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1. Introduction 

Cardiovascular diseases are one of the most common health-care problems throughout the 

world and carry a high rate of mortality (Zannad, et al., 2009). New strategies are urgently 

needed to replace cardiomyocytes and increase circulatory support for the treatment of 

cardiovascular diseases. 

Over the last decade, stem/progenitor-cell therapy has emerged as an innovative approach 

to provide cardiac repair and regeneration (Zimmermann, et al., 2006). Several stem- and 

progenitor-cell types from autologous and allogeneic donors have been analyzed to find the 

most appropriate candidate. Although embryonic stem (ES) cells can differentiate into most 

cardiac cell types (Mummery, et al., 2002) , their clinical use is severely limited due to ethical 

concerns and immunogenic and teratogenic side effects (Blum and Benvenisty, 2008). Adult 

bone marrow-derived stem cells avoid the ethical and clinical issues associated with ES cells 

(Bianco, et al., 2001).  However, animal studies have demonstrated a variable degree of 

cardiomyogenesis, and improvement in heart function by bone marrow-derived stem cells 

(Murry, et al., 2004). Thus, the utility of adult bone marrow-derived stem cells is hampered 

by their limited population size and restricted potential for cardiovascular differentiation 

(Assmus, et al., 2010). 

Recently, therapies based on cardiac progenitor cells (CPC) have emerged as promising 

potential cardiac therapeutics (Gonzales and Pedrazzini, 2009). For cardiovascular therapy, 

pluripotent cardiac progenitor cells (CPCs) resident in the epicardium offer distinct 

advantages over other adult stem-cell types (Wessels and Perez-Pomares, 2004). They are 

autologous, tissue-specific and pre-committed (Dube, et al., 2012) to a cardiac fate, and 

display a greater propensity to differentiate towards cardiovascular lineages (Cai, et al., 

2008), (Smart and Riley, 2012). Epicardial derived cardiac progenitor cells (EPDCs) exist in 

the heart of several species, including mice (Limana, et al., 2007) and humans (van Tuyn, et 
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al., 2007). Due to cardiogenic and angiogenic abilities, epicardial CPCs represent an ideal 

candidate for cardiac regeneration. However, we do not know the mechanisms underlying 

epicardial CPC self renewal, proliferation and differentiation, which are prerequisites for 

cardiac regenerative therapy. An optimal paradigm of cardiovascular therapy may therefore 

consist of identifying the most effective factors that trigger the restoration of epicardial 

CPCs for healing heart injuries, with an emphasis on small molecule-based therapy over 

cell-based therapy. 

It is therefore imperative to obtain a better understanding of the biology and regenerative 

potential of endogenous epicardial CPCs. The race is still on to find the “best” factor or 

drugs to reprogram endogenous epicardial CPCs to reconstitute the myocardium and 

improve function after myocardial damage. 

2. Epicardium as a source of multipotent progenitor cells  

Epicardium derived from proepicardium has an essential modulating role in the differentia-

tion of the compact ventricular layer of the myocardium and the development of cardiac 

vessels during embryogenesis (Zhou, et al., 2008). Deletions of selected genes expressed in 

the epicardium (i.e. VCAM-1, α4-integrin) resulted in severe defects in the developing heart 

and its vasculature. The zebrafish epicardium promotes cardiac regeneration through epi-

thelial to mesenchymal transition (EMT) and subsequent migration into the myocardium to 

form neovasculorization (Lepilina, et al., 2006). Signalling from the myocardium to the epi-

cardium (i.e. Tβ4, FOG-2) (Smart, et al., 2007; Tevosian, et al., 2000) also leads undeveloped 

ventricle with vascularisation defects. 

The epicardium through EMT generates a population of Epicardial Derived Progenitor Cells 

(EPDCs) that invade the underlying myocardium, and differentiate into various cardiac 

lineages (Smart and Riley, 2012; Zhou, et al., 2008). Williams Tumour (WT1) gene  has been 

shown to regulate epicardial EMT through beta-catenin (Zamora, et al., 2007) and retinoic 

acid signaling pathways (von Gise, et al., 2011). EPDCs can either form endothelial cells, in 

response to a combination of myocardial vascular endothelial growth factor and basic-

fibroblast growth factor signalling (van Wijk, et al., 2009), or differentiate into smooth muscle 

cells, upon exposure to platelet-derived growth factor (Kang, et al., 2008), transforming 

growth factor beta and bone morphogenetic protein-2 (Sanchez and Barnett, 2012). 

