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1. Introduction 

Hormones are important mediators in the responses of a suite of phenotypic traits to 

environmental changes. Therefore, populations inhabiting different environments are 

expected to vary in several hormonal pathways. Such variation results from both plastic 

response to environments and genetic differences. Therefore, information about the genetic 

basis of hormonal variation is crucial to better understand the ecological and evolutionary 

mechanisms of phenotypic diversification in animals. Furthermore, information about the 

racial and geographical variation in hormone physiology is crucial for better diagnosis of 

hormone-related diseases in clinical fields. Thyroid hormones play key roles in regulation of 

many physiological and behavioral traits, such as metabolism, ion homeostasis, basal 

activity, and longevity. Therefore, thyroid hormone can play important roles in 

adaptation to external environments. In the present study, we review interspecies, racial, 

geographical, and interindividual variation in the thyroid hormone pathways in humans 

and other animals. The present review focuses on natural and subclinical variation in 

thyroid hormone physiology and will not cover the genetic basis for congenital 

hypothyroidism [1,2,3,4,5], congenital hyperthyroidism [6,7], autoimmune diseases [8], 

and thyroid cancers [9], for which a number of good review articles are already available. 

We also review what is known about the genetic basis for such variation. We found 

several shared features in the patterns of variation in thyroid hormone physiology in 

humans and other animals. This review demonstrates the importance of undertaking 

further integrative studies of human genetics and animal ecology for a better 

understanding of the ecological and genetic mechanisms of variation in thyroid hormone 

signaling pathways. 
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2. Variation in thyroid hormone physiology in humans 

2.1. Interindividual, geographical, and racial variation 

Geographical variation in the frequency of euthyroid endemic goiter has been extensively 

investigated [10,11,12]. In addition to iodine deficiency, other factors, such as smoking, age, 

sex, goitrogens, and body mass index, can also influence the etiology of euthyroid endemic 

goiter [13]. Although genetic predisposition to euthyroid goiter has been demonstrated 

[12,13,14], the molecular genetic mechanisms underlying the variation in susceptibility to 

goiter are not well understood. Polymorphism at the thyroglobulin (TG) [15,16] and Na+/I− 

symporter (NIS) loci [17] are reportedly associated with euthyroid goiter; however, linkage 

mapping in different families could not connect euthyroid goiter with such genetic variation 

[18,19]. 

Racial variation in the level of thyroid-stimulating hormone (TSH), one of the major 

hormones regulating synthesis and secretion of thyroid hormone, has been also found. 

Multiple studies have revealed that serum TSH levels are higher in whites and Mexican 

Americans than in blacks [20,21,22]. These results suggest that race-specific reference values 

of TSH are necessary for evaluation of thyroid hormone-related diseases. Currently, the 

genetic and ecological basis for the racial variation in TSH levels is not well understood. The 

serum levels of thyroxine-binding globulin (TBG), a major thyroid hormone-binding protein 

in plasma, are lower in Australian Aborigines than in Caucasians in Western Australia [23]. 

Aborigines have a TBG variant that has reduced affinity for thyroid hormone and is more 

susceptible to heat and acid denaturation [24,25,26]. Two amino acids are substituted in this 

variant, one of which is considered responsible for the low binding affinity for thyroid 

hormones [26]. Aborigines usually have lower T4 levels, but have normal TSH levels and 

normal or borderline T3 levels. Because Aborigines do not show any clinical symptoms of 

hypothyroidism, the homeostasis of thyroid hormone physiology in Aborigines differs from 

that in other human populations. 

Although the adaptive significance of the variations remain elusive in the above cases, some 

interpopulation variation may result from adaptive evolution to divergent environments. 

Serum free T4 levels are higher in indigenous Evenki women than in nonindigenous 

Russian women living in the same communities in central Siberia [27]. The variation in free 

T4 levels was correlated with the variation in basal metabolic rate both in Evenki and 

Russian men and women [27]. Similar cases were also found for indigenous Nenets and 

nonindigenous Russians: both showed significant increases in total T4 levels during winter, 

but the magnitude of the increase was significantly greater in the Nenets than in the 

Russians [27]. Because thyroid hormones play important roles in regulating metabolic rate 

and adaptation to cold environments [28,29], human populations inhabiting colder 

environments may acquire genetic basis for more efficient thyroid hormone-induced 

thermogenesis and may therefore be genetically adapted to cold environments [30]. 

