.0375. On the other hand the LS based algorithm presented
VAF and MSE of 82.61% and 0.4847, respectively, that represents a poor performance. Similar
analysis can be applied to the local approach: increasing the noise variance, both algorithms
present good performances where the VAF and MSE values increase too. This is due to the
polytope property, where the obtained models can represent local approximations giving
more flexibility curves fitting. The proposed algorithm presented VAF and MSE values of
93.70% and 0.1701 for the worst case and of 96.3% and 0.0962 for the better case. The LS based
algorithm presented VAF and MSE values of 92.4% and 0.2042 for the worst case and of 95.5%
and 0.1157 for the better case. The worst case of noisy data set was still used by the algorithm
proposed in (Wang & Langari, 1995), where the VAF and MSE values were of 92.6452% and
0.1913, and by the algorithm proposed in (Pedrycz, 2006) where the VAF and MSE values were
of 92.5216% and 0.1910, respectively. These results, considering the local approach, show that
they have an intermediate performance between the proposed method in this paper and the
LS based algorithm. For the global approach, the VAF and MSE values are 96.5% and 0.09
for the proposed method and of 81.4% and 0.52 for the LS based algorithm, respectively. For
the local approach, the VAF and MSE values are 96.0% and 0.109 for the proposed method
and of 95.5% and 0.1187 for the LS based algorithm, respectively. In sense to be clear to the
reader, the results of local and global estimation to the TS fuzzy model from the stochastic
SISO nonlinear system identification, it has the following conclusions: When interpreting TS
fuzzy models obtained from data, one has to be aware of the tradeoffs between local and
global estimation. The TS fuzzy models estimated by local approach describe properly the
local behavior of the nonlinear system, but not give a good fit; for the global approach, the
opposite holds - a perfect fit is obtained, but the TS fuzzy models are not relevant for the local
behavior of the nonlinear system. This is the tradeoffs between local and global estimation.
To illustrate the robustness of the FIV algorithm, it was performed a numerical experiment
based on 300 different realizations of noise. The numerical experiment followed a particular
computational pattern:

• Define a domain with 300 different sequences of noise;

• Generate a realization of noise randomly from the domain, and perform the identification
procedure for the IV and LS based algorithms;
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• Aggregate the results of IV and LS algorithms according to VAF and MSE criteria into the
final result from histograms, indicating the number of its occurences (frequency) during
the numerical experiment.
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Fig. 3. Robustness analysis: Histogram of VAF for the IV and LS based algorithms.

The IV and LS based algorithms were submitted to these different conditions of noise at
same time and the efficiency was observed through VAF and MSE criteria according to the
histograms shown on Fig. 3 and Fig. 4, respectively. Clearly, the proposed method presented
the best results compared with LS based algorithm. For the global approach, the results of
VAF and MSE values are of 98.60 ± 1.25% and 0.037 ± 0.02 for the proposed method and of
84.70 ± 0.65% and 0.38 ± 0.15 for the LS based algorithm, respectively. For the local approach,
the results of VAF and MSE values are of 96.70 ± 0.55% and 0.07 ± 0.015 for the proposed
method and of 95.30 ± 0.15% and 0.1150 ± 0.005 for the LS based algorithm, respectively.
In general, from the results shown in Tab. 1, it can conclude that the proposed method
has favorable results compared with existing techniques and good robustness properties for
identification of stochastic nonlinear systems.

5.2 Experimental results

In this section, the experimental results on adaptive model based control of a multivariable
(two inputs and one output) nonlinear pH process, commonly found in industrial
environment, are presented.
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Fig. 4. Robustness analysis: Histogram of MSE for the IV and LS based algorithms.

5.2.1 Fuzzy adaptive black box fuzzy model based control of pH neutralization process

The input-output experimental data set of the nonlinear plant were obtained from DAISY1

(Data Acquisition For Identification of Systems) plataform.

This plant presents the following input-output variables:

• u1(t): acid flow (l);

• u2(t): base flow (l);

• y(t): level of pH in the tank.