However, Tβ4 (Smart, et al., 2007) and PKR1 (Urayama, et al., 2008) signaling appear to be a 

necessary and sufficient signaling factor for adult EPDC differentiation into the endothelial 

and smooth muscle cells to induce neovascularization. Thymosin beta-4 can activate adult 

epicardial cells (Bock-Marquette, et al., 2009)  acting through reactivation of embryonic 

signalling pathways (Smart, et al., 2007).  

In a regenerative context, the adult epicardial progenitor cell population also mediates 

cardiac repair after injury. Tβ4 can activate adult epicardial cells (Bock-Marquette, et al., 

2009; Smart, et al., 2007) to promote revascularization of the injured mammalian heart by 

forming endothelial and vascular smooth muscle cells. Tβ4 treatment before myocardial 
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infarction alters the responsiveness and fate of activated epicardial cells (WT1+ progenitor 

cells), to differentiate into cardiomyocytes (Smart, et al., 2011). However Tβ4 treatment after 

myocardial infarction induces epicardial expansion and coronary capillary density without 

affecting migration or alteration of WT1+ progenitor cell fate into cardiomyocytes (Zhou, et 

al., 2012).  Tβ4 treatment of mice after MI activates cardiac progenitor cell fate to induce 

cardiomyocyte linage (Bock-Marquette, et al., 2009). However, the cardiac progenitor 

subpopulation remains to be characterized. Further, a sub-population of adult epicardial 

cells retains the potential to give rise to cardiac precursors or endothelial cells (Limana, et 

al., 2007). The regenerative potential of EPDCs has been tested in the injured myocardium. 

The injection of human EPDCs was reported to enhance cardiac repair (Winter, et al., 2007). 

When the cardiomyocyte progenitors were co-transplanted with EPDCs into infarcted 

myocardial tissues, they improved functional repair as compare to single cell type 

supplementation (Zhou, et al., 2011). The effect was shown to be caused by paracrine effects 

from both cell types. Nevertheless, signals and cellular contributions from the EPDCs are 

indispensable for the establishment of normal coronary vasculature and myocardial 

architecture (Smart and Riley, 2012; Winter, et al., 2009). 

3. GPCRs and cardiovascular system 

Many hormones and neurotransmitters use GPCRs to exert their cardiovascular effects 

(Marinissen and Gutkind, 2001; Tang and Insel, 2004). Relatively little information is 

available regarding the role of GPCRs in the functional activities of cardiac 

stem/progenitor cells, both in normal and disease conditions. The well-studied cardiac 

role of GPCRs via Gq signalling (Gutkind and Offermanns, 2009) is to promote cardiac 

hypertrophy (Wettschureck, et al., 2001) or protect cardiomyocytes against hypoxic insult 

(Nebigil, et al., 2003). G12 signaling can interact with the cytoplasmic domain of cadher-

ins (Kaplan, et al., 2001), resulting in the release of the transcriptional activator -catenin. 

G13 signaling is involved in vessel formation (Offermanns, et al., 1997). Gs signaling 

regulates heart rate and contractility in response to catecholamine stimulation, but exces-

sive Gs signaling in heart eventually induces myocardial hypertrophy, fibrosis and ne-

crosis (Gaudin, et al., 1995). Given the important roles of GPCRs in cardiac regulation, a 

key question is how many different GPCRs exist in the heart and what is their physiologic 

significance? Since forty percent of these GPCRs represent viable drug targets (Schlyer 

and Horuk, 2006) and also many of GPCR is involved in regulating cardiovascular sys-

tem, unraveling of novel GPCR in cardiac progenitor/stem cells is very important to de-

velop novel therapies for limit cardiovascular disease. 

