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1. Introduction 

Atherosclerosis (ATH) is a condition characterized by thickening of the arterial intima as a 

result of the accumulation of fatty materials (mainly cholesterol and cholesterol esters). 

Lesions of the disease (atheromas or atherosclerotic plaques) have three distinct compo-

nents, (1) the atheroma which is the nodular accumulation of a soft, flaky yellowish material 

at the center of the large plaques, composed of macrophages nearest the lumen of the artery, 

(2) underlying accumulations of cholesterol crystals, and (3) calcification of the older or 

more advanced lesions. In human beings, ATH is major cause of adult mortality in the de-

veloped world [1]. In animals, ATH occurs rarely, and only infrequently leads to a clinical 

disease such as infarction of the heart and brain. Several studies have indicated that the pig, 

rabbit, and chicken are susceptible to experimental induction of the disease through feeding 

of a high- cholesterol diet and that the dog, cat, cow, goat, and rat are resistant. Naturally – 

occurring disease has been reported in aged pigs and birds and in dogs suffering from hy-

pothyroidism that accompanies hypercholesterolemia [2]. 

The smooth muscle cells (SMCs) constitute the predominant cellular element of the vascular 

media, cause vasoconstriction or dilation in response to physiological or pharmacological 

stimuli, synthesize extracellular matrix (collagen, elastin and proteoglycans); elaborate 

growth factors and cytokines; and migrate to the intima and proliferate after vascular injury. 

These activities of SMCs are important in both normal vascular repair and pathological 

processes such as ATH. Physiological regulation of the migratory and proliferative activities 

of the SMCs is regulated by growth promoters and inhibitors. Among the promoters are the 

platelet – derived growth factor derived from platelets (and endothelial cells and macro-

phages), basic fibroblast growth factor, and interleukin 1. Inhibitors include heparin sulfates, 

nitric oxide, interferon γ, and transforming growth factor β.  

Injury of the wall of blood vessels stimulates SMCs growth by disrupting the physiological 

balance between inhibition and stimulation. Repair of the injured vascular wall constitutes a 
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physiologic healing response with the formation of a neointima, in which SMCs: (1) migrate 

from the media to the intima, (2) proliferate as intimal SMCs, and (3) elaborate extracellular 

matrix. During the healing process, the SMCs in the intima lose the capacity to contract and 

gain the capacity to divide. Within the intima, the SMCs may return to the nonproliferative 

state when either the overlying endothelial layer is re – established after acute injury or the 

chronic inflammation ceases. However, intimal thickening occurs when the healing 

response is exaggerated and this can cause stenosis or occlusion of small and medium sized 

blood vessels.  

2. Functional roles of VSMC in atherosclerosis 

Functional roles of VSMC in atherosclerosis include: (1) phenotypic switching (from 

quiescent "contractile "phenotype to active "synthetic "state; (2) extracellular matrix (ECM) 

deposition; (3) proliferation; (4) migration; (5) inflammatory gene expression, (6) oxidant 

stress; and (7) monocyte retention (monocyte – VSMC binding) (Figure 1). 

2.1. Phenotypic switching 

Several studies demonstrated that the vascular smooth muscle cells have phenotypes that 

differ in the media and atherosclerotic lesions, and that phenotypic switching of SMCs plays 

a central role in atherosclerosis according to Ross's hypothesis [3, 4]. It has been proposed 

that before migration from the media into the intima, a transition of the SMCs phenotype is 

required [5]. In the media, the SMCs have a contractile phenotype that enables them to 

regulate the vascular tone. When these cells proliferate they acquire a synthetic phenotype. 

During the proliferative state the SMC requires extensive changes in gene expression and 

protein synthesis [6].  

A major challenge in understanding differentiation of the SMCs is their ability to appear as a 

wide range of different phenotypes at different stages of development, and even in adult 

organism the cells are not terminally differentiated and are capable of major changes in their 

phenotype in response to changes in their local environment [7, 8, 9]. During early stages of 

vasculogensis SMCs are highly migratory and undergo rapid cell proliferation. Many 

studies indicated that there is a remarkable amount of movement of SMCs and SMC 

progenitor cells as part of the complex morphogenic events that leads to the formation of the 

cardiovascular system [10, 11]. During vascular development, SMCs also show high rate of 

synthesis of extracellular matrix components including collagen, elastin, proteoglycans, 

cadherins, and integrins that share the formation of blood vessel mass. In this stage of 

development, SMCs form abundant gap junctions with endothelial cells, and the process of 

investment of endothelial tube with SMCs or pericytes is necessary for vascular maturation 

and vessel remodeling [12]. In comparison, the SMCs in adult blood vessels show very low 

rate of proliferation turnover, are largely nonmigratory, show a very low rate of synthesis of 

extracellular matrix components, and are committed only to carry their contractile function 