Figure 5 shows the open loop temporal response of the plant, considering a sampling time of
10 seconds. These data will be used for modeling of the process. The obtained fuzzy model
will be used for indirect multivariable adaptive fuzzy control design. The TS fuzzy inference
system uses a functional expression of the pH level in the tank. The i |i=1,2,...,l-th rule of the
multivariable TS fuzzy model, where l is the number of rules is given by:

Ri : IF Ỹ(z)z−1 is Fi
j|Ỹ(z)z−1 THEN

Yi(z) = bi
1

1−ai
1z−1−ai

2z−2 U1(z) +
bi

2
1−ai

1z−1−ai
2z−2 U2(z) (64)

1 accessed in http://homes.esat.kuleuven.be/ smc/daisy.
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Fig. 5. Open loop temporal response of the nonlinear pH process

The C -means fuzzy clustering algorithm was used to estimate the antecedent parameters
of the TS fuzzy model. The fuzzy recursive instrumental variable algorithm based on QR
factorization, was used to estimate the consequent submodels parameters of the TS fuzzy
model. For initial estimation was used 100 points, the number of rules was l = 2, and the
fuzzy frequency response validation method was used for fuzzy controller design based on
the inverse model (Serra & Ferreira, 2011).

The parameters of the submodels in the consequent proposition of the multivariable TS
fuzzy model are shown in Figure 6. It is observed that in addition to nonlinearity, the pH
neutralization process presents uncertainty behavior in order to commit any application of fix
control design.
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Fig. 6. TS fuzzy model parameters estimated by fuzzy instrumental variable algortihm based
on QR factoration
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The TS multivariable fuzzy model, at last sample, is given by:

R1 : IF ỹ(k − 1) is F1THEN

y1(k) = 1.1707y(k − 1)− 0.2187y(k − 2) + 0.0372u1(k) + 0.1562u2(k)

R2 : IF ỹ(k − 1) is F2THEN

y2(k) = 1.0919y(k − 1)− 0.1861y(k − 2) + 0.0304u1(k) + 0.4663u2(k) (65)

The validation of the TS fuzzy model, according to equation (65) via fuzzy frequency response

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Time (hours)

L
e
v
e
l 
o
f 
p
H

 i
n
 t
h
e
 t
a
n
k

 

 

Fuzzy model

pH process

Fig. 7. Recursive estimation processing for submodels parameters in the TS multivariable
fuzzy model consequent proposition.

is shown in Figure 8. It can be observed the efficiency of the proposed identification algorithm
to track the output variable of pH neutralization process. This result has fundamental
importance for multivariable adaptive fuzzy controller design step. The region of uncertainty
defined by fuzzy frequency response for the identified model contains the frequency response
of the pH process. It means that the fuzzy model represents the dynamic behavior
perfectly, considering the uncertainties and nonlinearities of the pH neutralization process.
Consequently, the model based control design presents robust stability characteristic. The
adaptive control design methodology adopted in this paper consists of a control action based
on the inverse model. Once the plant model becomes known precisely by the rules of
multivariable TS fuzzy model, considering the fact that the submodels are stable, one can
develop a strategy to control the flow of acid and base, in order to maintain the pH level of
7. Thus, the multivariable fuzzy controller is designed so that the control system closed-loop
presents unity gain and the output is equal to the reference. So, it yields:

GMF(z) =
R(z)

Y(z)
=

Gi
c1

Gi
p1
+ Gi

c2
Gi

p2

1 + Gi
c1 Gi

p1 + Gi
c2 Gi

p2

(66)

where Gi
c1

e Gi
c2

are the transfer functions of the controllers in the i-th rule, as Gi
p1

and Gi
p2

are submodels in the consequent proposition from the output Y(z) to inputs U1(z) and U2(z),
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Fig. 8. Validation step of the multivariable TS fuzzy model: (a) - (b) Fuzzy frequency
response of the TS fuzzy model (black curve) representing the dynamic behavior of the pH
level and the flow of acid solution (red curve), (c) - (d) Fuzzy frequency response of the TS
fuzzy model (black curve) representing the dynamic behavior of the pH level and flow of the
base (red curve).