3.1. Prokineticins and cognate receptors:  

Prokineticins are structurally homologues of amphibian or reptilian peptide toxins (Kaser, 

et al., 2003). They were first identified in the gastrointestinal tract  as potent agents 

mediating muscle contraction (Hoogerwerf, 2006; Li, et al., 2001), and have been isolated 

from bovine milk (Masuda, et al., 2002) .  They comprise two classes: Prokineticin-1 (PK1), 

originally called endocrine gland-derived vascular endothelial growth factor (EG-VEGF) 
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(LeCouter and Ferrara, 2002) based on the functional similarity to VEGF and prokineticin-

2 (PK2, also called Bv8). PK1 and PK2 are approximately 50% homologous and contain 

carboxyl-terminal cysteine-rich domains that form five disulfide bridges (Bullock, et al., 

2004). N terminal hexapeptide (AVITGA) and cysteine residues in the carboxy-terminal 

domain are crucial for their biological activities . Prokineticins and their receptor  are 

widely distributed in mammalian tissues (Soga, et al., 2002). Prokineticins induce cell 

excitability such as gut spasmogen (Wade, et al., 2009), pain sensitization (Negri, et al., 

2006), circadian rhythm (Li, et al., 2006), and sleep (Hu, et al., 2007)). They also induce cell 

motility  such as angiogenesis (LeCouter and Ferrara, 2002), neurogenesis (Ng, et al., 

2005), hemotopoiesis (LeCouter, et al., 2004),  neovasculogenesis (Urayama, et al., 2008). 

Prokineticins regulate complex behaviors such as feeding (Negri, et al., 2004), drinking 

(Negri, et al., 2004), anxiolity (Li, et al., 2009). Moreover, prokineticins are potent 

survival/mitogenic factors for various cells including endothelial cells , neuronal cells 

(Kisliouk, et al., 2005; Ngan, et al., 2007a), lymphocytes, hematopoietic stem cells 

(LeCouter, et al., 2004), and cardiomyocytes (Nebigil, 2009). Table 1 summarize the 

involvement of prokineticin in the diseases. 

Prokineticins bind to two cognate 7-transmembrane G-protein-coupled receptors. PKR1 and 

PKR2 share about 85% amino acid identity and encoded within distinct chromosomes in 

both mouse and human (Masuda, et al., 2002). Prokineticin-2 is the most potent agonist for 

both receptors (Masuda, et al., 2002). PKR2 is the dominant receptor in the adult brain, 

particularly in the hypothalamus, the olfactory ventricular regions, and the limbic system. 

However, PKR1 is widely distributed in the periphery. These receptors couple to G�q, G�i 

and G�s to mediate intracellular calcium mobilization, activation of MAPK, Akt kinases and 

cAMP accumulation, respectively (Ngan and Tam, 2008). Although prokineticin signaling 

has been implicated as a survival/mitogenic factor for various cells including endothelial 

cells (Guilini, et al., 2010), neuronal cells (Ngan, et al., 2007b), enteric neural crest cells 

(Ngan, et al., 2007a), granulocytic (Giannini, et al., 2009)and monocytic lineage (Dorsch, et 

al., 2005) , lymphocytes and hematopoietic stem cells (LeCouter, et al., 2004), until recently, 

little was known about the underlying molecular and cellular events to regulate 

cardiovascular function. 

3.1.1. A novel role for prokineticin in regulating cardiovascular system  

PK2/PKR1 signaling pathway seems an important cardiovascular regulatory pathway, be-

cause of the following aspects: Prokineticins are potent angiogenic factors (LeCouter and 

Ferrara, 2003), which have beneficial effects on cardiac repair by inducing angiogenesis to 

improve coronary circulation or regenerating the cardiomyocytes (Bellomo, et al., 2000). 

They exert their biological effects via activating GPCRs that couple to diverse G proteins. 

Mutations in the gene encoding prokineticin-2 cause Kallmann syndrome (hypogonado-

tropic hypogonadism) in human (Abreu, et al., 2008; Canto, et al., 2009; Cole, et al., 2008), 

with congestive heart failure and dilated cardiomyopathy. Prokineticins induce differentia-

tion of murine and human bone marrow cells into the monocyte/macrophage lineage and 

activate monocyte proliferation, differentiation and macrophage migration (Denison, et al., 
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2008; Dorsch, et al., 2005; Giannini, et al., 2009). In human end-stage failing heart samples, 

reduced PKR1 and prokineticin-2 transcripts and protein levels implicate a more important 

role for PK2/PKR1 signaling in heart (Urayama, et al., 2007). Therefore, we reasoned that 

PK2/PKR1 signaling should contribute to heart repair by inducing angiogenesis or repairing 

cardiomyocytes. 