[9]. Mature fully differentiated SMCs express a repertoire of appropriate receptors, ion 

channels, signal transudation molecules, calcium regulatory protein, and contractile protein 
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[7]. Following vascular injury the "contractile" SMCs are capable of undergoing transient 

modification of this phenotype to a highly "synthetic ' phenotype, and they play an 

important role in the repair of vascular injury. However, that repair of vascular injury is 

carried out principally (or exclusively) by reversible phenotype modulation of preexisting 

SMCs is a matter of controversy. Many studies proposed two alternative mechanisms 

although in reality none is mutually exclusive. In the first one there is evidence that the 

circulating bone marrow derived SMC progenitor cells play a major role in the repair of 

vascular injury [13, 14, 15]. The second proposed mechanism is supported by the evidence 

that SMC populations within blood vessels are extremely heterogeneous with resident 

stable populations of preexisting SMCs that are phenotypically distinct from the classical 

definition of a contractile SMCs [16, 17] and that these cells accomplish the injury repair [9].   

Some recent studies have provided evidence that circulating cells, presumably derived from 

bone marrow, can contribute to neointima formation and repair of vascular injury [13, 15, 

18]. However, these studies involved very extensive damage to medial SMCs (almost 

complete destruction of the media and SMCs death), and / or immunologic injury due to 

genetic mismatch of host and donor tissues following tissue transplantation combined with 

lack of adequate immunosuppression therapy. However, there is no single study in the 

severe mechanical injury models have provided strong evidence that bone marrow cells 

within lesions express definitive SMC markers such as smooth muscle (SM) myosin heavy 

chain (MHC) and smoothelin. In addition no studies have been made on the possibility of 

fusion of circulating progenitor cells with resident SMCs [9]. 

A number of studies are available demonstrating that there are heterogeneities between 

SMCs within the blood vessel with retention of a resident stable population of cells that 

have a "synthetic phenotype" [17, 19]. In the study of [19] a panel of antibodies specific for 

different markers of SMC differentiation including SMC α – actin, SM MHC, calponin, des-

min, and meta – vinculin were used to perform immunofluorescence labeling studies on 

cryosections of adult and fetal bovine main pulmonary arteries. The authors performed also 

Western analyses of these marker genes in the three different layers of the adult bovine 

pulmonary artery. These authors reported the presence of four distinct populations or clus-

ters of MSCs based on morphology, cell orientation, pattern of elastic lamellae, and im-

munostaining patterns and proposed that these populations may represent unique lineages 

performing different functions within the arterial media, and respond in different ways to 

stimuli. Although strong evidence exists for the presence of heterogenous populations of 

SMCs in vivo no studies were done to demonstrate that these represent distinct stable SMC 

lineages that play a preferential role in carrying out repair of vascular injury in vivo. The 

studies of Clowes and co-workers [20, 21, 22] would seem to refute such a possibility in that 

they showed SMC growth fractions (the fraction of medial SMC at time O that leave Go and 

reenter the cell cycle) of up to 60% following balloon injury of the rat carotid artery, indicat-

ing that the majority of SMCs within the media possess the ability to reenter the cell cycle 

and contribute to repair of vascular injury in adult animals. Thus the preexisting "subpopu-

lation "of SMC capable of phenotypic switching is much greater than frequencies reported 

by [19] and represent a large fraction of SMCs in the vessel wall. [23] using the generation of 
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complex SMC ancestor tables for the entire SMC population within the thoracic and ab-

dominal aorta based on pulse – chase labeling with [3H] thymidine in hypercholesteremic 

swine models of atherosclerosis provided evidence that supports the previous findings. 

They found that the intimal lesions were polyclonal and derived from multiple histological-

ly discrete medial SMCs that initiated DNA replication and subsequently underwent several 

rounds of DNA replication. These findings are in discrepancy with a model in which only a 

small fraction of medial SMCs contribute to lesion formation.   

Results of another study [24] reported that distinct populations of rat cultured SMCs (adult 

and embryonic) when implanted into a rat carotid artery in vivo retained some phenotypic 

differences. These findings suggest that there is considerable stability in the phenotype of 

these cells. However, it is possible that the stable epigenetic reprogramming of these cells 

was a function of their extensive growth in culture. Additionally, since large number of 

cells were transplanted, it is possible that the transplanted cells could created their own 

"microenvironmental domain or milieu "and that autocrine and paracrine effects 

contributed to the retention of phenotypic differences. [25] suggested the existence of a 

subpopulation of terminally differentiated SMC that is incapable of cell cycle reentery. 

Evidence for this suggestion was based on studies showing failure of a subpopulation of 

SMC derived from dog aorta to proliferate in culture. However, this finding may repersent 

the lack of appropriate culture reagents and / or conditions necessary to support growth of 

these cells. 

In summary, it seems that the principal source of SMCs responsible for repair of vascular 

injury under "normal "circumstances are the preexisting SMCs that undergo transient and 

reversible phenotypic modulation. However, circulating bone marrow cells, cells derived 

from the adventitia, and / or preexisting subpopulations of phenotypically modified SMC 

can participate to some extent as well. The role of each of these different populations differs 

according to the nature of the vascular injury or the disease state.    

