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1. Introduction  

Salmonella enterica are members of a Gram-negative enteropathogenic bacteria family, which 

are able to infect a great diversity of hosts, including human. According to serotypes and 

hosts, Salmonella enterica cause a wide range of food- and water-borne diseases ranging from 

self-limiting gastroenteritis to systemic typhoid fever. Moreover, no other known bacterial 

pathogens belonging to a single species show such a remarkable variation in their host 

specificity. Ubiquitous serotypes such as Typhimurium and Enteritidis tend to produce 

acute but self-limiting enteritis in a wide range of hosts, whereas host-specific serotypes are 

associated with severe systemic disease in healthy outbred adults of a single species that 

may not involve diarrhoea (e.g. Gallinarum in poultry). Host-restricted serotypes are 

primarily associated with systemic disease in one host (e.g. Dublin in cattle, Choleraesuis in 

pigs), but may cause disease in a limited number of other species (Velge et al., 2005).  

For all these serotypes, the intestinal barrier crossing constitutes a crucial step for infection 

establishment. As shown in Figure 1, Salmonella can induce their own entry into enterocytes, 

but M cells and CD18-expressing phagocytes also facilitate their translocation through the 

intestinal epithelium (Watson & Holden, 2010). During gastroenteritis pathology, host 

colonization is restricted to the intestinal tract. However, Salmonella also have the ability to 

disseminate to extra-intestinal sites at least via CD18-expressing phagocytes, leading to deep 

organ colonization (Vazquez-Torres et al., 1999). 

Bacterial pathogens have developed two different mechanisms to invade non-phagocytic host 

cells by hijacking physiological cellular processes. Bacteria, such as Listeria monocytogenes and 

Yersinia pseudotuberculosis express surface proteins that interact with receptor on the host cell 

plasma membrane. This interaction promotes an activation of host cell signaling pathways, 

leading to actin remodelling. This process is referred to as a Zipper mechanism and is 

characterized by the induction of little protrusive activity and thin membrane extensions 

(Figure 2A and C) (Cossart & Sansonetti, 2004). Other bacteria, such as Shigella flexneri, do not 

require a receptor but trigger internalization from “inside” via the action of pathogen-effector 

proteins delivered by specialized protein secretion systems (Schroeder & Hilbi, 2008). 

Translocated effector proteins effectively allow the bacteria to “hijack” many essential 
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intracellular processes and induce a massive reorganization of the host actin cytoskeleton, 

resulting in intense membrane ruffling and internalization of the bacteria. This invasion 

process is referred to as a Trigger mechanism (Figure 2B and D) (Cossart & Sansonetti, 2004).  

 

Fig. 1. Intestinal barrier crossing by Salmonella enterica through M cells, enterocytes or 
following a luminal capture by CD18+ phagocytes such as dendritic cells.  

The reorganization of actin cytoskeleton at the entry site is a crucial step for Trigger and 

Zipper bacterial internalization. In eukaryotic cells, actin exists as a globular monomer (G-

actin) which can assemble to form a filamentous structure (F-actin). In physiological 

conditions, actin polymerization requires different steps. First, nucleation of actin which 

consists in regrouping three actin monomers, is stimulated by cellular factors such as the 

Arp2/3 complex (Mullins et al., 1998). Once nucleated, the addition of ATP-actin-monomers 

at the barbed extremity of the filaments allows actin elongation (Pollard et al., 2000). The 

three-dimensional structure of actin filaments is ensured by capping proteins and other 

actin-binding proteins such as actinin, gelsolin, and villin that enable bundling of filaments 

(Bretscher, 1991; Hartwig & Kwiatkowski, 1991). Actin dynamics regulation is closely 

associated with small Rho guanosine triphosphatase protein (RhoGTPase) activity. 

RhoGTPases cycle between an inactive guanine di-phosphate (GDP)-bound form and an 

active guanine tri-phosphate (GTP)-bound form. The switch between inactive and active 

state is regulated by guanine exchange factors (GEF) which catalyze the exchange of GDP 

with GTP and GTPase activating proteins (GAP) which hydrolyze GTP into GDP to switch 

off their active state. When bound to GTP, Rho GTPases target and activate downstream 

effectors such as proteins from the Wiscott-Aldrich Syndrome protein (WASP) / N-WASP 

Family, leading to nucleator activation and actin reorganization. All these steps are required 

during bacterial internalization.  
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Fig. 2. Models of Zipper and Trigger invasion mechanisms. (A) The Zipper process is 
initiated by an interaction between a host cell receptor and a bacterial surface protein which 
allows the activation of RhoGTPases and actin polymerization at the entry site. (B) In 
contrast, during the Trigger mechanism, RhoGTPases are targeted by bacterial effectors 
which are directly translocated into host cell via a type–three secretion system, leading to 
actin polymerization and internalization. Electron scanning microscopy pictures show (C) S. 
Enteritidis invading fibroblasts via a Zipper process which is characterized by weak 
membrane rearrangements and (D) via a Trigger process which is characterized by intense 
membrane rearrangements.  