3.1.2. Role of PKR1 signaling in cardiovascular system 

In cultured capillary endothelial cells derived from heart, PK2 via PKR1 induces prolifera-

tion, migration and vessel-like formation, activating G11/MAPK and Akt kinases (Guilini, 

et al., 2010). In cardiomyocytes, activation of overexpression of PKR1 protects cardiomyo-

cytes against hypoxic insult, activating the PI3/Akt pathway (Urayama, et al., 2007).  

Transient PKR1 gene transfer after coronary ligation in the mouse model of myocardial 

infarction reduces mortality and preserves heart function by promoting cardiac angiogen-

esis and cardiomyocyte survival. This result suggests that PKR1 may represent a novel 

therapeutic target to limit myocardial injury following ischemic events (Urayama, et al., 

2007).  

Transgenic mice overexpressing PKR1 specifically in the heart under the control of cardiac 

α-myosin heavy chain (α-MHC) promoter displayed no spontaneous abnormalities of car-

diomyocytes, but showed increased neovascularisation (Urayama, et al., 2008). Thus, these 

data suggest that PKR1 is involved in post-natal de novo vascularization, rather than vascu-

logenesis during embryogenesis.  

Genetic inactivation of PKR1 in mice (PKR1-knockout mice) exhibit dilated cardiomyopathy 

and reduced angiogenesis in heart (Boulberdaa, et al., 2011). The heart pathology in PKR1 

knockout mice is due to increased apoptosis in cardiomyocytes and reduced epicardial 

progenitor cell numbers. These data was consistent with an endogenous role of PKR1 signal-

ling in stimulating epicardial progenitor cell proliferation and differentiation. All together 

these findings show that PKR1 signalling is involved in regulating cardiomyocyte survival 

signalling, and progenitor cell proliferation and differentiation. 

3.1.3. Role of PKR2 signaling in cardiovascular system  

Since PKR1 and PKR2 are 85% identical and are both expressed in cardiovascular tissues, 

PKR2 may also contribute to cardiomyocyte growth and vascularization. Transgenic mice 

overexpressing PKR2 specifically in the heart under the control of cardiac (α-MHC) 

promoter exhibit eccentric hypertrophy in an autocrine regulation and impaired 

endothelial integrity in a paracrine regulation without inducing angiogenesis (Urayama, 

et al., 2009). These transgenic PKR2 mice may provide a new genetic model for heart 

diseases. We found that in the endothelial cells PKR2 couples to G12 signaling pathway 

and downregulates ZO-1, thereby inducing endothelial cell fenestration (Urayama, et al., 

2009). 
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3.1.4. Prokineticin signaling in cardiac stem/progenitor cell activation  

Prokineticin-2 has been shown to modulate mobilization of bone morrow-derived cells and 

also promote angiogenesis. Systemic exposure to prokineticins promoted the survival of 

hematopoietic cells and enhanced progenitor mobilization (LeCouter, et al., 2004). Recently, 

we found that prokineticin-2 induces significant outgrowth from mouse epicardial explants 

and quiescent EPDCs, restoring epicardial pluripotency and triggering differentiation of 

endothelial and vascular smooth muscle cells (Urayama, et al., 2008). Co-culturing EPDCs 

with cardiomyocytes overexpressing PKR1 increased prokineticin-2 levels as a paracrine 

factor, thereby promoting EPDC differentiation, mimicking our PKR1-transgenic mice 

model (Urayama, et al., 2008). These prokineticin-2 effects were abolished in EPDC derived 

from PKR1-null mutant hearts, demonstrating PKR1 involvement. Prokineticin/PKR1 

signaling can reprogram adult EPDCs to induce neovascularization. These studies provided 

novel insight for possible therapeutic strategies aiming at restoring pluripotency of adult 

EPDCs to promote neovasculogenesis, by induction of cardiomyocyte- PKR1 signaling. 

Whether epicardial-PKR1 signaling contributes cardiomyocyte function and metabolism, 

and it determines lineage choice decision in EPDCs remained to be investigated. 

 

 
 

Figure 1. Role of prokineticin PKR1 signaling in cardiac regeneration.  

