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1. Introduction 

1.1. Morphology 

The thyroid is an endocrine gland formed by two lobes (Figure 1A L) located on each side of 

the trachea and the larynx; they are joined by an isthmus (ultimo-branchial origin) (Figure 

1A clear arrow) located between the trachea’s second and third cartilage rings (Figure 1A 

black arrow). 

1.1.1. Histology 

A fibrous connective tissue capsule covers each lobe from where the septa go inside, partially 

dividing the glandular parenchyma containing a very developed network of capillaries 

surrounding the follicles and irrigating the glandular parenchyma. The gland also contains 

adipocytes, nerve fibres, mastocytes and occasionally lymphocytes and macrophages [2]. 

The thyroid parenchyma mainly consists of follicles which are the thyroid’s functional unit 

(Figure 1B). It has an oval or spherical structure whose wall consists of a layer of cubic 

epithelial cells (thyrocytes) (Figure 1B black arrow) surrounding a viscous solution of proteins 

called colloid (Figure 1B Co) [2,3] containing 80% thyroglobulin (Tg) or thyroid hormone [4,5]. 

Follicle size varies according to an individual’s age, its localisation in the gland and animal 

species; for example, diameter varies from 50 to 150 μm in rats and mice where peripheral 

follicles are larger than the central ones (Figure 1A L), whilst diameter varies from 150 to 500 

μm in humans and pigs, the largest ones occurring towards the inside of the gland, even 

though their location could vary [6,2]. As well as follicle cells or thyrocytes, it has been found 

that 1% to 2% of neural crest cells in different mammals’ thyroids are parafollicular or clear 

cells, appearing clearer in different types of histological staining. These are located at the base 

of follicles but do not come into contact with the colloid and secrete calcitonin [7].  
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Figure 1. A. Histological cross-section of mouse trachea, showing cartilage (black arrow) and mouse 

thyroid lobes (L) and isthmus (clear arrow) adhering to connective tissue between cartilage and thyroid. 

The thyroid parenchyma consists of follicles which look like spherical or oval structures. B. The 

appearance of pig follicles in the lobe’s central region. Each follicle consists of simple cubic epithelium 

(black arrow) limits the follicle centre full of colloid (Co) which follicular cells or thyrocytes secrete. The 

capillaries surrounding the follicles can be seen (clear arrow). C. Rat thyrocyte ultra-structure or cytology. 

The rugose endoplasmic reticulum (RER) can be seen around the nucleus (N) and Golgi complex in 

supranuclear position; these organelles and lysosomes (L) occupy the cells’ base region. Different vesicles 

can be seen at apical level, from exocytosis (ex) being denser than electrons and endocytosis (en) and 

having the same density as electrons and colloid (Co), and the apical membrane forming microvellosities 

(M) in contact with colloid in the centre of the follicles. The binding complex can be observed in the 

lateral membrane at apical level: tight junctions (TJ) followed by belt desomosome (BD) and spot 

desmosome (SD). The thyrocytes’ basement membrane or basal lamina (white arrow) is in close contact 

with the endothelium’s (E) fenestrated capillaries’ basement membrane (black arrow); the endothelium 

cell nucleus (EN) can be seen (A and B H-E, MO. Scale bar A 1mm, B 40 μm. C TEM. 7300X).  
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1.1.2. Ultra-structure 

Endocrine gland cells are usually not polarised with their central nucleus and organelles; 

however, thyrocytes are exceptionally polarised endocrine cells and the nucleus and 

organelles are located in the cell’s basal region like exocrine epithelium cells. This is due to 

the larynx’s embryonic development by polarised cells involuting inside it. Such 

morphological and exocrine functional characteristics are conserved within follicles for 

thyroid hormone synthesis, storing and secretion (Figure 1C). The thyrocytes’ basal 

membrane is directly related to the follicles’ basement membrane or basal lamina (Figure 1C 

white arrow), in turn, being in direct contact with the fenestrated capillaries’ endothelial 

(Figure 1C E) basement membrane (Figure 1C black arrow). The thyrocytes’ apical membrane 

is in direct contact with colloid forming microvellosities (Figure 1C M) whose length and 

amount vary according to a gland’s functional state [8]. Exocytotic vesicles (Figure 1C ex) can 

be seen in the apical region, some of them being more electron dense than less electron dense 

endocytic vesicles (Figure 1C en) and some coated at the base of microvellosities [5]. 

The thyrocytes’ lateral membranes have binding complexes in the apical region formed by 

tight junction, belt desmosome and spot desmosome (Figure 1C TJ, BD, SD) isolating and 

separating colloid from the intercellular spaces and basolateral apical membranes [9]. 

The thyrocytes’ nucleus is surrounded by abundant RER in the cells’ basal region (Figure 1C 

RER) and the GC is in the supra-nuclear region in normal physiological conditions (Figure 

1C N). The lysosomes are located in the thyrocytes’ basal media region (Figure 1C L). The 

mitochondria are distributed throughout the whole cell. 

The thyrocytes form depends on their functional state; they are cubic in normal conditions 

(euthyroid morphology) and have the aforementioned ultra-structure (Figure 1C). Without 

thyrotrophic or thyrotropin-stimulating hormone (TSH), endocytic vesicles disappear at the 

beginning and exocytosis increases and microvellosities become reduced. The lysosomes 

increase in size and have very heterogeneous content following several days without TSH; the 

follicular cavity increases after a few days and cells become thin and atrophied because the RER 

and GC become reduced. Such cells disappear following 20 or 30 days’ suppression of TSH 

(hypothyroid morphology). A rapid increase in exocytic vesicles (micropendocytosis) occurs 

when the gland is stimulated by TSH and the apical membrane forms cytoplasmic expansions 

or pseudopods forming large macroendocytic vesicles called colloid droplets; such vesicles 

merge with lysosomes which migrate to the cells’ apical region [10]. When TSH stimulation is 

sustained for more than 5 days, microvellosities’ length and amount increase, follicular cavities 

become reduced and the thyrocytes become cylindrical and hypertrophied because the RER and 

GC increase, occupying almost the whole of a cell (hyperthyroid morphology) [2,8,10,11]. 

1.2. Function 

T3 (3,5,3’-triiodine-thyronine) and T4 thyroid hormone (3,5,3’,5’- tetraiodine-thyronine) 

synthesis reflects thyrocytes’ follicular morphology and ultra-structure which can be 

divided into 3 stages (Figure 2 circles): stage 1, Tg synthesis and colloid secretion at  
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Figure 2. A. A diagram of a thyroid follicle surrounded by capillaries (Cap); Co: colloid. B. A diagram 

of a thyrocyte showing the physiology of thyroid hormone synthesis. Iodide is captured in the basement 

membrane by the sodium/iodide symporter or Na+/I- symporter (NIS) and rapidly transported to 

colloid, mainly via pendrin (P); it is used there for thyroid hormone synthesis. Tg is synthsised in the 

RER and N-osidic glycosylation culminates in the GC; Tg is secreted to colloid by exocytic vesicles 

(green circle 1). Once in colloid, thyroperoxidase (blue) with thyroid oxidase 1 or 2 (red) fixes iodide 

to Tg (red circle 2) forming iodine-thyronine on Tg (Tg-I). When thyroid hormones are required, Tg-I is 

endocyted by microvesicles or macrovesicles (blue circle 3) when TSH stimulates the thyroid. Tg-I 

becomes degraded by lysosomal enzymes (L) releasing T3 and T4 into the blood stream. N: nucleus; 

RER: rugose endoplasmic reticle; GC: Golgi complex; I-: ion iodide; NIS: Na+/I- symporter; EeE: early 

endosome; Pre: prelysosome or late endosome; L: lysosome; BMs: basements membranes or basals 

laminas; T3 and T4: thyroid hormones. Diagram modified from Spinel (2003) [12]. 
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intracellular level; stage 2, iodide accumulation and its organification regarding Tg in 

colloid at thyrocyte extracellular level; and stage 3, endocytosis and intracellular hormone 

secretion [5,12]. 

The first stage occurs at intracellular level, Tg is synthesised and glycosylated (N-osidic 

glycosylation) in RER and then glycosylation in culminates in the GC. Tg is transported in 

exocytic vesicles which emerge from the GC (Figure 2 green circle 1) and is released to the 

colloid [5]. Iodide accumulation takes place in the basal membrane via the sodium/iodide 

symporter (NIS) or Na+/I- symporter (Figure 2 NIS) [13]. It then passes through colloid via 

pendrin (I-/Cl- apical exchanger) [14] (Figure 2 P), regulated by the apical region’s ClC-5 

channel [15]. 

The second stage happens at extracellular level. Thyroperoxidase (TPO) is found in the base 

of microvellosities anchored to the apical membrane which oxides iodide (Figure 2 blue) 

and thyroid oxidases 1 or 2 (Duox1 and 2) forming H2O2 (Figure 2 red). TPO fixes one or two 

iodines on specific Tg thyrosins in colloid (iodide organification), thereby forming mono- 

and di-iodinethyrosins (Figure 2 circle 2). TPO couples the iodinethyrosins, producing 

iodine-thyronine or T3 and T4 hormones on Tg19S or thyroid prohormone (Figure 2 Tg-I); in 

both processes TPO reduces H2O2 [16,17]. 

The third stage is intracellular. Tg19S is endocyted [10] (Figure 2 blue circle 3) and degraded 

in prelysosomes [18] and in lysosomes (Figure2 Pre, L), releasing the hormones which 

become diffused through the basal membrane to the blood stream [19] where they are 

transported by three families of blood proteins to an organism’s cells [20,21]. 

Due to the thyroid’s morphological characteristics and its function, “it is an exquisitely 

regulated gland”, [22]. Its function is essentially controlled by the hypothalamus-

hypophysis and also by the nervous system and other thyroid systems [22]. Thyroid gland 

function and growth is controlled by TSH secreted by adenohypophysis thyreotropic cells. 

TSH secretion is stimulated by thyrotropin releasing hormones (TRH) secreted by the 

hypothalamus. TSH and TRH concentration in circulation are regulated by T3 and T4 

concentration; thyroid and TSH concentrations are regulated by iodide concentration in the 

blood stream obtained during daily intake [2,3,22,23,24,25]. 

TSH mainly activates the AMPc route which stimulates transcription factors (CREB, TTF-1 

and -2, PAX8) and culminates by activating the transcription and expression of molecules 

implicated in T3 and T4 hormone synthesis (i.e. NIS in basal membrane, Tg in RER and its 

exocytosis, TPO and Douxs in the apical membrane and H2O2 formation). TSH’s effect can 

be shown by increased T3 and T4 in the blood stream [26,27]. 

Normal iodide in circulation ranges from 10E-9 to 10E-7 M. Concentrations of this ion 

greater than 10E-5 inhibit T3 and T4 organification and synthesis during the first 48 h (called 

the Wolff-Chaikoff effect) [1], regardless of TSH concentration. Iodide organification 

inhibition directly depends on iodide intrathyroid accumulation [28]. This thyroid auto-

regulatory effect happens when inorganic iodine concentration in blood exceeds a set 

threshold (overload) and the gland blocks iodine’s organic binding for 48 h [1]. The gland 
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adapts once such 48 h have elapsed and organified iodide escapes, producing new 

hormones [29]; NIS expression becomes reduced at this time, as does iodide capture [30]. It 

has been suggested that there is a reduction in the function of the molecules implicated in 

organification and hormone formation: TPO, Duox 1 and 2, pendrin and Tg [30,31]. 