Interindividual differences in TSH levels are prevalent, and have been found to be 

associated with variation in life span. In Ashkenazi Jews and Northern Italians, healthy 
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oldest-old people of around 100 years of age had higher TSH levels than elderly controls of 

around 70 years of age [31,32]. In addition, follow-up studies revealed that participants with 

abnormally high TSH levels had a lower mortality rate than those with normal or low TSH 

levels [33]. The offspring of Ashkenazi Jewish centenarians had significantly higher TSH 

levels, suggesting that higher TSH levels and longevity have heritable components [32]; 

however, the molecular mechanisms of this variation are unknown. 

2.2. Genetic basis for variation 

In addition to the case of TGB in Australian Aborigines [34], polymorphisms associated with 

variation in thyroid hormone physiology have been found in other populations [35]. Several 

studies have focused on candidate genes involved in thyroid hormone signaling pathways 

and revealed that single nucleotide polymorphisms (SNPs) of the TSH receptor (TSHR) [36], 

iodothyronine deiodinases (DIO1, DIO2, and DIO3) [36,37], thyroid hormone transporter 

and thyroid hormone receptor genes accounted for variation in serum TSH and thyroid 

hormone levels [38,39]. Genome-wide association studies have also identified several genes 

involved in thyroid hormone signaling. Three SNPs at intron 1 of the phosphodiesterase 8B 

(PDE8B) gene are significantly associated with serum TSH levels [40,41]. PDE8B encodes a 

high-affinity cAMP-specific phosphodiesterase catalyzing the hydrolysis and inactivation of 

cAMP. Because the PDE8B transcript is undetectable in the pituitary, it is thought that 

PDE8B may affect TSH levels through its effect on TSH-dependent thyroid hormone 

synthesis and secretion in the thyroid gland. Interestingly, other cAMP-specific 

phosphodiesterases have also been showed to be associated with variation in TSH levels 

[41]. Since there are only a few studies revealing the mechanisms by which SNPs modify 

thyroid hormone signaling [38], further studies are needed to confirm their actual 

contribution to the natural variation in thyroid hormone physiology. 

If genes involved in thyroid hormone pathways were targets of natural selection, we would 

be able to find some signatures of natural selection in the human genome. When natural 

selection increases the frequency of a new beneficial mutation in a population, the 

neighboring regions will reduce the genetic variation and increase the level of linkage 

disequilibrium [42]. Two genes involved in the thyroid hormone pathway, thyroid hormone 

receptor interactor 4 (TRIP4) and iodotyrosine deiodinase (IYD), showed a signature of 

selection in the genome of African Pygmies [43]. Importantly, a low frequency (9.4%) of 

goiter was reported for an African Pygmy population, although they inhabit an iodine-

deficient region [44]. Because another population in the same region had a much higher 

frequency of goiter (42.9%), López Herráez et al. (2010) concluded that the signatures of 

selection in these genes might reflect genetic adaptations of Pygmies to iodine-deficient 

diets. Another study tried to identify the genes whose allele frequencies were significantly 

correlated with climate. The frequency of an SNP in TRIP6 showed strong correlation with 

latitude [45].  

The high rate of nonsynonymous (amino acid–altering) changes compared with the rate of 

synonymous (silent) changes also indicates that the genes might be under positive selection 
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[42]. By comparing the synonymous and nonsynonymous substitutions in the human and 

chimp genomes, putatively positively selected genes were screened [46]. Genes expressed in 

the thyroid gland have an excess of rapidly evolving genes compared with other tissues, 

except testis, which has more putatively positively selected genes [46]. Changes in thyroid 

hormone physiology may contribute to some of the physiological and morphological 

divergence between humans and apes [47,48]. 

3. Inter-population and geographical variation in thyroid hormone 

physiology in animals 

Anatomical studies conducted in the 1960s and 1970s showed interspecies morphological 

variation for fishes and amphibians [49,50]. Since then, natural variation in thyroid hormone 

physiology has been extensively investigated in diverse taxa of vertebrate (Table 1). Some of the 

variation results from environmental factors. For example, environmental contaminants can 

cause goiter. In salmon populations introduced into the Great Lakes in the late 1960s, the 

frequency of thyroid goiter increased in the mid-1970s [51,52,53]. In addition, herring gulls Larus 

argentatus from the Great Lakes also suffered from goiter in the 1980s [54]. It was demonstrated 

that laboratory rats fed with the salmons caught in the lakes exhibited hypothyroidism and 

goiter, suggesting the presence of goitrogenic substances in the Great Lakes fishes [55]. 