2.2. ECM deposition 

ECM comprises > 50 % of the atherosclerotic lesion and it consists of a mixture of vastly 

different macromolecules including collagen, elastin, glycoproteins, fibronectin, laminin, 

vitronectin, and thrombospondin. These matrix proteins are produced largely by the 

activated VSMCs  [26, 27] and confers tensile strength and viscoelasticity to the arterial wall. 

Each of these ECM components possesses unique structural properties that determine its 

own roles during the development of atherosclerotic plaques. In addition to its role in 

supporting the plaque, ECM participates in many key events such as cell migration and 

proliferation, lipoprotein retention and thrombosis.  

Matrix metalloproteinases (MMPs) are endopeptidases produced by SMCs and macrophag-

es and they contribute significantly to the degradation and remodeling of the plaque extra-

cellular matrix [29]. MMps that are induced to be expressed by environmental factors pre-

sent within the lesion can actively modify the matrix in which SMCs reside and actively 

contribute to further phenotypic switching of the SMC. SMC phenotype is prone to  
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Figure 1. Redrawn and modified from Ross [28]. 

modification by a number of factors including PDGF [30], TGF β [31], intric oxide [32], and 

reactive oxygen species [33]. These factors have been demonstrated to modify MMP pro-

duction in cultured SMCs, although information concerning the mechanisms and factors 

that control expression of MMPs in vivo are still lacking. A major determinant of plaque 

stability is the existence of a balance between production of matrix degrading MMPs, the 

inhibitors MMPs or tissue inhibitor of metalloproteinase (TIMPs), and matrix production 

by SMCs [34, 35]. In normal arteries of human and laboratory animals, MMP – 2 (72 – Kda 

gelatinase) and TIMp – 1 and TIMP – 2 are constitutively expressed at levels creating a 

stable balance between endogenous matrix proliferation and matrix degradation m and a 

normal MMP – to – TIMP ratio [29]. In the developing atherosclerotic lesion, this ratio is 

tipped towards MMPs as described in part by an increase in MMP – 3 (stromelysin) and 

MMP – 9 (92 – Dka gelatinase), and increased MMP – to – TIMP ratio [29]. It would seem 

that MMP overexpression is important for the migration and formation of a SMC – rich 
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fibrous plaque and subsequent plaque stabilization. Galis et al. [36] presented evidence that 

MMP – 3 and MMP – 9 could be also expressed by SMCs in the shoulder region of human 

atherosclerotic plaques. [37] found a correlation between decrease of SM – 1 and SM – 2 

marker expression and increase in PDGF and MIM – 3/ 9 expression in the rabbit neointi-

ma. Knoockout gene studies for MMP – 9 have demonstrated decreased intimal SMC hy-

perplasia and reduced late lumen loss in the mouse carotid artery flow cessation model 

[38] and in the carotid wire injury model [39]. During the natural progression of atheroscle-

rosis in APOE – 1- mice, differential expression of MMP – 9 increases with time in lesional 

areas versus nonlesion areas [40]. Lemaitere et al. [35] showed that in TIMP – 1 / - mice 

crossed to APOE – 1- mice there was increased aortic medial ruptures compared with con-

trol mice after 10 weeks of Western diet feeding, indicating imbalance between MMP ex-

pression and TIMP expression can lead to lesion instability.  

2.3. SMC proliferation 

Immediately following activation by the injury, growth factor, or cytokine, the SMC 

undergoes phenotypic change that leads to a migratory and secretory cell that migrates into 

the neointima [41]. Stimulation by growth factor or cytokine causes the SMCs to proliferate 

and secrete matrix proteins and enzymes. Whereas the complex atherosclerotic lesions 

contain a mixed type of cells including SMCs, lipid laeden macrophages, and lymphocytes, 

the vascular SMCs are the dominant cellular component of the de novo and in-stent 

restenotic lesions. Results of both experimental and randomized clinical trials have shown 

that significant retardation of in-sent stenosis could be achieved through the delivery of 

inhibitors of inflammation and of SMCs proliferation such as sirolimus and paclitaxel to the 

site of intervention on drug – eluting stents [42, 43].  

Proliferative phenotype of vascular SMCs in both physiological and pathological events 

involve critical changes in the gene expression patterns of the proliferating cells. Growth- 

promoting factors such as angiotensin 11 or oxidized low density lipoprotein stimulate the 

vascular SMCs and lead to increased expression of genes coding for iron transporters, extra-

cellular matrix components, cell – cell adhesion molecules, cytoskeletal proteins, transcrip-

tion factors and cell cycle regulatory proteins [44, 45]. Comparison between the healthy 

vascular SMCs and vascular SMCs isolated from various disease conditions, such as prima-

ry atherosclerosis and in – stent stenosis reveals similar changes in gene expression patterns 

[46].  