Thyrocytes in culture in the presence of 10-E3 M iodide reduce NIS expression and inhibit 

TPO and Tg synthesis [32]. Such reduction of NIS does not happen in hypothyroid mice, nor 

is Duox 1 and 2, TPO, pendrin and Tg gene expression modified [33]. An excess of iodide 

leads to iodide organification inhibition depending on TPO and not on NIS. TSH effects 

become reduced in the presence of strong concentrations of iodide, resulting in them 

adopting antagonic roles [34]. 

2. Thyroid culture 

2.1. Introduction 

Thyroid tissue fragments were kept on glass in saline solution, or in vitro (as this involved a 

glass vessel). Established the neuron cell theory, it has since been established that the unit of 

life is a cell (i.e. cell theory 1910) and cell culture or in vitro study began [35]. Cell cultures 

were then developed, thereby leading to studying cell functions in controlled conditions and 

different descriptions of culture mediums, supports and conditions have been developed 

from 1910. Fibroblasts in culture leave a matrix on culture surface on which endothelium 

cells from blood capillaries can be cultured; this has been called an extracellular matrix 

(ECM) [36]. Extracellular supports close to the ECM surrounding cells in vivo (such as 

collagen, laminin, fibronectin or matrigel) are currently being used [37]. 

New culture techniques were developed in 1975 in view of the close structure-function 

relationship, recognising the importance of organs’ functional units, such as isolating and 

culturing isles of Langerhans from the pancreas [38] or “acini” regions from the lactant 

mammary gland or epithelial structures which needed to be conserved in polarised cell 

culture [39]. Thyroid follicle incubations and cultures could also be mentioned here. 

A brief description of the most pertinent techniques for culturing the thyroid, isolated 

thyrocytes and/or thyroid follicles is given below. 

2.2. Organotypical culture or organ culture 

Organ culture or organotypical culture consists of culturing an organ’s fragments or 

explants. Regarding the thyroid, this began with 2 to 3 h incubations (the term usually used 

to refer to cultures lasting less than 24h) of sheep thyroid fragments in the presence of 

radioactive iodide thereby demonstrating in vitro the ion’s incorpoproportion into 

diiodinethyronine (DIT) and T4 [40]. When the transmission electron microscope was 

developed in the 1970s, this led to an ultra-structural description of thyrocytes in vitro; the 

first descriptions of thyrocytes’ morphological changes in different culture conditions were 

made. It was shown that organ culture thyrocytes had reduced RER and GC in the absence 

of TSH [41,42]. Thyrocyte follicular architecture and ultra-structure were rapidly lost in 
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some of the models which were described. Approaching the 1990s attempts were made to 

use very small fragments (less than 1mm3) in organ cultures (called mini organ cultures) 

which lasted 2 to 3 days without necrosis, exhibited iodide, sulphate and phosphate 

transport, synthesised a 19S Tg (normally glycosylated and iodised) [43] and were 

maintained for up to 7 days without cell death when coated with collagen [44] 

2.3. Isolation and monolayer culture or cell culture 

Monolayer culture (better known as cell culture) mainly deals with a single cell type. This 

implies tissue dissociation by enzymatic digestion or mechanical action and the isolation of 

cellular types by different sepaproportion methods. Isolated cells are placed on different 

types of supports where they adhere and proliferate in a single layer until reaching 

confluence (called primary culture). Secondary culture consists of sowing cells removed 

from the primary culture in fresh recipients and so on. The term passage is used to indicate 

the number of successive secondary culture sowings, thus the 1st secondary culture is the 1st 

cell passage. Thyrocytes were first cultured in 1911 [45]. Using this dissociation technique 

and continuous shaking during culture has shown that sheep thyrocytes concentrate 

radioactive iodide and incorporate it in iodine-thyronine: MIT, DIT and T4 [46]. Isolated and 

small cells, aggregates of 10 to 15 thyrocytes, are obtained after dissociation with trypsin 

[47,48]. One of the greatest drawbacks is the loss of cultured thyrocytes’ cellular polarity 

when one wishes to study thyroid physiology since such polarity is fundamental in 

conserving thyrocyte membrane domains, and thus the expression of domain-specific 

molecules guaranteeing hormone synthesis [49]. 

Thyrocyte cultures were developed in dual chambers during the 1990s on cubic monolayers 

as in vivo with binding complexes in the lateral membranes’ apical region, separating in 

thyrocytes’ the apical membrane domains from the basolateral membrane domains, TSH 

favouring such cellular polarisation [50]. This model has demonstrated that ion flow is 

determined by thyrocytes’ polarity, thereby corroborating the fact that ion channels are 

different in both thyrocytes membrane domains when thyrocytes’ cubic form is conserved. 

A new channel has been described for the thyrocytes’ apical membrane [51]; this new 

channel is CLC5 which is located in the apical region in vivo and it has been proposed that 

thyrocytes have a position in the apical membrane for controlling pendrin, the I-/Cl- 

transporter [15]. 

The foregoing has shown the importance of conserving cell polarity and cubic form in 

thyrocyte culture for studying the gland’s physiology and biochemistry. 

Cell lines are continually growing and indefinitely proliferating cell cultures because they 

have lost control over their own cell division, contrary to primary and secondary cell 

cultures which die after a finite number of passes or subcultures, as is genetically 

determined in normal cells. Thethyrocyte cell line was described [52,53]; Fischer rat thyroid 

cell line or FRTL is most used around the world as it has a more similar ultra-structure to 

thyrocytes and synthesised Tg. These have been very useful in studying gene expression, 

cytoskeleton modification with different factors, iodide flow and that of other ions. 
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Such studies have led to advances being made in knowledge regarding some precise 

processes but there are limitations for extrapolating this to the gland in vivo because they are 

cells which lost certain control over their tissue of origin. 

2.4. Pseudofollicles 

Some of the main problems involved in thyroid physiology in vitro studies are the loss of 

follicle architecture, thyrocyte polarity and T3 and T4 hormone synthesis [54]. As mentioned 

above, the follicle lumen disappears in the monolayer with its colloid and the thyrocyte 

membrane domain polarity necessary for carrying out hormone synthesis [55,56]. However, 

tridimensional structures can be induced by covering monolayers with ECM elements, they 

become re-organised into two- to four-cell structures around the intercellular cavity in the 

presence of TSH, called pseudofollicles by some authors and “follicles” by others 

[54,56,57,58,59,60,61,62]. These pseudofollicles are unstable, short-duration structures and 

do not reproduced in vitro the function of iodide incorporation in Tg or synthesis of T3 or T4, 

and shown that follicle structures’ thyrocyte polarity is necessary for studying thyroid 

physiology and the molecular processes implicated in such function [63]. 

3. Follicles 

A new culture technique was developed from 1965 to 1980 where the functional unit of 

different epithelial organs, isles of Langerhans in the pancreas [64,65] or the acinar region of 

the mammary gland [39] are isolated and cultivated, conserving in vivo morphology.  

It is clear that conserving multicellular structures in vitro forming exocrine glands’ 

functional units depends on preserving apical-basal polarity for imitating in vivo functions; 

this is why attempts at characterising the factors generating polarity and which molecules 

allow maintaining 3D structures in vitro in mammary gland acini [66], the endocrine 

pancreas [67] or kidneys [68] are continued. 

The 1980s saw the beginning of 24-h thyroid follicle cultures [23,69,70,71,72,73,74] on 

agarose, to avoid cell adhesion and monolayer formation [75]. Such incubations showed that 

iodide organification and H2O2 production took place in colloid [23,72] and that rat 

thyrocitos of open and closed follicles incubated for 12 h on agarose conserved their apical-

basal polarity and in vivo ultra-structure, in basal region nucleus surrounded by RER, 

supranuclear GC, in apical region vesicles’ and microvellosities. As well as responding to 

TSH-forming pseudopods [16,23,75], synthetic TSH peptides bound in the basolateral 

membrane [76]. Closed follicles were maintained for up to 3 days [69] and responded to 

thyrocytes’ TSH, increasing RER [23]. TSH has stimulated pig and human open follicle 

thyrocyte function in culture during the first two days [49,74]. Pig open follicles cultured for 

48 h with forskolin have been used for determining the function of H2O2 formation which is 

important in hormone synthesis [77]. The presence of TSH- or forskolin-induced cyclic 

adenosine monophosphate (AMPc) route stimulants has been seen to be indispensable in 

these cultures and has reiterated the importance of conserving follicle structure in culture 



 
Thyroid Culture from Monolayer to Closed Follicles 353 

for promoting hormone formation, as happens with thyroid gland apical membrane in vivo. 

It is so important that specific genes have been described which govern follicle formation 

and maintain follicle architecture, the gene transcribing the thyroid-specific enhancer-

binding protein (T/ebp or Nkx2.1) regulating the transcription of genes implicated in 

hormone synthesis: NIS, TPO, TSH receptor and Tg and re-organised transfecteds thyrocites 

in follicles [78]. Human goitre follicle structure has been covered with collagen to preserve it 

longer and cavities in human [79,80] and mouse thyrocyte [78] thin cell bilayers have 

persisted 2 days more. Collagen’s importance in preserving epithelial cells’ apical-basal 

polarity has been described for obtaining MDKC (Madin-Darby canine kidney epithelial cell 

line) cell 3D cultures, but hepatic growth factor (HGF) was added to cultures [81]. 

The methodology developed by our group for reproducibly obtaining closed follicles, 

conserving their architecture and function in culture analogously to that of the gland in vivo 

is described below. 

4. Method used 

Most of the first work on rat follicle culture was open and became disorganised during the 

first days of culture [16,23,72]. We based our approach on these rat thyroid dissociation 

techniques. We describe the importance of isolating closed follicles, their culture and long-

term response to TSH and iodide (9 and 12 days) and to increasing doses of iodide. Details 

are given of the isolation methodology, the morphological study of these isolated follicles 

and in culture at morphological level by inverted (IM) optical (OM), electron (TEM) and 

(CM) confocal microscope and their functional study: iodide accumulation and 

organification, Tg, T3, T4 synthesis and NIS localisation. 

4.1. Isolation and closed follicle culture 

Wistar rat (200g) and ICR mouse (30g) thyroid was used; the animals were obtained from 

the Universidad Nacional de Colombia’s Bioterium. Pig Cialta and strain 769 thyroid was 

provided by two slaughterhouses in Bogotá. Some having sub-clinical hyperthyroidism due 

to - energetic injection, having T3 (1.34 ng/dL) and T4 (107.0 ng/dL) within the normal range 

and excessively low TSH (<0.005 mUI/mL), were called hypothyroidic, as morphologically 

and functionally described in mice [33], whilst the others were called euthyroidic. The 

animals were handled according to Colombian considerations for animals being used in 

research and care of animals for domestic consumption.  