respectively. Considering

Gi
c1
=

1
Gi

p1

and
Gi

c2
=

1
Gi

p2

results:

GMF(z) =
R(z)

Y(z)
=

2
3

(67)

this is,

Y(z) =
2
3

R(z) (68)

For compensation this closed loop gain of the control system, it is necessary generate a
reference signal so that Y(z) = R(z). Therefore, adopting the new reference signal R′(z) =
3
2 R(z), it yields:

Y(z) =
2
3

R′(z) (69)

Y(z) =
2
3

3
2

R(z) (70)

Y(z) = R(z) (71)

For the inverse model based indirect multivariable fuzzy control design, one adopte a new
reference signal given by R′(z) = 3

2 R(z). The TS fuzzy multivariable controller presents the
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folowing structure:

Ri : IF Ỹ(z)z−1 is Fi
j|Ỹ(z)z−1 THEN

Gi
c1

=
1 − âi

1z−1 − âi
2z−2

b̂i
1

E(z)

Gi
c2

=
1 − âi

1z−1 − âi
2z−2

b̂i
2

E(z) (72)

The temporal response of the TS fuzzy multivariable adaptive control is shown in Fig. 9. It
can be observed the control system track the reference signal, pH = 7, because the controller
can tune itself based on the identified TS fuzzy multivariable model.
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Fig. 9. Performance of the TS fuzzy multivariable adaptive control system.

6. References

Abonyi, J., Babuska, R., Ayala Botto, M., Szeifert, F. and Nagy, L. Identification and Control
of Nonlinear Systems Using Fuzzy Hammerstein Models. Industrial Engineering and

Chemistry Research, Vol. 39, No 11, November 2000, 4302-4314, ISSN 0888-5885
Tee, K. P., Ren, B., Ge, S. S. Control of nonlinear systems with time-varying output constraints.

Automatica, Vol. 47, No. 11, November 2011, 2331-2552, ISSN 0005-1098
Åström, K.J., Albertos, P., Blamke, M., Isidori, A., Schaufelberger, W. and Sanz, R.

(2001). Control of Complex Systems. Springer-Verlag, 1stEdition, ISBN 1-85233-324-3,
Berlin-Heidelberg

Åström, K. J. and Wittenmark, B. (1995). Adaptive Control. Addison-Wesley, 2nd Edition, ISBN
0-20-155866-1, United States of America

Brown, M. and Harris, C. (1994). Neurofuzzy Adaptive Modelling and Control. Prentice-Hall
International Series in Systems and Control Engineering, 1st Edition, ISBN
0-13-134453-6, Upper Saddle River, New Jersey

Keesman, K. J. (2011). System Identification: An Introduction. Springer-Verlag, 1st Edition, ISBN
0-85-729521-7, Berlin-Heidelberg

25Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design



26 Will-be-set-by-IN-TECH

Sastry, S. and Bodson, M. (1989). Adaptive Control: Stability, Convergence, and Robustness.
Prentice Hall Advanced Reference Series, ISBN 0-13-004326-5, Englewood Cliffs,
New Jersey

Isermann, R. and Münchhof, M. (2011). Identification of Dynamic Systems: An Introduction with
Applications. Springer-Verlag, 1st Edition, ISBN 978-3-540-78878-2, Berlin-Heidelberg

Li, I. and Lee, L.W. Hierarchical Structure of Observer-Based Adaptive Fuzzy-Neural
Controller for MIMO systems. Fuzzy Sets and Systems, Vol. 185, No. 1, December 2011,
52-82, ISSN 0165-0114

Zhu, Y. (2011). Multivariable System Identification For Process Control. Elsevier, 1st Edition, ISBN
978-0-08-043985-3

Lee, D. H., Park, J. B. and Joo, Y. H. Approaches to extended non-quadratic stability and
stabilization conditions for discrete-time Takagi-Sugeno fuzzy systems. Automatica,
Vol. 47, No. 3, March 2011, 534-538, ISSN 0005-1098