Changes in gene expression programs are influenced largely by transcriptional events, but 

the contribution of posttranscriptional events (such as mRNA processing, transport, 

turnover, and translation) is becoming increasingly recognized [47]. One of the most 

important of these events, stability of regulated mRNA critically contributes to the 

implementation of gene expression patterns during the cellular response to mitogens, 

immunological triggers, stress, and differentiation agents [48, 49]. A growing list of proteins 

central to the execution of such responses (P21, Hsp70, MnsoD, catalase, Cdc25, cyclin A, 

cyclin B1, c-Fos, c-Jun, c-Myc, Egr-1, etc) are encoded by labile mRNA, which have tightly 

regulated half – lives [47].  
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Among the well – studied determinants of transcript stability are U – rich or A + U rich 

elements (collectively termed AREs) generally present in the 3' -untranslated regions of 

labile mRNA [50]. Several RNA – binding proteins have been found to bind to AREs and 

leads to transcript decay and they include BRF1, AUF1, and KSRP [51, 52, 53]. HuR, a mem-

ber of the Hu / ELAV protein family binds to AREs and instead promote transcript stabiliza-

tion. HuR stabilizes many mRNAs that encode growth factors, cell division proteins, and 

cytokines. An important role of HuR during the response to immune factors and proliferate 

signals has been described in many cell systems [54, 55, 56, 57, 58]. 

HuR was found to regulate cell proliferation in a mouse model of skeletal muscle devel-

opment and regeneration, purportedly through its effect on the expression of proteins 

governing cell growth and differentiation [59, 60]. Pullmann, Jr. et al. [47] found that treat-

ment of hVSMCs with platelet - derived growth factor increased HuR levels in the cyto-

plasm, thereby influencing the expression of metabolic, proliferative, and structural genes. 

In addition, knockdown of HuR expression by using RNA interference was reported to 

cause a reduction of hVSMC proliferation, both basally and following platelet – derived 

growth factor treatment. These authors postulated that HuR contributes to regulating 

hVSMC growth and homeostasis in pathologies associated with VSMC proliferation [47]. 

In other studies, HuR was found to increase the rate of proliferation of human diploid 

fibroblasts, shortened the cell division time of colon cancer cells, and accelerated the devel-

opment of tumors in nude mice [55, 56, 61]. The stimulatory effect of HuR on cell prolifera-

tion is proposed to be though increasing the stability of several mRNAs, including those 

that encode cyclin A, cyclin B1, c- Fos, c – Myc, and cyclin D1, thereby enhancing the ex-

pression of the corresponding proteins,. which promote progression through the cell divi-

sion cycle [62]. Pullmann, Jr. et al. [47] have identified the cDk2 mRNA as a novel target of 

HuR. This is an interesting finding in view of the regulatory influence of cdk2 and cyclin A 

on rat carotid artery VSMC proliferation. It has been proposed that HuR may be a contrib-

uting factor to smooth muscle cell and neointima proliferation and consequently to athero-

sclerosis [47]. 

In summary, the migratory and proliferative activities of VSMCs are regulated by a balance 

between growth promoters such as platelet derived growth factors (PGF), endthelin – 1 (ET 

– 1), thrombin, fibroblast growth factor (FGF), interleukin -1 (IL - 1) and inhibtors such as, 

heparin sulfates, intric oxide (NO), transforming growth factor (TGF) – beta. A role has been 

suggested for matrix metallo – proteinases (MMPs) could catalyze and remove the basement 

membrane around VSMC and facilitate contacts with the interstitial matrix. VSMCs are 

stimulated to proliferate and migrate by some kinds of cytokines, growth factors, and angio-

tensin II (Ang – II). Apoptosis, proliferation and migration of VSMCs are essential features 

of the pathogenesis of atherosclerosis and plaque rupture. Rupture of the plaque is associat-

ed with increased number of fibrous cap macrophages, increased VSMC apoptosis and 

reduced fibrous cap VSMCs. Within the plaques, the VSMCs are the only cells capable of 

synthesizing structurally important collagen isoforms, and the apoptosis of VSMC might 

promote plaque rupture [63]. 
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2.4. SMC migration 

Agents that induce VSMC migration include growth factors (Angiotensin II, PDGF, bFGF, 

HB – EGF, IGF – 1, VEGF, Thrombin), cytokines / chemokines (IL – 1 β,. IL – 6, TL -6, TFβ 1, 

TNF – alpha, MCP – 1), extracellular matrix components (collagen 1, IV , collagen VIII, fi-

bronectin, hyaluronan, laminin, osteopontin thrombospondin, vitronectin), bioactive lipids 

(LPA, Hydroxyeicosatrienoic acids [12 or 15 (s) – HETE ], diabetogenic agents [ high glucose 

(25 mmol / L) ], advanced glycation end products (AGEs), RAGE ligands S 100 B, and other 

molecules (ATP, UTP, norepinephrine, histamine, and serotonin) [64]. Angiotensin II – in-

duces VSMC migration through P38 – MAPK activated c – Src through two distinct but 

redundant pathways, one via Syk, and other via EGFR transactivation through ERK 1/2 and 

partially through p38 MAPK [64]. Receptor for advanced glycation end products (RAGE) 

ligands induce inflammatory genes and VSMC migration via Src kinase [64]. Additionally, 

RAGE ligand (S100B) activates Src and MAP kinases in VSMCs [64]. In diabetic db / db 

mice, it has been found that there was enhancement of RAGE expression, Src activation, and 

migration in VSMCs [64]. 