The methodology mainly involved rat thyroid and was corroborated in mouse thyroid. 

Obtaining human thyroid fragments is difficult; pig was thus used due to its similarity with 

human metabolism [82,83,84,85,86], even though it is hoped to begin cultures with human 

thyroid in the near future. The differences between rodents and pig had to be considered. 

General metabolism regulated by the thyroid gland in rodents is 10 times greater than that 

in pigs and humans. Follicle diameter ranges from 50 to 150 μm in rodents, whilst this is 150 

to 500 μm in pigs and humans. Rodent lobes range from 3 to 5 mm3 at their widest whilst 



 

Thyroid Hormone 354 

this is 3 to 5 cm3 in pigs and humans, meaning that many rodents must be sacrificed for each 

experiment; 30% to 40% of a pig’s lobe is used. Rodents’ capsule is thin and the parenchyma 

does not have large amounts of connective tissue; this capsule is thick in pigs and connective 

tissue septa are very abundant and extensive. Shaving razors are used for stereoscopic 

micro-dissection. The capsule of rat and mice lobes is eliminated; each is cut in two along its 

major axis whilst pig lobes are opened in two with a scalpel and cut into 7 to 10 mm3 

fragments. Connective tissue is then eliminated as far as possible using stereoscopic 

microdissection with razors without affecting the parenchyma. Around 3 mm3 fragments 

are obtained (similar to rodent fragments) without connective tissue visible by stereoscope.  

The thyroid fragments are put together and washed 3 times with COON medium [55], 

enzymatically dissociated with collagenase II which digests collagen (250 U/mL rodents; 400 

U/mL pig) and 2 g/mL DNase 1 (nb, the original article [82] read “2 mg/ml DNase I” when 

it should have been 2 μg/ml). Dead cells form aggregates which are avoided with DNase 

which only dead cells’ DNA digest and become fragmented; live follicle cells or fragments 

become attached to these aggregates if DNase is not added [23]. 

Thyroid fragments become dissociated in enzyme solution in COON medium at 37ºC and 

being shaken at 140 oscillations per minute; without delay, they are mechanically 

dissociated in this solution, aspirating and expelling enzyme solution containing thyroid 

fragments with 20 mL pipettes (3 to 5mm distal diameter; extreme for liquid entry and exit 

from pipettes), 10 times. The technique with rodent fragments continues with 10mL pipettes 

(1.5 mm distal diameter), 10 times. Such pipette dissociation is done at 10 min intervals 

during enzyme dissociation (i.e. the supernatant containing isolated follicles is collected 

every 10 min after pipette dissociation and fresh enzyme solution added for the following 10 

min). This is done three times x 10 min with rodent thyroid and 6 x 10 min with pig thyroid; 

this is a modification of already described dissociation [16,23,72] and is most important for 

avoiding follicle opening. Most follicles are isolated during a second dissociation for rats 

and mice and in a third and fourth for pigs. 

The follicles isolated during each 10 min interval are washed 3 times with COON + 2% foetal 

calf serum (FCS) spun at 50g for rodent follicles and 30g for pig follicles. This must be done 

in a free rotor centrifuge using low centrifugal force, otherwise centrifugal pressure opens 

up many follicles. All the follicles are placed together and filtered through 100 m pore 

diameter mesh for rodents; those for pigs are left to decant at 1g for 10 min. Dissociation pre-

incubation or recuperation time is continued for 4 h for rats and mice and 12 h for pigs in 

COON medium + 0.5% FCS in a 95% air - 5% CO2 atmosphere and 100% humidity on 1% 

agarose type I (less grouping than with agarose type II) to avoid cells adhering to the 

support [44,75]. Culture medium (the same as pre-incubation) is changed for aspiration with 

follicles; it is spun at 50g for rodents and 30g for pigs. The supernatant is skimmed off and 

fresh medium added to begin culture in the same ambient conditions and on agarose type I; 

the same is done for changing medium when making the culture. 

Undissociated fragments (around 0.8 mm3) remaining after enzyme dissociation are washed 

3 times with COON + 2 % FCS and cultured in the same conditions as for follicles but with 

2% FCS. This has been called mini organ culture, according to Bauer and Herzog [43]. 



 
Thyroid Culture from Monolayer to Closed Follicles 355 

Different supports have been tried for maintaining follicular architecture, such as glass, 

plastic, collagen or collagen coated (1mg/mL), and 1%, 5% and 10% FCS concentration. 

Closed follicles are conserved in culture; however, thyrocyte monolayers grow 

proportionally to serum concentration in the medium. Monolayer growth should be avoided 

because this increases iodide accumulation values and interferes with analysis of iodide 

organification function; fresh enzyme dissociation must be carried out to recover the follicles 

[82,86]. When follicular cell fragments are cultured in collagen they do not reform follicles as 

has been described for human [79,80] and mouse thyrocytes [78]; some MDKC epithelial 

cells are organised in follicle-like structures requiring HGF [81]. The foregoing meant that 

the use of glass, plastic and collagen for follicle culture was rejected and agarose type I used 

instead.  

Follicles’ functional and morphological state was controlled before beginning the cultures by 

5% Trypan blue exclusion exam [87], cell viability was determined by IM which also 

allowed visualising open or closed follicle architecture. Thyrocyte viability is usually around 

100% immediately after isolation and before beginning pre-incubation. Cells which do not 

exclude Trypan blue are usually endothelium cells bound to follicle periphery (Figure 3B 

solid black arrows) or follicular fragment aggregate thyrocytes (Figure 3B circle). 

Iodide accumulation and organification is determined (5 Ci/mL Na125I, 4 h) for ensuring a 

high percentage of closed follicles; the importance of this control before beginning culture is 

described and discussed 125I in 6.1. Importance of obtaining closed follicles.  

Follicles are culture for 0, 1, 3, 6, 9 and 12 days with TSH and without TSH (1 and 0.1 

mU/mL rat; 1 mU/mL pig) in the same conditions as for pre-incubation. Culture medium is 

changed during these days aspirating it with the follicles and spinning at 50g for rat and 30 g 

pig, discarding the supernatant which usually contains cell and follicle fragments. The 

follicles are examined by IM during each stage. 5 Ci/mL Na125I is added each culture day 4 

h before collecting the follicles for morphological and functional studies. 

The follicles are cultured for 1 day with and without TSH (0.1 mU/mL rats; 1 mU/mL pigs) 

for studying the effect of different iodide concentrations. The medium is changed and the 

follicles cultured for 0.5, 3, 8, 12, 24 and 48 h with 10E-10, 10E-7, 10E-5, 10E-3 M Na127I and 

Na125I 5 μCi/mL (kindly donated by Manuel E Patarroyo) with and without TSH. The 

follicles are collected after such treatment for morphological and functional analysis. 

4.2. Morphological studies 

Morphological study involves impregnating follicles in Epon resin; follicles are spun at 300g 

for dehydratation before being impregnated in the resin [23,82,83]. Semi-fine, 

autoradiographed slices are observed by OM and ultra-fine slices by TEM. 

Protein synthesis and NIS expression reduce excess iodide [30,31,32] and (bearing in mind 

that NIS has not been described in closed follicle cultures) the presence of NIS is determined 

in culture in the presence of different iodide and TSH concentrations, with anti-NIS/GS 

antibodies (1:500, kindly donated by Thierry Pourcher) and Alexa 488 anti-rabbit secondary 
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antibodies (1:1,000). The nuclei are visualised using DAPI/PBS (1:9,000). Follicles are 

compressed on commercial laminas as their diameter is greater than that of cells; a 1 mm 

high chamber was constructed to enable observing by CM without follicular compression. 

4.3. Functional studies 

Iodide organification (which is essential in thyroid hormone synthesis) becomes lost during 

the first days in the thyroid culture models described to date. Functional analysis of follicles 

in culture for determining whether follicular architecture is conserved has advantages over 

other cultures regarding hormone synthesis.  

Follicles’ accumulated and organified 125I-radiactivity is determined by  well counter. Rat 

follicles are washed 3 times for 5 min at 50g and at 30g for pig follicles with COON + Na127I 

(cold) 100 times the concentration of radioactive iodide used in culture and the radioactivity 

arising from accumulated (A) is determined. 10% trichloroacetic acid + Na127I 100 times the 

radioactive iodide concentration used in culture is then added and the radioactivity present 

in protein precipitate corresponding to protein binding iodide (PBI) or iodide organification 

(O) is determined. 

The precipitate is used for determining the amount of DNA by diphenylamine method [88], 

Tg19S by HPLC and iodine-thyronine (MIT, DIT, T3, rT3 and T4) in Tg by inverse-phase 

HPLC [89]. The results are expressed in % iodide dose in g DNA. Follicle structure does 

not allow the number of cells to be counted and statistical analysis requires having a 

parameter letting the results be homogenised; based on 1 pg DNA/mL equals 2E5 cells, the 

number of cells present in cultures can be determined and the results statistically correlated 

[82]. 

4.4. Statistical analysis 

Data given in the text are expressed as mean standard deviation for N values. Significant 

differences are established between some times for A and O variables by Student’s t-test. 

5. Results 

Closed follicular architecture is indispensable in agarose culture since open follicles become 

dissociated and cells die; it is thus essential to begin with maximum closed follicles possible 

to avoid this. The following item gives the criteria determined important for beginning 

culture. Then, the long-term culture results in which closed and isolated follicle morphology 

and function were compared. Last, the morphological and functional results in the presence 

of different doses of iodide and TSH. 

5.1. The importance of obtaining closed follicles for culturing them 

Many isolated cells and follicular fragments were obtained when thyrocytes became 

detached after 30 contiguous min, instead of 10 minute enzyme dissociation time (Figure 
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3A); these thyrocytes were eliminated 24 h later when culture medium was changed. If some 

fragments persisted after 1 or 2 days’ culture they became dissociated and thyrocytes died 

because they could not adhere to the agarose covered culture support [75] since normal cells 

require support for growing in culture. Trypan blue allowed an approximation of follicles’  

 

Figure 3. A. A follicle fragment from euthyroidic pig thyroid dissociated for 30 min without 

interruption pre-incubated for 12 h. Note the contour of thyrocytes which became detached from the 

follicular fragment and cell waste in culture support. B. Trypan blue for recently isolated rat thyroid 

follicles by strong dissociation (Strong dissociation, Table 1). Follicles which did not open (star) 

conserved colloid birefrigence and a clear and continuous boundary between colloid and cells, whilst 

those which became resealed (clear arrow) lost colloid birefrigence and the boundary between cavity 

and cells was not clear. Openings could be seen in those which did not reseal (triangles beam). Cells 

which did not exclude stain were mainly endothelium cells found in follicle periphery (solid arrows). 