 

Species/Family Phenotypic variation Potential factors and functions Reference 

Intraspecific 

variation 

   

 Coho salmon  Goiter, T4, T3 Goitrogen [51,53,97] 

 Chinook salmon  Goiter Goitrogen [53] 

 Herring gull Goiter Goitrogen [54] 

 American alligator T4 Goitrogen [98] 

 Japanese pond frog Morphology  [49] 

 Bottlenose dolphin  T4 and T3 Temperature [62] 

 Northern cardinal T4 and T3  [61] 

 Alaskan husky  T4 and T3 Temperature [60] 

 Bonnethead shark T4 and T3 in yolk Temperature [70] 

 Brook charr  T4 and T3 Migration [87] 

 Stickleback  Goiter, TSHß, T4,T3 Migration, metabolism [57,58,86] 

Interspecific 

variation 

   

 Poeciliidae Morphology, tumor  [50,99,100] 

 Spadefoot toad T4, T3, sensitivity Dry environment, 

metamorphosis 

[63] 

 Big-eared mouse T4, T3, iodide Low iodide concentration [59] 

 Rodent T4 Life span [101] 

Table 1. Variation in thyroid hormone physiology in natural animal populations 
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Goiters were also observed in hatchery fishes and possibly resulted from iodine deficiency, 

because iodine treatment was able to cure the goiter [56]. In the case of the threespine 

stickleback Gasterosteus aculeatus, interpopulation variation in susceptibility to goiter when 

reared in fresh water was observed [57,58], although whether the goiter in the sticklebacks 

was caused by iodine deficiency is unknown. Interestingly, a mammalian species, 

Auliscomys boliviensis, inhabiting an environment severely depleted of iodine did not show 

goiter [59], suggesting that genetic variation in the susceptibility to endemic goiter exists 

among populations and species. 

Latitudinal variation in plasma concentrations of thyroid hormone has been observed in 

both mammals and birds, and these variations might have evolved as adaptations to 

environments with divergent temperatures. Plasma total T4, free T4, and total T3 levels of 

sled dogs living in Alaska were higher than dogs in New York, especially in winter [60]. In 

addition, plasma T3 increased with increasing latitude in the northern cardinals Cardinalis 

cardinalis, whereas plasma T4 did not show a simple latitudinal cline: both southern and 

northern birds had higher T4 levels than birds living at an intermediate latitude [61]. In 

mammals, bottlenose dolphins Tursiops truncatus show variation in thyroid hormone 

concentrations between populations inhabiting different latitudes [62]: plasma total T3 and 

T4 were higher in dolphins from South Carolina with colder year-round temperatures than 

those from Florida with much warmer water temperatures. Since thyroid hormones play 

key roles in metabolism and heat generation, evolutionary adaptation to habitats with 

different temperatures may account for some of the latitudinal and geographical variation in 

thyroid hormone levels among natural populations. The genetic basis for the latitudinal 

variation is currently unknown. 

Several studies have demonstrated that variation in thyroid hormone physiology correlates 

with other potentially adaptive traits. Interspecies variation in tissue thyroid hormone levels 

and tissue sensitivity to thyroid hormone may be correlated with variation in the duration of 

the larval period in spadefoot toads [63]. For example, the tadpole of the desert-dwelling 

toad Scaphiopus couchii has higher tail and liver levels of thyroid hormone, and the tail tip is 

more sensitive to thyroid hormone in vitro than tail tips of other closely related species [63]. 

Because frog metamorphosis is controlled by thyroid hormone, the higher thyroid hormone 

levels and the higher sensitivity may explain the short larval period in this species. Rapid 

metamorphosis (i.e., the short period of water-dwelling at the tadpole stage) observed in the 

desert toad is likely adaptive for survival in the deserts where water is scarce [64,65]. 

Thyroid hormones also play critical roles as yolk hormones in mammalian [66], bird [67], 

and teleost [68,69] development. In the bonnethead shark Sphyrna tiburo, the concentrations 

of T3 and T4 in the yolk from the Tampa Bay population were consistently higher than those 

in the yolk from the Florida Bay population [70]. The bonnethead shark in Tampa Bay 

develops faster and is larger at birth than that in Florida Bay [71]. Tampa Bay is located in a 

more northern region and is colder than Florida Bay. Because rapid growth is generally 

adaptive in colder environments [72,73], higher york thyroid hormone levels in the Tampa 

Bay population may be adaptive. 
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Thyroid hormone is also implicated in the regulation of longevity in animals [74,75]. Long-

lived species of squirrels, deer mice, bats and mole-rats maintain low levels of thyroid 

hormone [76,77,78,79]. Hypothyroid Wister rats live longer than hyperthyroid rats [80]. 