2.5. Inflammatory gene expression 

The atherogenic cytokines that are released from SMCs, endothelial cells (EC), macrophages, 

T lymphocytes, and B lymphocytes include IFN (released from SMC, macrophages, T lym-

phocytes, and causes increased SMC migration and proliferation, increased ECM remodel-

ing, and increased adhesion molecule expression), IL – 1 (released from SMCs, EC, macro-

phages, and T and B lymphocytes and increases SMC migration and proliferation, monocyte 

accumulation, and adhesion molecule expression) , IL – 18 (released from SMC, EC, and 

macrophages, and causes increased adhesion molecule expression, increased SMC accumu-

lation, and ECM remodeling), MCP – 1 (produced by the SMC, EC, macrophages, and T 

lymphocytes, and increases recruitment of monocytes , SMC migration and ECM synthesis 

and remodeling), PDGF – BB (produced by the SMC, EC, and macrophages, and increases 

SMC migration and increases SMC migration anf proliferation), and TGFβ (elaborated by 

SMC, EC, macrophages, and proliferation and increases SMC migration and proliferation, 

and ECM synthesis) [64]. Cytokines that are involved in atherogenesis include TNF – α, IL – 

1, IL – 6, IL – 8, IL – 12, IL – 15. IL – 18, IL 32, and MCP – 1 produced by macrophages under 

the influence of resisting leptin, and adiponectin elaborated from adipose tissue. Cytokines 

released from macrophages stimulate SMC to produce the cytokines TNF – α, IL – 1, IL – 6, 

and IFN – (?). Those same cytokines also activate the EC to prduce VCAM – 1, ICAM – 1, E – 

selectin, P – selectin, IL – 1, IL – 6, IL – 8, IL – 18, IL PB, and MCP – 1. Other cytokines also 

produced by Tho (IL – 2, IL – 3), Th 1 (IL – 2, INF, IL – 17) Th 2 (IL – 4, IL – 5 < IL – 6, IL – 10, 

IL – 13), Treg (IL – 10, TGFβ), NKT cells (IFN), and macrophages (IL – 10, TGFβ, IL – lra, IL – 

18BP) [64]. 

2.6. Oxidative stress 

An important feature of the pathological porcess in atherogenesis is an increased generation 

of reactive oxygen species (ROS). All components of the atherosclerotic lesion has been 
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shown to increase production of ROS mainly superoxide anion (O2-) [26, 65]. The ROS are 

produced by the VSMCs, endothelial cells, fibroblasts, and infiltrating leukocytes [66]. These 

ROS affect gene transcription, damages DNA, and increases production of inflammatory 

transcription factors [67]. Oxidation of LDL and scavenging of endothelium – derived NO 

are the best studied effects [26]. 

The mechanism of oxidative modification of LDL is unknown but there is always oxidized 

LDL in atherosclerotic lesions. Experimental studies indicated that the level of oxidized 

LDL, as measured by autoantibody titers, is reflective of the atherosclerotic burden [68]. 

Many of the atherogenic processes are induced by the oxidized LDL and these include 

transcription of proatherogenic genes, production of matrix metalloproteinases and tissue 

factor, antagonism of endothelial cell production of NO, and promotion of VSMC apoptosis 

[69]. The increased production of superoxide anion rapidly reacts with NO to produce 

peroxynitrite, a potent oxidant [70]. It has been stated that scavenging of NO increases 

inflammation, platelet activation, and vasoconstriction [26]. 

Studies of antioxidant vitamins, including the Guppo Italiano per 10 Studio della Soprav-

vivenza nell' Infarto myocradico (GISSI) Prevention Trial, the Heart Outcomes prevention 

Evalution Study (HOPE), and the Heart protection Study (HPS), did not show any reduction 

in clinical events with antioxidant vitamin E therapy [71, 72]. However, in these trials there 

were limitations that precluded the adequate test of the hypothesis ([73]. One of these limita-

tions is that the rate constant for reaction of vitamin E or C with superoxide anion is much 

slower than for superoxide anion with NO or endogenous antioxidant enzymes [74]. Oral 

intake only slightly increases the levels of vitamin in plasma and tissue, and this may not 

affects the events in the vascular wall, where it is not concentrated. Vitamin E contributes 

little in the form of antioxidant protection in the cytoplasm, nucleus, or interstitial space 

since it is concentrated in the lipid bilayers. Additionally, a delay in treatment may have 

abolished its effect on the development of lesions and with little effect on plaque rupture 

and clinical events. However, some other therapeutic studies in the same trials (e.g. HOPE 

and HPS) indicated significant benefit [67, 75]. Of equal importance is that conventional 

antipletlet therapy has antioxidant effects as it has the ability to limit ROS production by 

activated platelets. The fact that oxidative stress plays important role in the pathogenesis of 

atherosclerosis makes clear that the limitations of current therapies should not conclude 

therapeutic interest in this area but stimulates studies into new ways of treatment. 