Castillo-Toledo, B. and Meda-Campaña, A. The Fuzzy Discrete-Time Robust Regulation
Problem: An LMI Approach. IEEE Transactions on Fuzzy Systems, Vol.12, No.3, June
2004, 360–367, ISSN 1063-6706

Chalam, V.V. (1987). Adaptive Control Systems: Techniques and Applications. Marcel Dekker, ISBN
0-82-477650-X, New York, United States of America

Ding, B. Dynamic Output Feedback Predictive Control for Nonlinear Systems Represented by
a Takagi-Sugeno Model. IEEE Transactions on Fuzzy Systems, Vol. 19, No. 5, October
2011, 831-843, ISSN 1063-6706

Hellendoorn, H. and Driankov, D. Fuzzy Model Identification: Selected Approaches. Springer
Verlag, ISBN 978-3540627210, Berlin-Heidelberg

Ioannou, P.A. and Sun, J. (1996). Robust Adaptive Control. Prentice Hall , ISBN 978-0134391007,
Upper Saddle River, New Jersey

Isidori, A. (1995). Nonlinear Control Systems. Springer Verlag, 3rd Edition, ISBN 978-3540199168
, Berlin-Heidelberg

Wang, J.W., Wu, H.N. and Li, H.X. Distributed Fuzzy Control Design of Nonlinear
Hyperbolic PDE Systems With Application to Nonisothermal Plug-Flow Reactor.
IEEE Transactions on Fuzzy Systems, Vol. 19, No. 3, June 2011, 514-526, ISSN 1063-6706

Kadmiry, B. and Driankov, D. A Fuzzy Gain-Scheduler for the Attitude Control of an
Unmanned Helicopter. IEEE Transactions on Fuzzy Systems, Vol.12, No.3, August 2004,
502-515, ISSN 1063-6706

Khalil, H. Nonlinear Systems. Prentice Hall, 3rd Edition, ISBN 0-13-067389-7, Upper Saddle
River, New Jersey

Sadeghian, M. and Fatehi, A. Identification, prediction and detection of the process fault in a
cement rotary kiln by locally linear neuro-fuzzy technique. Journal of Process Control,
Vol. 21, No. 2, February 2011, 302-308, ISSN 0959-1524

Grigorie, L. (2010). Fuzzy Controllers, Theory and Applications. Intech, ISBN 978-953-307-543-3
Vukadinovic, D. (2011). Fuzzy Control Systems. Nova Science Publishers, ISSN

978-1-61324-488-3
Lewis, F.L. and Syrmos, V.L. (1995). Optimal Control. John Wiley & Sons - IEEE, 2nd Edition,

ISBN 0-471-03378-2, United States of America
Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall, 2nd Edition, ISBN

0-13-656695-2, Upper Saddle River, New Jersey

26 Frontiers in Advanced Control Systems



Highlighted Aspects From Black Box Fuzzy Modeling For Advanced Control Systems Design 27

Mamdani, E.H. Application of Fuzzy Logic to Approximate Reasoning Using Linguistic
Systems. IEEE Transactions on Computers, Vol. 26, No. 12, December 1977, 1182-1191,
ISSN 0018-9340

Michels, K., Klawonn, F., Kruse, R., Nürnberger, A. (2006). Fuzzy Control: Fundamentals,
Stability and Design of Fuzzy Controllers. Springer Verlag, Studies in Fuzziness and
Soft Computing Series, Vol. 200, ISBN 978-3-540-31765-4, Berlin-Heidelberg

Pedrycz, W. and Gomide, F.C. (1998). An Introduction to Fuzzy Sets - Analysis and Design.
A Bradford Book, 1st Edition, ISBN 0-262-16171-0, Massachusetts Institute of
Technology

Pedrycz, W. OR/AND neurons and the development of interpretable logic models. IEEE

Transactions on Neural Networks, Vol. 17, No. 3, May 2006, 636–658, ISSN 1045-9227
Ren, T. and Chen, T. A Robust Model Reference Fuzzy Control for Nonlinear Systems.