Follicle fragments presented non-viable thyrocyte aggregates (circle). C. Pig euthyroid resealed follicles 

12 h pre-incubation. Note that the thyrocytes’ apical boundaries could be distinguished due to a lack of 

colloid. D. Trypan blue of closed follicle with colloid birefrigence of pig hypothyroids pre-incubated for 

12 h; colloid was birefrigent and the boundary between colloid and thyrocytes was clear and continuous 

(IM. Scale bar: A 20 μm, B 50 μm, C 15 μm, D 70 μm). 
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closed or open state (Figure 3B); those conserving colloid showed up due to birefringence in 

IM and there was a clear boundary between colloid and cells (Figures 3B star and 3D) whilst 

those which became resealed lost their colloid birefringence and the boundary between 

cavity and cells was not clear (Figures 3B clear arrow and 3C). Openings in follicles which 

did not become resealed appeared (Figure 3B triangles beam) as did colloid loss. Cells which 

did not exclude the stain were mainly endothelium cells which were found on follicle 

periphery (Figure 3B black arrows). Follicle fragments could be seen because they lost 

follicular structure and organisation continued from thyrocytes’ epithelial layer (Figure 3B 

circle). 

Follicle morphology and function were analysed after 4 hours’ labelling with radioactive 

iodide, varying according to the dissociation procedure used with and without pre-

incubation. If pipette dissociation after each 10 min enzyme digestion was done in such a 

way that hydrodynamic forces were produced with turbulence, this was called strong 

dissociation, but when this was done slowly without turbulence in the liquid and avoiding 

air-bubble formation it was called mild dissociation. 

Iodide which did not bind to molecules was eliminated in fixation liquid until being 

impregnated in resin; labelling in autoradiographs (following pre-incubation, added for 2 h 

in the presence of Na125I 5 Ci/mL) was that which bound to proteins and was equivalent to 

organified iodide. The number of closed follicles could thus be counted and distinguished 

from open ones by autoradiographs. Open follicles were numerous in strong dissociation; 

they could be seen because no organified iodide was concentrated within follicle interior 

(Figure 4A star) even though histological cross-sections seemed to suggest that the cubic 

epithelial layer continued (Figure 4A circle). There were much fewer open follicles if 

dissociation was mild (Figure 4B). Follicles which resealed could be distinguished because, 

even though the labelling was homogeneous, it was less intense in colloid than in those 

which remained closed (Figure 4B arrow).  

Pre-incubation time was another key aspect for obtaining a maximum of closed follicles at 

the beginning of culture (4 h for rat follicles and 12 h for pig follicles when this was divided 

into 4 initial hours in which medium was changed by aspirating the medium with follicles 

and spinning at 30g x 5 min followed by pre-incubation for 8 h). The pre-incubation period 

was essential since this time allowed cells to recover from the aggression of the enzyme used 

for dissociation. 

Pre-incubation time following dissociation promoted an increase in closed follicles with two 

dissociations (strong or mild, 33% and 46%, respectively, Table 1). Open follicles which did 

become resealed or follicular fragments (Figure 4A) became disorganised and were 

discarded in the supernatant when changing the medium and spinning to wash them. 

Morphological modifications included modification of the amount of iodide accumulated 

and organified by follicles (Table 1); if dissociation was mild, iodide accumulation (A) and 

organification (O) values and O/A percentage increased following pre-incubation time, 

whereas if dissociation was strong then these values were lower. 
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Figure 4. Autoradiograph of dissociated follicles (following pre-incubation, they were added for 2 h in the 

presence of 5 Ci/mL Na125I). Iodide ions which did not bind to proteins were eliminated while washing the 

histotechnic preparation until being impregnated in resin. Closed follicles were labelled in the follicle centre 

even though they became resealed (arrow). A. Follicles isolated by strong dissociation (aliquot of follicles 

from Table 1, strong dissociation with pre-incubation). Follicles seeming to be closed by histological cross-

section but which did not accumulate organified iodide in colloid were open follicles (circle). B. Most 

follicles isolated by mild dissociation (aliquot of follicles from Table 1, mild dissociation with pre-incubation) 

were closed because of intense labelling within follicular cavities (OM. Toluidine bleu. Scale bar: 25 μm). 

Closed follicles counted on autoradiographies corresponded to O/A proportion percentage; 

thus mild dissociation gave 83% closed follicles and 85% O/A proportion whilst strong 

dissociation gave 45% closed and 58% O/A proportion (Table 1). 

Follicles isolated by mild dissociation, following 2 h with radioactive iodide, accumulated 

iodide 4.8 times and 7.8 times more with 0.1 and 1 mU/mL TSH, respectively, regarding 

without TSH. TSH did not modify morphology regarding follicular architecture or O/A 

proportion (Table 2). 

This follicle isolation method can be applied to other thyroid tissues from other species, such 

as rabbits or humans. The percentage of open follicles was greater in pig or human thyroid 

follicles and more tissue was obtained per experiment; 12 h was thus allowed for pre-

incubation (Figures 4C and 4D).  
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Digestion conditions % follicles closes A O % O/A 

Without pre-incubation

Mild dissociation 57 ± 1,4 1.14 ± 0,01 0.89 ± 0,01 78 

Strong dissociation 45 ± 5,7 1.84 ± 0,37 1.08 ± 0,14 58 

With pre-incubation 4 hours

Mild dissociation 83 ± 1,4 1.93 ± 0,24 1.64 ± 0,17 85 

Strong dissociation 60 ± 7,1 1.32 ± 0,17 0.91 ± 0,01 68 

Table 1. Influence of dissociation conditions and pre-incubation time on the percentage of rat thyroid 

isolated and closed follicles and their function. It can be seen that the percentage of organified iodide on 

accumulated iodide (O/A) was equivalent to the percentage of closed follicles concentrating radioactive 

ion determined by follicle count using accumulated grains in follicular colloid in autoradiography of 

semi-fine cross-sections (Figure 4). Average values for two culture dishes ± SD. Following pre-

incubation, 125I- accumulation (A) and incorporation in proteins (O) were determined following 2 h in 

the presence of Na125I 5 Ci/mL and expressed in μg/dose/μg DNA. 

TSH A O % O/A 

None 0.73 ± 0,18 0.58 ± 0,11 79 

0,1mU/mL 3.48 ± 0,17 2.78 ± 0,04 80 

1mU/mL 5.71 ± 0,72 4.98 ± 0,67 87 

Table 2. Influence of TSH on iodide accumulation and organification in isolated rat follicles expressed 

in μg/dose/μg DNA. Follicles were cultured for 2 h in the presence of Na125I 5Ci/mL immediately 

following pre-incubation. TSH was stimulated by Na125I but O/A proportion was around 80% with or 

without TSH. The value without TSH represented the percentage of closed follicles obtained following 

correct mechanical dissociation and pre-incubation of follicles. Average values for culture dishes ± SD 

(these values were representative of 3 experiments). 

A good approximation of the percentage of closed follicles following pre-incubation must 

thus be born in mind (this corresponded to day 0 in our cultures). It can thus be generalised 

that O/A proportion values should be greater than 80% before beginning culture (day 0, Table 

2) and that there should be a potentially high number of closed follicles, even though follicle 

diameter may vary in each species or come from different thyroid functional states [85,86,90]. 

Open follicles’ ability to reveal themselves during the course of pre-incubation probably 

depended on the degree of initial opening. Even though groupings of rat thyroid cells 

became organised in the presence of TSH and on agarose, they became reorganised into 6- to 

10-cell follicles which could be cultured for 3 days [69,73]. In our results, rat or pig follicles 

which became resealed did not require TSH for conserving their follicular architecture. 

5.2. Long-term closed follicle culture 

5.2.1. Functional study 

On day zero (4 h pre-incubation in the presence of radioactive iodide) follicles accumulated 

3.5 ± 2.1% of the dose in the medium without TSH (9 experiments in rats). Organified iodide 

percentage varied according to closed follicle percentage at the start of each experiment. 
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O/Aprioportion was 57% in experiment 1 and 91% in experiment 2 (Table 3); more than two 

thirds of organified iodide bound to stable Tg19S (Table 4), the rest of the molecules having 

lower molecular weight. Capture increased in the presence of TSH regarding without TSH 

250 ± 210% (9 experiments in rats), but O/A percentage remained constant. The effect of TSH 

was evident on A and O, and higher than values without TSH (Tables 2, 3 and 4). Iodide 

accumulation on Tg19S slightly increased with TSH, but not significantly so (Table 4). 

Exp. 1 Exp. 2

TSH 0.0 0.1 1.0 0.0 0.1 1.0

Culture, day 

0 57 46 69 91 93 94 

1 69 75 71 78 94 93 

3 64 85 85 84 86 87 

6 0 58 83 60 51 84 

9 2 51 71 59 78 91 

12 0 54 82 50 73 90 

Table 3. Evolution of 125I- organification/accumulation in rat follicle culture. Comparing two 

experiments where rat closed follicle percentage varied during the course of two experiments (Exp. 1 

and Exp. 2). 80% of follicles were closed at the start of culture counted in autoradiographs of culture 

aliquots in experiment 2 (cf 65% in experiment 1). Na125I 5 Ci/mL was added 4 h before collecting 

follicles during each day of the experiment, expressed in %/dose/μg DNA. Each value was the average 

of two samples or culture dishes. Experiment 2 was representative of 7 independent experiments. TSH: 

mU/mL. 

Following one day’s culture without TSH, accumulation was low at the start of culture; it 

did not become modified, but if it was high it became reduced, whilst incorpoproportion of 

iodide in Tg became reduced (Table 4). T3 and T4 proportion in regarding Tg was not 

modified. Iodide accumulation increased in the presence of TSH, O/A percentage remained 

high and in starting values (Table 3). Iodide incorpoproportion in Tg19S was better (Table 4) 

and Tg19S content in follicles did not vary. 

Accumulation fell abruptly on the third day without TSH when starting with a low 

percentage of closed follicles, just like O/A percentage, whilst it became reduced with a high 

percentage of closed follicles, but O/A was maintained. O/A values were high in the 

presence of TSH and remained higher than 80% (Table 3). 

Accumulation and organification values and their O/A percentage differed on the sixth day 

regarding closed follicle percentage; A and O could not be determined in experiment 1 

which began with 57% (Table 3. Exp. 1) whilst experiment 2 began with 94% and became 

reduced to 60% (Table 3. Exp. 2). There was a reduction in all O/A percentages in rat or pig 

cultures by the sixth day which also differed with the percentage of closed follicles (Table 5), 

animal species and functional state at the start of culture. The percentage of iodide on Tg19S 

also became reduced (Table 4). 



 

Thyroid Hormone 362 

A 125I- in Tg19S*

TSH 0.0 0.1 1.0 0.0 0.1 1.0 

Culture. Day 

Without NaI 

0 5.8 5.5 7.2 59 63 67 

1 1.4 2.7 3.1 43 66 65 

3 1.3 4.5 8.7 46 50 52 

6 0.7 1.2 4.0 25 13 42 

9 0.2 0.6 4.0 16 17 55 

12 0.2 0.7 8.0 15 25 52 

With NaI 

0 5.8 7.8 9.3 60 61 66 

1 1.1 1.8 3.1 31 58 64 

3 0.7 4.2 7.6 49 49 52 

6 0.1 1.4 3.4 10 22 39 

9 0.2 1.6 2.6 14 32 38 

12 0.1 1.9 2.9 11 33 58 

Table 4. Evolution of iodide accumulation (A) and its incorporation in stable Tg19S in rat follicle culture. 