Furthermore, investigations in the Ames and Snell dwarf mice have demonstrated that 

mutation at the Prop-1 and Pit-1 genes lead to defects in the generation of pituitary cells 

including thyrotrope and the dwarf mice have extended longevity [81,82,83,84,85]. Thus, it 

is possible that changes in the thyroid hormone pathway are involved in variation of life 

span among wild animals, as is observed among human races (see above). Further research 

on the genetic basis for the low thyroid hormone levels observed in the long-lived animals 

should be conducted. 

Divergence in thyroid hormone physiology may also be important for adaptation of 

stickleback fishes to marine and freshwater environments [86]. Stream-resident populations 

of the threespine stickleback have repeatedly evolved from ancestral marine populations. 

First, Kitano et al. (2010) found plasma thyroid hormone levels and metabolic rate were 

lower in stream-resident populations than in ancestral marine populations [86]. Since 

thyroid hormones regulate metabolic rate in sticklebacks [86], it is likely that lower thyroid 

hormone in stream-resident sticklebacks is adaptive for permanent residency in small 

streams where oxygen and food are often scarce. In addition, the expression level of thyroid 

stimulating hormone TSHß2 gene was significantly lower in the pituitary gland of stream-

resident fish than in that of marine fish. Allele-specific expression analysis with F1 hybrids 

revealed that some of the differences in TSHß2 expression levels were caused by cis-

regulatory changes at the TSHß2 locus. Importantly, a signature of natural selection was 

found at TSHß2 locus: several SNPs within the cis-regulatory region exhibited marked 

differences in the allele frequency between marine and stream-resident populations. Thus, 

changes in the thyroid hormone pathways may play important roles in genetic adaptation to 

freshwater environments. In other fishes exhibiting alternate life history style, such as the 

brook charr Salvelinus fontinalis anadromous and resident forms show differences in thyroid 

hormone concentrations, although genetic factors seem to be of little importance in the 

interpopulation variation seen in the brook charr [87]. 

Other than the TSH loci in sticklebacks, there are few studies that have examined whether 

thyroid hormone-related genes are under selective pressure in wild animal populations. 

However, domestication seems to be a strong artificial selection on thyroid hormone-related 

genes. Very strong selective sweeps were found at the TSHR loci in chickens [88] and sheep 

[89]. Because TSH is found to regulate photoperiodic control of reproduction 

[90,91,92,93,94], artificial selection favoring continuous reproduction under domestication 

might act on the TSH locus. 

4. Conclusions and future directions 

We found similar features in the patterns of variation in thyroid hormone physiology in 

humans and other animals. First, genetic variation in the susceptibility to endemic goiter 

exists among populations and species. Second, some of the latitudinal and racial variation in 
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thyroid hormone physiology likely results from adaptation to environments with divergent 

ambient temperatures. Third, variation in thyroid hormone physiology may be associated 

with variation in longevity. Fourth, genomic scan of signatures of selection have revealed 

that some thyroid hormone-related genes experience selective pressure during evolution or 

domestication. 

In humans, it is very difficult to experimentally test the adaptive significance of such 

variation. However, ecological experiments can be conducted using animals. For example, 

reciprocal transplant experiments on divergent populations or species with different thyroid 

hormone physiology can test whether wild animals have higher fitness in native habitats 

than in foreign habitats [95,96]. We can also investigate whether the fitness is correlated with 

the thyroid hormone levels. In addition, hormonal manipulation would be able to directly 

test whether the higher or lower thyroid hormone levels can change the fitness in a variety 

of environments. 

Until recently, it has been difficult to study the genetic basis for physiological differences 

between natural animal populations. However, it is now becoming increasingly easier to 

conduct genomic studies because of the recent progress in genomic technologies. Therefore, 

we can test whether candidate loci involved in thyroid hormone signaling pathways are 

correlated with fitness in natural environments or laboratory conditions. Furthermore, 

ecological and genomic studies of wild animal populations will help answer fundamental 

evolutionary questions, such as whether the same environmental variables are strong agents 

of natural selection on the thyroid hormone pathways and whether genetic variation in the 

same genes caused the adaptive divergence in thyroid hormone physiology across diverse 

taxa, including humans. 
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