Proceedings of IEEE International Conference on Control Applications, pp. 165-170, ISBN
0-7803-8633-7, Taiwan, September 2004, Taipei

Serra, G.L.O. and Ferreira, C.C.T. Fuzzy Frequency Response: Proposal and Application for
Uncertain Dynamic Systems. Engineering Applications of Artificial Intelligence, Vol. 24,
No. 7, October 2011, 1186-1194, ISSN 0952-1976

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H.
and Juditsky, A. Nonlinear Black-box Modeling in System Identification: A Unified
Overview. Automatica, Vol. 31, No. 12, December 1995, 1691-1724, ISSN 0005-1098

Söderström, T. and Stoica, P. (1989). System Identification. Prentice Hall, ISBN 0-13-881236-5,
Upper Saddle River, New Jersey

Takagi, T. and Sugeno, M. Fuzzy Identification of Systems and its Application to Modeling
and Control. IEEE Transactions on Systems, Man and Cibernetics, Vol. 15, No. 1,
January/February 1985, 116-132, ISSN 0018-9472

Tong, S. and Li, H. Observer-based Robust Fuzzy Control of Nonlinear Systems with
Parametric Uncertainties. Fuzzy Sets and Systems, Vol. 131, No. 2, October 2002,
165-184, ISSN 0165-0114

Van Overschee, P. and De Moor, B. (1996). Subspace Identification for Linear Systems, Theory,

Implementation, Applications. Kluwer Academic Publishers, ISBN 0-7923-9717-7, The
Netherlands

Ogunfunmi, T. (2007). Adaptive Nonlinear System Identification: The Volterra and Wiener Model

Approaches. Springer Verlag, 1st Edition, ISBN 978-0387263281, Berlin-Heidelberg
Vidyasagar, M. (2002). Nonlinear Systems Analysis. SIAM: Society for Industrial and Applied

Mathematics, 2nd Edition, ISBN 0-89871-526-1
Walter, E. and Pronzato, L. (1997). Identification of Parametric Models: From Experimental Data.

Springer-Verlag, 1st Edition, ISBN 3-540-76119-5, Berlin-Heidelberg
Nelles, O. (2011). Nonlinear System Identification: From Classical Approaches to Neural

Networks and Fuzzy Models. Springer Verlag, 3rd Edition, ISBN 978-3642086748,
Berlin-Heidelberg

Wang, L. (1996). A Course in Fuzzy Systems and Control. Prentice Hall, 1st Edition, ISBN
0-13-540882-2, Englewood Cliffs, New Jersey

Wang, W.J. and Luoh, L. Stability and Stabilization of Fuzzy Large-Scale Systems. IEEE

Transactions on Fuzzy Systems, Vol.12, No.3, June 2004, 309–315, ISSN 1063-6706

27Highlighted Aspects from Black Box Fuzzy Modeling for Advanced Control Systems Design



28 Will-be-set-by-IN-TECH

Wang, L. and Langari, R. Building Sugeno Type Models Using Fuzzy Discretization and
Orthogonal Parameter Estimation Techniques. IEEE Transactions on Fuzzy Systems,
Vol. 3, No. 4, November 1995, 454–458, ISSN 1063-6706

Yoneyama, J. H∞ Control for Fuzzy Time-Delay Systems via Descriptor System. Proceedings of
IEEE International Symposium on Intelligent Control, pp. 407-412, ISBN 0-7803-8635-3,
Taiwan, September 2004, Taipei

Zadeh, L.A. Fuzzy Sets. Information and Control, Vol. 8, No. 3, June 1965, 338-353, ISSN
0019-9958

Zadeh, L.A. Outline of a New Approach to the Analysis of Complex Systems and Decision
Processes. IEEE Transactions on Systems, Man and Cybernetics, Vol. 3, No. 1, January
1973, 28-44, ISSN 0018-9472

28 Frontiers in Advanced Control Systems



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