Effect of adding a small dose of cold iodide (10E-10 M Na127I). A was expressed in %/dose/μg DNA. 

Radioactivity determined in stable Tg19S was expressed in % 125I- accumulation/dose/μg DNA. The results 

without NaI were those expressed in experiment 2, Table 3. Na125I 5 Ci/mL 4 h was added before collecting 

follicles during each day of the experiment. Each value was the average of two samples or culture dishes. 

O/A retained the same values on day 9 and 12 as those for day 6 in both experiments 

without TSH, whilst with TSH this increased in experiment 1 regressed to day 1 values and 

then maintained similar values to those of the two first days. The percentage of iodide on 

Tg19S with and without TSH was conserved (Table 4). 

The presence of a small dose of iodide (10E-10 M NaI) did not modify iodide accumulation 

values at the start of culture (Table 4), but responded better to TSH. Tg19S had more T3 and 

T4 and TSH increased the percentage of T3. O/A percentage increased with 0.1mU/mL TSH 

on days 6, 9 and 12 whilst it fell with 1 mU/mL (not significantly). Iodide had no effect on 

stable Tg19S content in follicles; more than two thirds of accumulated iodide was 

incorporated in Tg19S (Table 4) even in the absence of TSH where iodide accumulation was 

very low on day 12. 

Preserving the function of pig follicle thyrocytes during culture also depended on the 

percentage of closed follicles since the beginning. However, this differed from those for rats 

in the absence of TSH, because this began with 43% O/A equivalent to the percentage of 

closed follicles presenting iodide organification on days 6 and 9 (Table 5, euthyroidic follicles) 

contrary to rat follicles which was zero (Table 3. Exp. 1). As 7 times more material was 

obtained from pig thyroids than rat follicles, a greater number of recovered follicles were 

conserved in changes of medium by centrifuging, or different species having variations in 

response to the same medium conditions. 
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Euthyroid Hipothyroid

Culture, day TSH % O/A N % O/A N 

0 

0 43.4. ±.5.9 4 82.4. ±.7.2 4 

1mU/mL 61.5. ±.4.6 4 80.5. ±.3.7 4 

1 

0 56.94. ±.4.7 3 77.0. ±.3.8 4 

1mU/mL 71.4. ±.7.1 2 76.44. ±.3.9 4 

3 

0 37.4. ±.6.6 2 82.24. ±.4.1 3 

1mU/mL 43.2. ±.5.9 2 76.44. ±.5.3 2 

6 

0 9.16. ±.2.2 2 23.3. ±.9.4 2 

1mU/mL 15.0. ±.3.7 2 52.32. ±.4.2 2 

9 

0 52.66. ±.2.2 2 16.62. ±.1.5 3 

1mU/mL 64.8. ±.4.3 2 53.6. ±.5.0 3 

Table 5. Evolution of 125I- organification/accumulation (O/A proportion) percentage for pig follicles. 

Hypothyroid follicles had high O/A percentage at the start regarding euthyroids (representative results 

from 4 experiments). This experiment began with less than 50% O/A in euthyroids for comparing with 

Table 3, experiment 1; however, when 3 experiments began with euthyroid follicles having 80% or more 

O/A they behaved like those for rat follicles in experiment 2, Table 3. 5 Ci/mL Na125I were added 4 h 

before collecting follicles on each day of the experiment expressed in %/dose/μg DNA. Average values 

for the number (N) of culture dishes ± SD. 

The difference between euthyroidic rat or pig follicles regarding hypothyroid ones was that 

hypothyroids responded to TSH on the sixth and ninth culture days, perhaps due to 

adapting to normal culture conditions, like hypothyroid glands’ response in vivo when the 

effect induced by hypothyroidism stimulated with TSH was eliminated [24].  

We compared isolated follicles’ iodide accumulation and organification with their respective 

pig mini organ cultures lasting up to 9 days. Euthyroidic tissue became disorganised after 

the sixth day and functionality could not be determined after this day. Some follicles were 

conserved in the hypothyroids on the outside of the cultured fragment and presented this 

function on days 6 and 9 (Table 6). Mini organ culture functional values were higher than 

those of follicles isolated on the first day, but these were not significant; they were higher 

from the first day onwards in isolated follicles, maintaining higher values up to day 9 

(euthyroidic and hypothyroid) (Table 6). 

 

TSH A O % A/O N TSH A O % A/O N 

Euthyroid, follicles Euthyroid, mini organ culture 

0 0.049 0.025 51.6 ± 0.052 4 0 CND CND 3 

1mU/mL 0.074 0.048 65.3  ± 0.043 4 1mU/mL CND CND 3 

Hypothyroid, follicles Hypothyroid, mini organ culture 

0 0.122 0.0633 36.75 ± 0.67 4 0 0,115 0.025 22.7 ± 1.5 3 

1mU/mL 0.122 0.0655 53.6± 0.050 4 1mU/mL 0.723 0.278 38.5 ± 0.067 2 

Table 6. Determining iodide accumulation (A) and organification (O) for isolated follicles and mini 

organ cultures from the same pig thyroids after 9 days’ culture. 5 Ci/mL Na125I was added 4 h before 

collecting follicles and mini organ cultures on each day of the experiment expressed in %/dose/μg DNA. 

Average g of follicle DNA was 4.5 and 14.7 for mini organ cultures. Values represent the average 

number (N) of culture dishes ± SD. CND: could not be determined. 
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It has been described that pig thyroid mini organ cultures enables studying “thyroid tissue 

structural and functional integrity in vitro [54]”; however, we have considered that studying 

thyroids in vitro is better done with isolated follicles than using mini organ cultures. Since 

closed follicles maintain their architecture throughout culture time, thyrocytes are viable 

and their basement membrane is in direct contact with the medium and not with capillaries 

whose endothelial cells die rapidly in culture during the first 24 h (Figure CB). 

DNA content per culture dish did not show a significant change during 12 days’ rat follicle 

culture (1.55 ± 0.52 g/dish, N = 16) or 9 days’ pig follicle culture (5.35 ± 0.36 g/dish, N = 25). 

Even though closed and isolated follicles in culture had differences regarding stable Tg19S, 

the amount of T3 and T4 and iodide accumulation between different treatments with and 

without TSH and with or without 10E-10 M NaI, the follicles did have more iodide 

organification, iodised Tg19S and T3 and T4 at 12 days’ culture, even without TSH [83,86], 

than in all other culture models published to date except of the group [83,84,85,86]. Such 

variations were homologous to glands in vivo in the same study conditions. 

Our culture system has different characteristics distinguishing it from other models 

described up to now. Monolayers lose their function on the first day [48], become 

reorganised in pseudofollicles on the third day and only 2% to 4 % become incorporated or 

organified in iodine accumulated in poorly iodised Tg (Tg16S) [91], even though higher than 

90% O/A with TSH has been reported for a matrigel-covered monolayer culture forming a 

double cell layer having cavities [61]. Different models mentioning culturing “follicles” 

[92,93,94,95] have not shown these functions in their results; others culturing pig “follicles” 

for 2 days, based on Björkman and Ekholm [16] as we, require 5% FCS, 1 mU/mL TSH and 

non-physiological molecules such as forskolin or 8-(4-chlorophenylthio)-cAMP for 

maintaining thyrocyte functions [77]. Using closed follicles enables functional parameters to 

be conserved and measured: iodide accumulation, iodide organification and, particularly, 

Tg19S equivalent to that in vivo and T3 and T4 formation throughout culture with or without 

TSH. We have also shown that maintaining closed follicular architecture is an indispensable 

condition for conserving such thyroid functions in culture in vitro. If follicular architecture is 

to be conserved, it is not enough to maintain functions at the same values as those at the 

start of culture as TSH is required and culture becomes improved by adding iodide, as 

thyroid function in vivo is governed by TSH and iodide. 

5.2.2. Morphological study 

Pig hypothyroid follicles cultured 1 and 3 days without TSH have a very thin epithelial 

layer (Figure 5A) like original tissue’s follicle epithelium. The epithelium became cubic after 

day 6 and was preserved up to day 9 (Figure 5C). It was seen that follicles conserving colloid 

had a birefrigent aspect when observed by IM, thereby showing that this was conserved 

during culture. Epithelium thickness increased in the presence of TSH, becoming cubic on 

the first day of culture (Figure 5B) and being maintained so until day 9. 
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Figure 5. Morphological aspect of follicles in culture. A. Hypothyroid follicle 1 day’s culture without 

TSH; birefringent colloid and thin follicle epithelium can be seen. B. Hypothyroid follicle 1 day’s culture 

with 1mU/mL TSH; cubic epithelium and thyrocytes’ apical poles typical of a resealed follicle can be 

seen. C. Hypothyroid follicles in 9 days’ culture without TSH; the epithelium is cubic and colloid 

birefringence can be seen in all follicles. D. Euthyroid follicle 1 day culture without TSH. A resealed 

follicle (circle) having irregular contour between thyrocytes and cavity can be seen in the centre. Closed 

follicles preserve colloid birefringence and regular boundary between thyrocytes and colloid since the 

start of culture. E Pig euthyroid follicles in the presence of 1 mU/mL TSH; follicular cavities are difficult 

to distinguish. F. Autoradiography of rat follicles cultured 12 days in the presence of TSH (1 mU/mL) 

corresponding to experiment 2, Table 3. Follicle cavities are evident due to the organified iodide found 

only in very narrow follicular cavities (Scale bar: A and D 50 μm, B 25 μm, C 130 μm, E 100 μm, IM. F 

150 μm, OM. Toluidina bleu). 

Rat or pig euthyroid follicles without TSH kept the same follicular architecture throughout 

the whole culture time (Figure 5D). Colloidal cavities became reduced from the third day in 

the presence of TSH and were difficult to distinguish on day 9 and 12 by IM (Figure 5E); 

however, they could be seen by autoradiography where only iodide bound to molecules 

could be identified and they were only located in follicles’ very narrow colloidal cavities 

(Figure 5F). Colloidal cavities’ boundaries could also be seen by labelling thyrocytes’ apical 

membrane protein SLC5A8 (short-chain fatty acids transporter) [84].  

Rat thyrocyte and pig euthyroid follicle ultra-structure in one day culture without TSH 

(Figure 6A) and with TSH (Figure 6B) was comparable to that for cells in vivo (Figure 1C). 

They conserved their polarity and organelles, but exocytic vesicles were difficult to 

distinguish from those from endocytosis. RER was more abundant in the presence of TSH 

and microvellosities were more evident than without TSH. 