2.7. Monocyte – VSMC binding  

Monocytes in circulation adhere and migrate across the endothelium in response to 

atherogenic stimuli. Initially, these processes may be reversible, whereas subsequent 

accumulation and retention of monocytes – macrophages into the intima become a central 

pathogenic process in atherogenesis [76]. The mechanisms by which the monocytes are 

retained in the subendothelium and the role of VSMCs in this process are not known. 

Adhesive reactions between marginated monocytes and VSMCs have been proposed to 

contribute to monocyte- macrophage retention in the intima. Evidence for the possible 
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interaction between VSMCs and the monocytes comes from the fact that VSMC express 

adhesion molecules within the atherosclerotic lesions but not in normal vessels [77]. In 

addition, a highly significant association was demonstrated between VSMC vascular cell 

adhesion molecule (VCAM) – 1 expression and the content of the intimal macrophage [78, 

79]. Furthermore, a significant focal expression of intercellular adhesion molecule (ICAM) – 

1 on VSMC in regions prone to atherosclerosis was found preceding mononuclear cell 

infiltration in man, which indicates a causative role in lesion development [80]. It has been 

shown that cell – to – cell interactions between monocytes and VSMC enhanced the 

procoagulant activity of monocytes and increased the production in both cell types of 

atherosclerosis – related materials such as metalloproteinase – 1 [81]. These findings 

indicated that the VSMCs and monocytes – macrophages are not merely neighbors in the 

vessel wall but that VSMC – monocyte interactions constitute additional signals in the 

pathogenesis of atherosclerosis. However, the cellular, molecular, and signal transudation 

mechanisms need to be elucidated. 

A well-known fact is that angiotensin II (ANG II) and platelet – derived growth factor 

(PDGF) – BB have a significant role in vascular remodeling and atherosclerosis [82]. They 

are capable of inducing VSMC migration, hypertrophy, and proliferation [82, 83]. Cai et al. 

[84] investigated the effects of angiotensin II (ANG II) and PDGF – BB on VSMC – monocyte 

interactions. They found that treatment of human aortic VSMC (HVMC) with ANG II or 

PDGF – BB significantly increased binding to human monocytic THP-1 cells and to periph-

eral blood monocytes. This was inhibited by antibodies to monocyte β1 – and β2 – integrins. 

Attenuation of the binding was also achieved through blocking of VSMC arachidonic acid 

(AA) metabolism by inhibitors of 12 / 15 – lipoxygenase (12 / 15 – LO) or cyclooxygenase -2 

(COX - 2). On the other hand, enhancement of binding was obtained by overexpression of 12 

/ 15 – LO or COX – 2. Binding was also enhanced by direct treatment of HVSMC with AA or 

its metabolites. Additionally, VSMC derived from 12 / 15 – LO knockout mice showed re-

duced binding to mouse monocytic cells in comparison with genetic control mice. Using 

specific signal transudation inhibitors, Cai et al. [84] showed the involvement of Src, phos-

phoinositide 3 – kinase, and MAPKs in ANG 11- or PDGF – BB induced binding. These 

authors also found that after coculture with HVSMC, THP – 1 cells surface expression of the 

scavenger receptor CD36 was increased. In conclusion, results of the work of Cai et al. [84] 

indicated that the growth factors may play additional roles in atherosclerosis by increasing 

monocyte binding to VSMC via AA metabolism and key signaling pathways. This process 

can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation. 

3. VSMCs in the pathogenesis of atherosclerosis 

3.1. Humans 

Three major types of cells that are commonly seen in the atherosclerotic lesions are the 

SMCs (which dominates the fibrous cap), macrophages (inflammatory cells) that infiltrate 

around the necrotic core, and the lymphocytes (intracellular and intercellular lipid) which 

have been mainly ascribed to the fibrous cap [85, 86]. A very complex interplay exists 
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between these cells in the various developmental stages of the atherosclerotic lesion. This 

complex interrelation is further complicated by a number of risk factors that contribute to 

the clinical manifestation of the disease, and they include the abnormal vasomotor function, 

the thrombogenicity of the blood vessel wall, the state of activation of the coagulation 

cascade, the fibrinolytic system, SMC migration and proliferation, and inflammation process 

[76, 86, 85]. However, the exact cause of development of the atherosclerosis is not 

completely understood. Similarly much more information is needed concerning regulation 

of the key role of SMCs in vascular injury repair and in the development and / or 

progression of atherosclerosis. Finally, additional work is needed to clarify the specific 

contributions of the SMC versus other cell types within the lesion, such as macrophages and 

endothelial cells, to the end-stage clinical sequelae of atherosclerosis including plaque 

rupture, thrombosis, infarction, vasospasm, myocardial ischemia, and death.  