PKR1 signaling protects cardiomyocyte against hypoxia-mediated apoptosis,  activates 

endothelial cells for angiogenesis,  activates EPDC differentiation into vasculogenic cell type 

to induce neovascular formation, activates EPDC differentiation into new cardiomyocytes.   
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DOMAIN ROLE/EXPRESSION in human organs REFERENCE 

Reproduction   

Menstrual 

cycle 

Progesterone induces elevation of prokineticin-1 

expression during the secretory phase indicating a 

role of prokineticins and their receptors in 

endometrial vascular function 

(Battersby, et al., 2004) 

 Prokineticin-1 is derived from granulosa lutein cells 

and its synthesis is elevated during the mid- to late 

luteal phase 

(Fraser, et al., 2005) 

 Alteration of prokineticin-1 can induces several 

biochimical abnormalities characterizing eutopic 

endometrium in endometriosis 

(Tiberi, et al., 2009) 

Placentation 

and pregnancy 

Prokineticin-1 and PKR1 expression is elevated in 

human decidua during early pregnancy. 

Prokineticin-1 via PKR1 regulates expression of host 

implatation-related gene. 

(Evans, et al., 2008) 

 Dysregulation of Prokineticin signaling in fallopian 

tube could affect fallopian tube smooth muscle cells 

contractility and embryo-tubal transport providing 

a potential cause for ectopic pregnancy 

 

 

 

(Shaw, et al., 2010) 

 Prokineticin-1 and its receptor gene polymorphism 

and haplotype were associated with idiopathic 

recurrent pregnancy loss. These three gene 

contribute to recurent pregnancy loss in the 

Taiwanese Han population 

 

 

 

 

(Su, et al.) 

Kallman 

syndrome 

Insufficient prokineticin signaling leads to abnormal 

development of the olfactory system and 

reproductive axis in man 

(Dode, et al., 2006) 

 Mutation in prokineticin-2 and PKR2 genes underlie 

both Kallman sydrome and idiopathic 

hypogonadotropic hypogonadism 

(Cole, et al., 2008) 

 

Behaviour 

Prokineticin-2 may play a role in the 

pathophysiology of mood disorders in the Japanese 

population 

(Kishi, et al., 2009) 

 Prokineticin-2 may play a role in the 

pathophysiology of methamphetamine dependance 

in the Japanese population 

(Kishi, et al., 2010) 

       

Cancer Prokineticins and their receptors are expressed in 

human prostate and their levels increased with 

prostate malignancy 

(Pasquali, et al., 2006) 

 Prokineticin-1 favors neuroblastoma progression  (Ngan, et al., 2007b) 
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DOMAIN ROLE/EXPRESSION in human organs REFERENCE 

 Prokineticin-1 derived from islet and/or pancreatic 

stellate cells act through its receptor on endothelial 

cells to increase angiogenesis in pancreatic disease

 Prokineticin-2 play a role in pathophysiological in 

human tumors and inflammatory disorders 

(Zhong, et al., 2009) 

 Prokineticin-1 is significantly increased in papillary 

thyroid cancer and its expression in papillary 

thyroid cancer is related to BRAF oncogen

(Pasquali, et al., 2011) 

   

Vascular Prokineticin-2 is involved in immune and 

inflammatory response at abdominal aortic 

aneurysms site

(Choke, et al., 2009) 

   

Inflammation Prokineticin-1 was found in the controls in the 

patients with temporomandibular joint disorders 

(Herr, et al.) 

    

Cardiology Prokineticin-2 and PKR1 were reduced in human 

end stage failure heart sample

(Urayama, et al., 2007) 

Table 1. Involvement of prokineticins in human diseases 

4. Conclusion  

All together these data showed that PK2 via PKR1 signaling has important roles on heart 

physiology and pathophysiology. PKR1 is involved in postnatal cardiac vascularization by 

activating epicardial progenitor cells. These studies also raise numerous questions for fur-

ther investigation. Do EPDCs differentiate into functional (beating) cardiomyocytes in vitro 

or in vivo? Do EPDCs differentiate into cardiac lineages in vivo in the damaged adult? Does 

the activity or potential of EPDCs decline with age? The identification of factors which stim-

ulate endogenous cardiac progenitor cells to induce neovascularization and cardiomyocyte 

replacement is an evolving paradigm towards therapeutic intervention in cardiac diseases. 

The race is to facilitate drug discovery for targets acting on cardiomyocytes or EPDCs to 

invoke new coronary vessels and cardiac tissues as a significant step toward cardioprotec-

tion and cardiovascular regeneration. 
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