Thyrocytes had vacuolated and reduced RER and GC following 3 days’ culture without 

TSH; the GC could be seen in supra-nuclear position (Figure 6C G) as could numerous 

autophagic vacuoles (Figure 6C arrow) and secondary lysosomes. This became modified in  
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Figure 6. Ultra-structure of thyrocytes from follicles cultured without TSH A 1 day, C 3 days, D 12 days 

and with 1 mU/mL TSH B 1 day, D 3 days and F 12 days. Binding complexes were preserved in thyrocytes’ 

lateral membrane apical region during all the times with and without TSH. A. Thyrocytes conserved their 

polarisation; microvellosities in contact with electron-dense colloid. Binding complexes were located in 

lateral membrane’s apical region between cells. The rugose endoplasmic reticulum (RER) was found to be 

slightly vesiculated. B. Thyrocyte ultra-structure was comparable to without TSH, even though RER was 

more abundant. C. and D. Ultra-structure was conserved in thyrocytes; the supranuclear Golgi complex 

(G) and more abundant RER in thyrocytes in the presence of TSH can be seen. Autophagic vacuoles (C. 

arrow) and secondary lysosomes (D, arrows) with or without TSH can be seen. E. Thyrocyte polarity was 

conserved. Colloid was electron-dense and separated from follicle exterior. Thyrocytes had exiguous RER 

and G. F. Organelles were well conserved. RER was well developed and occupied thyrocytes’ apical region 

(TEM. A and C 7,300 X, B 7,500 X, D 7,438 X, E 9,810 X, F 8,260 X).  
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the presence of TSH, presenting abundant RER and GC (Figure 6D G) and containing more 

autophagic vacuoles and secondary lysosomes in thyrocytes’ apical region (Figure 6D 

arrows) than without TSH. RER and GC became more reduced by the sixth day without 

TSH and thyrocytes became thin. Whilst autophagic vacuoles and secondary lysosomes 

became reduced with TSH, RER and GC also did so by day 3. 

Thyrocytes were thin by day 9 and 12 without TSH and had exiguous RER and GC and 

reduced microvellosities. The nuclei contained very little heterochromatin (Figure 6E). 

Follicular centres were very narrow in the presence of TSH, thyrocytes had abundant GC 

and RER reaching the cells’ apical regions (Figure 6F) and the other organelles had the same 

distribution as on the first days of culture. 

Adding 10E-10 M NaI did not modify thyrocytes’ follicular architecture or ultra-structure; 

however, RER and GC were preserved up to day 12 without TSH. 

Pig thyrocyte and hypothyroid follicle ultra-structure had exiguous RER and GC when 

culture began (Figure 7A), like original gland hypothyroids in vivo, and culture (even 

without TSH) developed these organelles from the third day of culture [86]. These 

hypothyroid follicles’ thyrocytes became cubic in the presence of TSH (Figure 5B) from the 

first day of culture and it was seen that the RER and GC developed and became more 

evident on the sixth and ninth day of culture (Figure 7B), similar to rat or pig euthyroid 

follicle response with TSH, but follicular cavity did not become reduced. 

Thyrocytes had normal mitochondria in rat follicle and pig euthyroidic and hypothyroid 

cultures for all culture times. 

 

Figure 7. Pig hypothyroid follicle culture. A. RER and GC were exiguous and cells were thin 1 day in 

the absence of TSH. B. 9 days in the presence of 1 mU/mL TSH. Cross-section of thyrocyte follicle basal 

pole. Abundant RER can be seen around the nucleus (TEM. A 7,800 X, B 9,000 X). 

Similar culture models to these have been described. Pig follicle culture has highlighted the 

importance of thyrocyte polarity, but OM morphological study was limited on day 1 [74,94]. 

Another, dealing with “normal” human follicle culture of thyroidectomy for goitre requiring 
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TSH [93] had a TEM image showing thyrocytes having the ultra-structure for cells in the 

process of cell death with lysed mitochondria, without RER or GC. Using this human follicle 

culture model enabled analyzing the effect of TSH [95] or cytokines [95,96] without 

presenting culture morphology.  

Our results showed that if culture was begun with closed follicles then extracellular matrix 

support elements were not required [56,57,79,80] nor was TSH for maintaining follicular 

cavity, as has been described in most pseudofollicle or follicle cultures reconstructed from 

monolayers, or similar structures called “follicles” [57,50,60,61,62,79,96], thereby 

demonstrating that if closed follicles are used from the start of culture they conserve their 

morphology, having the correct polarity as that of their thyrocytes in culture and have a 

binding complex (tight junction, belt desmosome and spot desmosome) in lateral 

membranes’ apical part as well as in vivo [9]. Such closed follicles in culture responded to 

TSH, like other in vitro models [42] or like gland follicles in normal in vivo to TSH stimulus 

[3,25], epithelium thickness, RER and GC becoming increased, and follicular cavities 

becoming notably reduced [11,83,90]. Follicle response to the absence of TSH both in vivo 

[24] and in vitro [42] was also comparable as these organelles became reduced. This effect 

became reverted in vivo when TSH was added, reactivating thyroid functions [11,33,97]. 

Pig closed and isolated hypothyroid follicles behaved like the gland in vivo when the 

hypothyroid effect was deleted [24], RER and GC increased, follicular epithelium became 

thin to cubic and culture time became faster in the presence of TSH, but follicular cavity did 

not become reduced during the 9 days of culture. 

Our results thus showed that long-term thyroid follicle function and morphology can be 

maintained in vitro, being equivalent to the gland in vivo. 

The next section describes the effect of increasing doses of iodide on closed follicles in 

culture. 

5.3. Closed follicle cultures reproduce the Wolff-Chaikoff effect described in vivo 

5.3.1. Functional study 

Follicles were cultured for 1 day before starting to analyse the effect of different iodide 

concentrations. 

Follicles accumulated iodide linearly for 6 h in the presence of 10E-10 and 10E-7 M NaI; 

accumulation was at its maximum after the first 30 min with 10E-5 M and 10E-3 M NaI 

(Table 7); they became accumulated 100 times more than with 10E-10 M NaI in the presence 

of 10E-7 M NaI. Whilst high O/A percentages in follicles were maintained in the presence of 

10E-10 and 10E-7 M NaI, organification began after 2 h with 10E-5 M, accounting for only 

5% of accumulated iodide, these values being maintained for 6 h, whilst O/A proportion 

was zero for all times with 10E-3 M NaI (Table 7), even though accumulation could have 

been 100 times greater to that presented by follicles in the presence of 10E-7 M NaI [98]. 
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% O/A

M, NaI 10E-10 10E-7 10E-5 10E-3 

Culture, hours 

0.5 82 64 0 0 

1 84 42 0 0 

2 88 90 5 0 

3 92 88 3 0 

4 95 87 6 0 

5 88 89 6 0 

6 84 93 4 0 

Table 7. Response of organification percentage regarding iodide accumulation (O/A proportion) by rat 

follicles cultured in the presence of increasing doses of iodide (NaI, M) and Na125I 5 Ci/mL. The 

follicles were cultured on agarose with 0.5% FCS for 1 day, medium was changed and culture began 

with NaI and TSH experimental points. Each value was the average of two samples or culture dishes 

expressed in %/dose/μg DNA. 

Iodide accumulation and organification in rat follicles could be assimilated to biochemical 

reactions after 30 min with and without TSH and thus define a constant (Km) and maximum 

speed (Vmax). Accumulation apparent Km without TSH was 5x10E-6 M and 10E-7 M de 

NaI with TSH; iodide organification apparent Km was 5x10E-7 M and was not modified by 

the presence of TSH (Figure 8). Iodide accumulation by isolated follicles corresponded well 

with saturable iodide transport characteristics [15,99] and stimulated TSH thereby reducing 

Km but not Vmax (Figure 8). It should be stated that organification had to be inhibited and  

 

Figure 8. Initial 125I-iodide accumulation (A) and organification (B) for follicles in culture measured 

following half an hour in the presence of increasing doses of 127-I Na and 5 Ci/mL 125-I Na expressed in -

log M with and without TSH. The follicles were cultured on agarose with 0.5% FCS for 1 day, the 

medium was changed and culture began with NaI and TSH experimental points. The results were the 

average of two samples and were expressed as percentage of maximum value. 
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the time between the end of the culture and the moment when accumulation was 

determined had to be reduced for measuring exact iodide transport parameters. The 

washing times meant that part of 125I- concentrated in follicles would be released before 

radioactivity was determined and this would induce under-stimulation of accumulation and 

perhaps overstimulation of O/A percentage. 

The presence of TSH for 30 min suppressed the inhibiting effect on iodide organification at 

10E-5 M, but did not suppress such iodide effect on organification in the presence of 10E-3 

M TSH (Table 8). 

 

M, NaI 10E-10 10E-7

Culture TSH A O % O/A A O % O/A 

0.5 - 2,58 1,29 50 ± 5* 360,9 156,34 43 ± 6* 

+ 8,06 4,52 56 ± 2* 676,69 406,02 60 ± 14* 

3 - 10,88 8,16 75 ± 10* 902,26 525,24 58 ± 7 

+ 14,84 11,81 79 ± 1* 1308,27 1079,24 82 ± 1 

8 - 35,97 29,84 83 ± 11 2255,64 1602,81 71 ± 4* 

+ 32,26 28,06 87 ± 23 1736,84 1371,98 79 ± 10* 

12 - ND 1849,62 1191,13 64 ± 9 

+ ND 1353,38 853,23 63 ± 13 

24 - ND 1714,29 1421,05 83 ± 10 

+ ND 1759,4 1254,17 71 ± 8 

48 - ND 1917,29 1361,98 71 ± 10* 

+ ND 3969,92 3194,23 80 ± 6* 

M, NaI 10E-5 10E-3

Culture TSH A O % O/A A O % O/A 

0.5 - 14749,09 0 0 * 233469,39 0 0 

+ 12480,01 2,63 21 ± 16* 244244,9 0 0 

3 - 15272,73 1553,64 10 ± 6 520816,33 0 0 

+ 17541,82 2987,27 17 ± 2 466938,78 0 0 

8 - 16495,45 2397,15 14 ± 5 574693,88 0 0 

+ 20770,91 4450,91 21 ± 2 790204,08 0 0 

12 - ND * 718367,35 0 0 

+ ND * 1957551,02 0 0 

24 - ND * 3071020,41 0 0 

+ ND * 682448,98 0 0 

48 - ND 664489,8 0 0 

+ ND 484897,96 0 0 

Table 8. The effect of I- dose on the accumulation (A) and organificación (O) of the rat follicles. Follicles 

cultured on agarose with 0.5% FCS for 1 day; the medium was changed and culture began with 

different experimental points. The follicles were keep in culture along the time (culture in hours) with 5 

µCi/mL Na125I, with (+) or without 0.1 mU/mL TSH (-) and doses of Na127I (NaI). Each value was the 

average of two samples expressed in μg/dose/μg DNA. This result was representative of 5 independent 

experiments. O/A: percentage of the proportion O/A ± SD. *p< 0.05. ND: not determinated. 
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Follicle culture in the presence of the same iodide dose with 0.1 mU/mL and without TSH 

led up to 8 h with 10E-10 M and 10E-5 M NaI and up to 48 h with 10E-7 M and 10E-3 M NaI. 

An iodide accumulation function directly proportional to NaI concentration was reproduced 

as in table 7. 