3.2. Birds 

Various avian species such as pigeons [87, 88], turkeys [89], and chickens [90] have been 

shown to be the convenient experimental animals for induction of atherosclerosis. Shih et 

al. [91] mentioned that the Japanese quail is an ideal laboratory animal for long – term 

experiment because of its small size, short life cycle, and low feed consumption. Athero-

sclerosis was conventionally induced in various experimental animals through feeding of 

cholesterol and fat or oil [88, 89, 90]. Oku et al. [92] demonstrated that dietary feeding of 2 

% cholesterol and 15 % corn oil for 3 months can induce typical atherosclerotic lesions 

more frequently in the ascending aorta and its large branches than in abdominal aorta in 

Japanese quails. This finding is comparable to that reported by Toda et al. [93] in the 

chickens. Atherosclerosis was also induced in quails by feeding them with 2 % cholesterol 

and 0.5 % cholic acid for 15 weeks [94]. Morrissey and Danalbson [95]  demonstrated that 

atherosclerosis could be induced by feeding quails with 1 % cholesterol and 10 % fat for 

10 weeks. Wexler [96] reported that both the male and female Japanese quails developed 

spontaneous atherosclerosis at 2 years of age. Jarrold et al. [97] and Velleman et al. [98] 

have demonstrated that the cholesterol – induced atherosclerosis (CIA) line of Japanese 

quails is a valid animal model to study ECM remodeling induced by hypercholesterole-

mia. Jarrold et al. [97] showed that the proteoglycan decorin was localized in the foam cell 

regions and collagen type I was found to surround the foam cells where decorin accumu-

lated. Velleman et al. [99] showed that remodeling of the collagen component of the dorsal 

aorta extra – cellular matrix during the progression of atherosclerosis in Japanese quails 

selected for CIA. Toda et al. [93] reported that fibroblasts rather than smooth muscle cells 

are the main cellular component in the development of atherosclerosis in Japanese quails 

as in chicken. Oku et al. [92] suggested that phenotype transformation of intimal cell mi-

grating from the tunica media to play an important role in the initiation and the develop-

ment of atherosclerosis. Casale et al. [100] studied the cellular events of quail atherosclero-

sis using monoclonal antibodies to alpha-actin and chicken macrophages and effectively 

identified the presence of SMC and macrophages, respectively, as constituents of the ath-

erosclerotic lesions. The presence of macrophage, as well as SMC proliferation, was ob-
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served in early lesions. Although it was not possible to acertain the first cell type to be 

involved in the initial stages of atherosclerosis, results suggested early intervention of 

macrophages and SMC. Bavelaar et al. [101] studied the possibility that feeding of α-

linolenic acid instead of linoleic acid or saturated fatty acids would diminish the degree of 

atherosclerosis in cholesterol-fed quails. The authors concluded that a differential effect 

on the development of atherosclerosis of α-linolenic acid, linoleic acid and saturated fatty 

acids could not be demonstrated. 

Fabricant and Fabricant [102] investigated the roles of both Marek's disease herpesvirus 

(MDV) and dietary cholesterol in atherosclerosis in chickens. The birds were examind 7 

months after MDV infection with and without cholesterol feeding for gross and microscopic 

arterial lesions. Typical lesions of atherosclerosis were observed only in infected 

normocholesterolemic or hypercholesterolemic birds. They were not detected in uninfected 

birds even if the birds were hypercholesterolemic. Furthermore, immunization with turkey 

herpesvirus vaccine or SB – 1 vaccine prevented atherosclerotic lesions. Hajjar et al. [103] 

demonstrated histologically that infection of normocholesterolemic, specific-pathogen-free 

chickens with Marek’s disease herpesvirus (MDV) lead to chronic atherosclerosis like that in 

humans (Figures 2 and 3).  

Spontaneous atherosclerosis is of common occurrence in captive parrots [104]. It occurs 

in all parrot species but with the highest occurrence in African Grey parrots and Ama-

zons. Old birds are more commonly affected, and the disease has been seen in both males 

and females. Sudden death is the most common signs, but clinical symptoms include 

dyspnea, lethargy and nervous sign, such as paresis and collapses. Atherosclerosis is 

mostly an unexpected finding at necropsy because clinical signs of the condition are 

seldomly seen and the difficulty associated with diagnosis. In parrots, age and species 

are determinants of atherosclerosis. Risk factors have been suggested to include an ele-

vated plasma cholesterol level, diet composition, social stress, and inactivity [104]. Frick 

et al. [105] studied the incidence of spontaneous atherosclerosis in 62 African grey par-

rots (Psittacus erithacus) and 35 Amazon parrots (Amazona spp.). Incidence of atheroscle-

rosis was 91.9% in African grey parrots and 91.4% in Amazon parrots. According to the 

missing lymphocytes and macrophages and the absence of invasion and proliferation of 

SMCs, the authors concluded that the "response-to-injury hypothesis" is inapplicable in 

parrots. 