Accumulation in follicles became saturated after 8 h in the presence of 10E-7 M NaI with 

and without TSH, becoming slightly reduced at 12 and 24 h and increasing at 48 h; iodide 

accumulation with TSH was lower at 8, 12 and 24 h than without TSH (significant only at 12 

h, p< 0.05). Percentage of the proportion O/A was maintained high values with and without 

TSH, difference with and without TSH at 30 min and 48 h being significant (Table 8). 

Iodide accumulation satuproportion was reproduced in follicles in the presence of 10E-5 M 

NaI, whether with or without TSH. TSH significantly stimulated organification inhibited by 

10E-5 M NaI (p< 0.05) at 30 min, even though O/A percentage was slightly higher than at 

other times (but was not significant) (Table 8). 

Iodide accumulation in follicles in the presence of 10E-3 M NaI with and without TSH 

reached a plateau at 3 h (Table 8) and was greater in follicles without TSH than with TSH at 

12, 24 and 48 h; however, this difference was only significant at 12 and 48 h (p< 0.05). Iodide 

accumulation became reduced with and without TSH at 48 h to 3 h values, even though 

without TSH this was greater but not significantly so. Iodide organification was zero with 

such strong dose of iodide with and without TSH at all times examined (Table 8).  

Pig euthyroidic follicles had the same response as rat follicles when culturing for 48 h in the 

presence of increasing doses of iodide with or without TSH. Organification was zero at all 

times in the presence of 10-E3 M NaI with and without TSH (Table 9). 

 

M, NaI 10E-10 10E-7 10E-3 

Culture TSH % O/A N % O/A N % O/A N 

0.5 - 30.4 ± 0.56 2 30.4 ± 0.63 2 0 3 

+ 34.7  ± 9.21 2 72.7  ± 2.84 2 0 3 

3 - 67.0  ± 1.54 2 63.2  ± 9.14 2 0 3 

+ 79.5  ± 6.79 2 73.6 1 0 3 

12 - 71.8  ± 2.35 2 52.4 ± 2.63 1 0 3 

+ 78.9  ± 2.63 2 77.6  ± 3.15 2 0 3 

24 - 59.7  ± 2.09 2 87.6  ± 1.97 2 0 4 

+ 68.8  ± 7.13 2 85.7  ± 0.99 2 0 3 

Table 9. The effect of I- dose on the proportion accumulation/organificación pourcentage (% A/O) in 

euthyroidic pig follicles cultured. Follicles cultured on agarose with 0.5% FCS for 1 day; the medium 

was changed and culture began with different experimental points. The follicles were keep in culture 

along the time (culture in hours) with 5 µCi/mL Na125I, with (+) or without 1 mU/mL TSH (-) and doses 

of Na127I (NaI). Each value was the average of accumulated or organified (O/A) iodide expressed in 

%/dose/μg DNA per number (N) of culture dishes ± SD.  

Pig hypothyroid follicles had a different response to the presence of increasing doses of 

iodide than rat and pig euthyroidic follicles (Table 10). They accumulated 40 to 100 times 
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more in the three doses than euthyroidic follicles, presenting organification in the presence 

of 10E-3 M NaI with or without TSH. Iodide accumulation in these follicles in the presence 

of perchlorate (30 M) was only inhibited at 12 h in the presence of 10E-3 M NaI and at 3 h 

in the presence of 10E-7 M NaI (euthyroidic follicles in the presence of 30 M perchlorate 

inhibited iodide capture at all concentrations) and O/A percentages in follicles in the 

presence of 10E-7 M NaI were greater in the absence of TSH than in their presence (Table 

10), such value becoming reduced with culture time. 

 

NaI 10E-10 M 10E-7 M 10E-3 M 

Culture TSH % O/A N % O/A N % O/A N 

0.5 - 77.9 ± 0.61 4 74.9 ± 0.63 4 6.3 ± 0.63 3 

+ 57.3  ± 0.78 4 71.6  ± 2.84 4 15.1 ± 0.63 3 

3 - 75.8  ± 0.49 4 68.7  ± 9.14 4 5.4 ± 0.63 3 

+ 60.6  ± 0.68 4 57.2  ± 9.14 4 3.0 ± 0.63 3 

12 - ND 87.3 ± 2.63 4 10.4 ± 0.63 3 

+ ND 72.8  ± 3.15 4 3.8 ± 0.63 3 

24 - ND 44.3  ± 1.97 4 11.6 ± 0.63 4 

+ ND 28.7  ± 0.99 4 9.7 ± 0.63 3 

Table 10. The effect of I- dose on the proportion accumulation/organificación pourcentage (% A/O) in 

pig hypothyroid follicles cultured. Follicles cultured on agarose with 0.5% FCS for 1 day; the medium 

was changed and culture began with different experimental points. The follicles were keep in culture 

along the time (culture in hours) with 5 µCi/mL Na125I, with (+) or without 1 mU/mL TSH (-) and doses 

of Na127I (NaI). Each value was the average of iodide accumulated or organified (O/A) iodide expressed 

in %/dose/μg DNA per number (N) of culture dishes ± SD. ND: not determinated. 

Iodide accumulation values in the presence of 10E-3 M NaI in hypothyroid follicles were 2 

times greater in follicles in the presence of TSH than without TSH, had organification in 

similar proportions to euthyroidic follicles in the presence of 10E-5 M NaI. Percentage of the 

proporction O/A was higher at 30 min without TSH than with TSH; it was lower at the other 

times. Without TSH increased with culture time whilst values became reduced regarding 

time with TSH (Table 10). Organification in this case was not nil, but the organified iodine 

did not exceed 11% for accumulated iodide. 

Mouse follicles cultured 3 days in the presence of 10E-7 M NaI was more intense in the presence 

of reactive species at the boundary between apical membrane microvellosities and colloid 

and the oxide reduction system became completely closed down with an excess of iodide 

(10E-4 M NaI) [100]. This proved that an excess of iodide inhibited the enzymes responsible 

for organification in closed follicles as we have thought should be in the gland in vivo. 

Euthyroidic follicles accumulated iodide regarding medium constant proportion concentration. 

Accumulated iodide was organified in the presence of 10E-10 M and 10E-7 M NaI; 

organification was extremely reduced in the presence of 10E-5 M and zero with 10E-3 M NaI 

as described in vivo [1]. Accumulation was greater in follicles without TSH than with TSH in 

the presence of 10E-3 M NaI at 12, 24 and 48 h; this reduction was similar to that of the 

gland in vivo [101,102]. 
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Hypothyroid follicles in the presence of 10-3 M NaI accumulated more iodide without TSH 

than with TSH at the beginning (30 min), even though proportion of O/A percentage was 

greater at 30 min than at other times; this effect (different to euthyroidic ones) was similar to 

that described in vivo in hypothyroid glands [28]. They also responded by reproducing the 

effect observed in animals suffering experimental goitre as, when excess iodide was added 

to food, they did not respond to TSH [24]. 50% of human endemic goitre has responded to 

an iodine-rich diet and some of these to TSH [25] as hypothyroid follicles in the presence of 

TSH and 10E-3 M NaI have responded by becoming less organified than in the absence of 

TSH. It should be stated that there is no consensus regarding what should be the correct 

dose for defining low, medium or high iodide concentration in human alimentation [25]. 

Closed and isolated follicles thus responded to 10E-5 M and 10E-3 M NaI inhibiting iodide 

organification in a similar way to that described for the gland in vivo in 1948 [1] (i.e. 

reproducing the Wolff-Chaikoff effect).  

5.3.2. Morphological study 

Hypothyroid follicles conserved follicular architecture during 48 h of culture in the presence 

of different doses of iodide with and without TSH (Figures 9A, 9B and 9C). Rat follicles and 

pig euthyroidic follicles at all iodide doses in the presence or absence of TSH conserved 

follicular architecture for 48 h (Figure 9D). 

 

Figure 9. Appearance of pig follicles cultured on agarose with 0.5% FCS for 1 day; the medium was 

changed and culture lasted 48 h. A. Hypothyroid s follicles in the presence of 10E-10M NaI. B. 

Hypothyroid follicles in the presence of 10E-7M NaI. C. Hypothyroid follicles in the presence of 10E-3M 

NaI. D. Euthyroidic follicles in the presence of 10E-3M NaI. The follicular architecture of the gland in 

vivo was conserved in all cultures; hypothyroids (A, B and C) had thin epithelium and euthyroidic (D) 

ones cubic epithelium (IM. Scale bar: A, B, C 800 μm, D 200 μm). 

The Trypan blue exclusion exam of thyrocytes from follicles cultured with 10E-3 M NaI did 

not have an alteration to their membranes and excluded the stain, whether being pig 

euthyroidic follicles cultured 48 h (Figure 10A) or rat ones cultured for 6 days (Figure 10B). 

The cells of cell aggregates which did not have follicular structure became stained (Figure 

1C), the same as isolated cells (Figure 10B) or those found in follicles. 

The ultra-structure of thyrocytes in all treatments and times preserved cell polarisation and 

organelle distribution (Figure 11), like the gland in vivo (Figure 1C); endocytic vesicles can 

be seen in thyrocytes’ apical region (Figure 11) like follicles after 3 days of culture (Figures 

6C and 6D). 
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Figure 10. Trypan blue exclusion exam of culture aliquots for follicles cultured on agarose with 0.5% 

FCS 1 day; the medium was changed and culturing involved 10E-3 M NaI. A. 2 day rat follicle culture. 

B. 6 day pig euthyroid follicle culture. The thyrocytes from the follicles excluded the stain whilst 

isolated cells did not exclude it, whether separated from the follicle (A) or on the follicle (B) (IM, Scale 

bar A 60 μm, B 15 μm). 

 

Figure 11. The ultra-structure of rat follicle rat thyrocytes cultured on agarose with 0.5% FCS for 1 day; 

the medium was changed and 48-h culture involved different experimental points: A. 10E-7 M NaI. B. 

10E-3 M NaI + 0.1 mU/mL TSH. Thyrocytes kept their polarisation; microvellosities were in contact with 

electron-dense colloid. The binding complexes were located in the lateral membrane’s apical region 

between cells. The RER was slightly vesiculated. Thyrocytes did not have cytological differences 

regarding iodide dose; follicular centres only became narrowed in the presence of TSH (B) (TEM. A 

8,720 X, B 10,720 X) 

Follicles in the presence of TSH narrowed their follicle centres at all iodide doses used 

(Figures 12B and 12D), but did not undergo any ultra-structural modification in strong 

iodide concentrations: 10E-5M or 10E-3 M NaI. Organelle distribution was comparable to 

normal gland in vivo (Figure 1C) or follicles in long-term culture (Figures 6C and 6D). 

Lysosome fusion occurred in follicles in the presence of 10E-10 M NaI and 0.1 mU/mL TSH 

for 8 h (Figure 12B) while this did not happen in thyrocytes’ apical region (Figure 12B insert) 
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in the absence of TSH (Figures 12A and 12C). This was also observed en thyrocytes from 

follicles cultured for 8 h with 10E-3 M NaI and TSH, but colloid droplets were only located 

in the apical region in this dose (Figure 12D). Thyrocytes also had endocytic vesicles in this 

dose without TSH but also located in cells’ apical region (Figure 12C). Thyrocytes ultra-

structure in the presence of strong concentrations of iodide did not have morphological 

modifications, or distribution of organelles regarding normal or non-stimulated cells in vivo 

(Figure 1C) or in vitro (Figures 6C and 6D). 

 

Figure 12. The ultra-structure of rat follicle thyrocytes cultured on agarose with 0.5% FCS for 1 day; the 

medium was changed and 8 h of culture involved different experimental points: A. 10-E10 M NaI. B. 10-

E10 M NaI + 0.1 mU/mL TSH. C. 10-E3 M NaI. D. 10-E3 M NaI + 0.1 mU/mL TSH. A. The ultra-structure 

of thyrocytes in the absence of TSH was identical to that of thyrocytes from follicles cultured for 1 day. 

B. Lysosomes close to the nucleus and few colloid droplets located in the apical pole (insert) were 

observed in the presence of TSH. C. They were well conserved in the presence of TSH, even in this 

strong dose of NaI. Endocytic vesicles were present in such strong dose of iodide. D. Colloid droplets 

were also observed in the presence of TSH, having the same density as colloid and were located in the 

thyrocytes’ apical pole. Follicle centre was narrow and had abundant microvellosities (TEM. A 8,720 X, 

B 12,510 X, box 10,720 X, C 7,430 X, box 70,950 X, D 13,450 X). 
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The thyrocytes from follicles cultured from 30 min up to 6 days in the presence of 10E-3 M 

NaI did not have cytotoxic signs and all follicular cells were viable, like normal animals’ 

thyroid glands’ in vivo when fed with excess iodide for 3 weeks [103]. 

Open human follicle culture in the presence of 10E-3 M NaI with and without TSH for 24 h 

had ultra-structural alterations related to cytotoxicity [92] involving free radical attack and 

lipid peroxidation. Excess iodide in pig follicles led to thyrocyte apoptosis because iodine 

production in lactone became reduced, but did not present morphology. Our results showed 

that conserving closed follicles did not lead to signs of cell death with 10E-5 M or 10E-3 M 

NaI or disorganisation or alteration of thyrocyte ultra-structure. The difference with [92] and 

[94] was that they were open follicle cultures and thyrocytes died simply because they were 

cultured on a support which inhibited cellular adhesion, like our cell aggregates. 

Closed follicles were present (Figure 12), as described for the gland. There was apical 

membrane turnover between microvellosities which is important for maintaining Tg 

synthesis and its secretion to colloid [8]. Coated endocytic vesicles (Figure 12C insert) were 

also present in the base of microvellosities, like micro-endocytosis in vivo [5], and those 

stimulated by TSH formed pseudopods and colloid droplets (Figures 12B insert and 12C 

letter DC), called in vivo macro-endocytosis [10]. Thyrocyte fusion with prelysosomes or late 

endosomes from the lysosome route was also observed (Figure 12B arrows) for Tg 

degradation and thyroid hormones were formed in vivo [19] and in vitro [18]. 

Closed rat and pig euthyroidic follicles responded to increasing doses of iodide, as in vivo, 

thereby producing the Wolff-Chaikoff effect [1], and presented no modifications in 

thyrocytes’ follicular architecture or ultra-structure, being comparable to a gland in vivo.  

5.3.2.1. Na+/I- symporter determination  

Many thyrocyte culture studies have described reduced RNAm and NIS protein expression 

when maintained in the presence of strong iodide concentrations (10E-6 to 10E-4 M of 

iodide). We wanted to determine NIS in rat follicles cultured with strong iodide 

concentrations with and without TSH 0.1 mU/mL. 

Follicles cultured at 12 h in the presence of 10E-7 M NaI and without TSH had NIS in 

basolateral membranes (Figure 13A) and labelling was more intense in lateral membranes in 

the presence of TSH (Figure 13B). In the presence of 10E-3 M NaI NIS was mainly located in 

vesicles between nucleus and basolateral membranes (Figure 13C), and in the presence of 

TSH; as well as being presented in vesicles they were observed in basolateral membranes 

(Figure 13D). It could have been that inhibiting vesicular movement in the presence of 10E-3 

M NaI in the apical region (Figures 11C and 11D), as well as inhibiting the movement of the 

vesicles forming in the basement region with NIS symporter for avoiding excessive iodide 

entry to thyrocytes. 

The NIS symporter was located in the basolateral members in the presence of 10E-10 M NaI 

at 48 h (E and F), labelling being more intense in the presence of TSH. The NIS symporter 

was found in the cytoplasmatic vesicles with TSH (F). NIS symporter expression in the 

presence of 10E-3 M NaI for 48 h (G and H) was so low that confocal microscope parameters  
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Figure 13. Indirect immunofluorescence of NIS symporter (green) expression and localisation and DAPI-

labelled nuclei (blue) in follicles isolated from rats cultured for 1 day on agarose with 0.5% FCS for 1 day; 

the medium was changed and were cultured for 12 h (A, B, C and D) and for 48 h (E, F, G and H), with 

different experimental points: NaI with and without 0.1 mU/mL TSH. A. 10E-7 M NaI, B. 10E-7 M NaI + 

TSH. C. 10E-3 M NaI. D. 10E-3 M NaI + TSH. E. 10E-7 M NaI. F. 10E-7 M NaI + TSH. G. 10E-3 M NaI. H. 

10E-3 M NaI + TSH. NIS symporter was located in the basolateral membranes in the presence of 10E-10 M 

NaI at 12 h (A and B). TSH intensified labelling (B). NIS symporter was located in cytoplasmatic vesicles 

near thyrocytes’ basolateral membranes in the presence of 10E-3 M NaI at 12 h (C and D). There was 

more intense labelling in some thyrocytes’ basolateral membranes in the presence of TSH (D). [104] 

(laser intensity, detector gain, scanning time) had to be adjusted again to increase labelling 

intensity. NIS protein was mainly observed in cytoplasmatic vesicles in these follicles, being 

more intense than labelling without TSH (G). Basement membranes had exiguous NIS 

labelling (CM. Scale bar: 10 μm). 

The NIS symporter in follicles cultured for 48 h in the presence of 10E-7 M NaI were located 

in vesicles and basolateral membranes (Figure 13E); TSH intensified such labelling (Figure 

13F). NIS expression was very reduced regarding the other treatments in the presence of 

10E-3 M NaI with and without TSH and microscope parameters had to be readjusted for 

observing fluorescence. NIS was located in cytoplasmatic vesicles in this strong dose of NaI 

and without TSH (Figure 13G). TSH was located in vesicles in the base region but labelling 

was less intense (Figure 13H) than with TSH. 

NIS has normally been located in thyrocytes’ basolateral members in vivo [13], and a reduction 

in its normal expression has been associated with escape from the Wolff-Chaikoff effect [30] 

following 48 h in the presence of strong iodide concentrations [29]. Being found in vesicles has 

reduced NIS in its normal position for thyrocytes from follicles in the presence of a strong dose 

of NaI [104] and has thus suppressed I-transport for thyroid hormone production. 

These results were similar in the FRTL5 cell line where the same dose did not alter NIS 

RNAm percentage, but protein became reduced by 50% and 78 % at 24 and 48 h, 

respectively [32]. NIS RNAm became reduced in dogs with goitre at 48 h with a comparable 
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iodide dose [105]. This was perhaps presented by reduced AM2Pc levels at 48 h, as excess I- 

inhibited an increase in AMPc stimulated by TSH in hypophysectomised rats [106] and mice 

[34], which could have explained the low NIS level during Wolff-Chaikoff effect and in 

follicles at 48 h in the presence of excess iodide (Figure s13G and 13H). Excess I- inhibited IP3 

production and increased Ca2+ flow induced by TSH, which could have led to reduced 

peroxide production during Wolff-Chaikoff effect [107,108]. The organification observed in 

the presence of 10E-5 M (Table 8) did not completely inhibit TPO and had no effect on NIS 

in the presence of 10E-3 M NaI (Figures 13E and 13H), thereby demonstrating that 

organification depends on TPO and not on NIS as in cells transfected with the TPO gene 

[34]. TSH did not stimulate the organification of iodide captured in 10E-3 M but did so in 

10E-5 M NaI (Tables 8 and 10), as it has been described that the effect of TSH on thyroid 

physiology becomes reduced in the presence of excess I- , meaning that antagonic roles are 

assumed in vivo [102]. 

TSH modulated relative NIS expression and its subcellular localisation in the thyrocytes of 

isolated and closed follicles in vitro. These results were similar to those found in FRTL5cells, 

where it has been demonstrated that de novo synthesis [32], half-life time, NIS targeting 

and/or retention regarding cytoplasmatic membrane requires TSH to be located throughout 

cell membrane, due to loss of polarity [109]. 

Thyrocyte disposition in follicles has not been necessary for iodide accumulation, since it 

has been present in foetal thyroids before follicular lumen formation [110] and also in 

primary cultures from normal thyrocytes [111] or goitre patients [112] and in the FRTL cell 

line [113]; however, these cultures have required TSH, hormones and other molecules for 

maintaining them. Nevertheless, isolating the colloidal cavity from the exterior must be 

ensured for iodide accumulation and incorporation in Tg, T3 and T4 hormone synthesis, as 

demonstrated with rat or pig isolated and closed follicle cultures. 

Rat and pig follicles thus inhibited iodide organification in the presence of strong 

concentrations of iodide, i.e. performed the Wolff-Chaikoff effect. Neither thyrocytes’ 

follicular architecture nor ultra-structure was modified and no sign of cell death was 

presented. The TSH and iodide effects observed in vivo during the Wolff-Chaikoff effect 

were reproduced. 

6. Conclusion 

Loss of follicular structure during the first 24 h of culture has been the main drawback of in 

vitro thyroid studies and, therefore, hormone synthesis. It is not enough to conserve 

thyrocytes’ apical-basal polarity in culture in this specific tissue for maintaining colloid’s 

extracellular functions for the enzymes implicated in iodide fixation on Tg and hormone 

synthesis. 

We have shown that follicular architecture must be conserved in culture, especially the 

follicular cavity isolated from extracellular medium as this is indispensable for maintaining 

ultra-structure and the polarity of thyrocytes around the follicular cavity; such premise 
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conserving the idea of Tg19S synthesis usually being glycosylated and iodised, as also T3 

and T4 hormone synthesis. Follicular morphological conservation is necessary for 

reproducing the Wolff-Chaikoff effect in vitro, as has been described in vivo. NIS symporter 

localisation in thyrocytes depends on I and TSH concentration. 

This culture may be used for obtaining follicles from pathologies of human tissue whose 

epithelium may be thin plate-like cells for in vitro studies in controlled and homologous 

conditions regarding the pathology in vivo. It will also enable studying normal or 

pathological thyroid’s physiological, cellular and molecular mechanisms (for example CLC-

5 channel) in a homologous model of the gland in vivo. 
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