3.3. Pigs 

In recent years an increase occurred in use of pigs as a promising species for morphological, 

biochemical, and metabolic studies of cardiovascular diseases particularly atherosclerosis 

[106, 107, 108]. Anatomy and physiology of the cardiovascular system of pigs resemble that 

of man. Among the similarities are size and distribution of arteries, location of thickened 

intima in the normal state, blood pressure, heart rate, plasma lipoprotein patterns, and 

responses to diets rich in fat and cholesterol [108]. Spontaneous atherosclerosis is known to 

develop in pigs with increased age, and have lipoprotein profiles and metabolism similar to  
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Figure 2. a. Heart and major blood vessels of a pigeon (Columba livia). Hyperatrophy of the heart and 

thickening of major blood vessels (arrows) could be visualized. b. Thoracic cavity of a pigeon (Columba 

livia). Hyperatrophy of the heart, fat deposition on the heart, and thickened blood vessels originating 

from the heart (arrows) could be visualized. c. Same heart shown in figure 2 following opening the 

chambers and shows narrowing of chambers as result of myocardial hypertrophy (arrows). d. A view of 

thoracic cavity of a chicken .A rounded hyperatrophied heart (H) with thickened major blood vessels 

(arrows) could be seen. e. Heart and major blood vessels of a chicken following opening of heart to 

show narrowing of ventricles as result of myocardial hyperatrophy. f. Heart and major blood vessels of 

a New Zealand White rabbit. Note fat deposition on pericardium and thickening of the walls of major 

blood vessels.  
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humans [106, 107]. Use of high fat, high cholesterol diets in pigs leads to elevation of total 

and LDL plasma cholesterol [106]. Several studies have shown the ability to induce aortic 

lesions in pigs very similar to those seen in human atherosclerosis disease [106].  

 

Figure 3. a. Microphotography of arterial wall in a pigeon (Columba livia) showing lipid accumulation in 

tunica media . H&E. b. Microphotography of arterial wall in a pigeon (Columba livia) showing lipid 

accumulation in tunica media and destruction of some of the elastic lamellae. H&E.  

c. Microphotography of arterial wall in a pigeon (Columba livia) showing destruction of  the elastic 

lamellae . H&E. d. Microphotography of arterial wall in a chicken showing lipid accumulation in the 

intima. H&E. 

3.4. Rabbits 

Among animals that have been used as models for experimental atherosclerosis, the rabbit is 

the only one that has the tendency to exhibit hypercholesterolemia within a few days of 

administration of a high cholesterol diet [110, 111]. Furthermore, the late stages lesions of 

human atherosclerosis are similar to those caused in rabbits when a diet low in cholesterol is 

administered for extended periods [110]. More advanced lesions in the thoracic and 

abdominal aorta, could be induced in rabbits through a high cholesterol diet can be combined 

with a single or double balloon injury. Balloon injury enhances the formation of atheromatic 

lesions and leads to the production of plaques with a lipid core covered by a fibrous cap with 

a high amount of SMCs. Such lesions are more similar to human atherosclerotic lesions than 

those produced by feeding rabbits with a high cholesterol diet alone [37, 112]. 

a b 

c d 
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Hypercholesterolemia that is induced in rabbits through diet is caused by the accumulation 

of exogenous cholesterol. Rabbits cannot increase the excretion of sterols and this explains 

their high susceptibility to inducement of atherosclerosis [113]. Consequently, increased 

quantities of lipoproteins rich in cholesterol esters enter the blood circulation. LDL and β – 

VLDL are the main transporters of cholesterol in plasma. They remain for prolonged time in 

blood circulation [113]. 

In rabbits, morphological features of the lesion could be modified by the percentage of 

cholesterol added to the diet and the duration of the diet [111, 113]. Diets with a percentage 

of cholesterol of more than 2 % and given for short duration, cause hypercholesterolemia, 

and atherosclerotic lesions rich in foam cells originate from macrophages. In contrast of this, 

a diet with a low cholesterol content, and long duration causes atherosclerosis lesions, 

which are rich in SMCs and contain cholesterol deposits leading to atherosclerosis lesions 

more similar to those of humans [113]. More advanced lesions were found to be formed not 

with continuous but with intermittent atherogenic diets [113]. Additionally, increasing the 

percentage of cholesterol in the diet to more than 0.15 %, cholesterol esters were detected in 

the lesion [113]. Spagnoli et al. [114] found that the formation of advanced lesion depends on 

the age of the animal. Thus, old rabbits (3 – 4.5 years old) exhibit fibrotic plaques while 

young rabbits (4 months old) do not have such advanced lesions (Figure 2-f). 
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