The study of host cell invasion by Salmonella has been initiated in 1967 by Takeuchi 
(Takeuchi, 1967). For decades, it was described in the literature that Salmonella can enter cells 
only via a “Trigger” mechanism mediated by a type-three secretion system (T3SS-1) 
encoded by the Salmonella pathogenicity island-1 (SPI-1) (Ibarra & Steele-Mortimer, 2009). 
Recent data have showed that cell invasion could occur despite the absence of the T3SS-1 
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(Aiastui et al., 2010; Radtke et al., 2010; Rosselin et al., 2011), indicating that the dominant 
paradigm postulating that a functional SPI-1/T3SS is absolutely required for cell entry, 
should be reconsidered. Moreover, the characterization of one T3SS-1-independent invasion 
pathway revealed that Salmonella have also the ability to enter cells via a Zipper process 
mediated by the Rck invasin (Rosselin et al., 2011). Consequently Salmonella are the first 
bacteria found to be able to invade cells both via a Zipper and a Trigger mechanism.  

Here, our current understanding of the different strategies used by Salmonella to invade host 
cells will be summarized and we will focus on how Salmonella are able to manipulate the 
host actin cytoskeleton, leading to discrete or intense membrane rearrangements. The gap of 
our knowledge about these different entry pathways will be discussed.  

2. Invasion mechanism dependent on the T3SS-1  

The Type-Three Secretion System (T3SS-1) is the best characterized invasion system of 
Salmonella. It allows bacterial internalization into non-phagocytic cells via a Trigger 
mechanism which induces massive actin rearrangements and intense membrane ruffling at 
the entry site (Cossart & Sansonetti, 2004). Under environmental conditions that enable the 
expression of the T3SS-1, the secretion apparatus is assembled at the bacterial surface and 
effectors are translocated into the eukaryotic cytosol following an interaction between the 
bacteria and the host cell (Garner et al., 2002; Hayward et al., 2005).  

2.1 T3SS-1 structure 

T3SSs are supramolecular complexes that play a major role in the virulence of many Gram-

negative pathogens by injecting bacterial protein effectors directly into host cells in an 

energy-dependent (ATP) manner (Galan & Wolf-Watz, 2006). These complexes cross both 

inner and outer membranes of bacteria and are able to create a pore in eukaryotic membrane 

upon contact with a host cell. They are made of an exportation apparatus, a basal body, a 

needle and a translocon at the tip of the needle (Figure 3A). The structure of these T3SSs 

shows a high degree of conservation among pathogens (Tampakaki et al., 2004) and the 

Salmonella T3SS-1 apparatus shares in particular a high homology with the T3SS of Shigella, 

also involved in host cell invasion (Groisman & Ochman, 1993).  

The basal body of the T3SS anchors the complex into the bacterial inner and outer membranes 
(Figure 3A). It is composed of PrgH, PrgK and InvG proteins which assemble into an inner 
ring (PrgH and PrgK) and an outer ring (InvG) (Schraidt & Marlovits, 2011). Anchored to the 
basal body via its transmembrane part, the needle protrudes from the outer membrane as a 
long filament of 50 nm length and is composed of the single PrgI protein (Kimbrough & Miller, 
2000). At the extremity of the needle, a complex of three proteins (SipB, SipC, SipD), known as 
the translocon, is able to form a pore in the eukaryotic target cell, allowing the secretion of 
effector proteins (Mattei et al., 2011). SipB, SipC and SipD proteins (also referred to Ssp 
proteins) share homology with other translocon proteins such as IpaB, IpaC and IpaD proteins 
of Shigella (Hueck, 1998). SipD has a hydrophilic domain and interacts directly with the PrgI 
needle protein (Rathinavelan et al., 2011) while the two other proteins of the translocon (SipB 
and SipC) have a hydrophobic domain and are therefore directly involved in the pore 
formation (Hayward et al., 2000; Miki et al., 2004). Particularly, it has been shown that the 
interaction of SipB with cellular cholesterol is necessary for effector translocation (Hayward et 
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al., 2005). Finally, the translocation of T3SS-1 effector proteins requires an exportation 
apparatus located at the inner membrane level and made of highly conserved proteins among 
T3SSs (SpaP, SpaQ, SpaR, SpaS, InvA, InvC and OrgB). The unfolded effectors in association 
with their chaperone are targeted to the exportation apparatus and the ATPase InvC produces 
the energy necessary to the transport of these proteins through the needle (Akeda & Galan, 
2004). The appropriate hierarchy in the secretion process is established by a cytoplasmic 
sorting platform composed of SpaO, OrgA and OrgB (Lara-Tejero et al., 2011). This platform 
sequentially loads the secreted proteins by interacting with their chaperones to ensure a 
specific order of secretion and optimize host cell invasion.  

 

Adapted from Kimbrough and Miller, 2002. 
A. Localization of the T3SS-1 structure proteins. B. Schematic representation of SPI-1 island encoding 
the T3SS-1 proteins. C. Functional classification of SPI-1-encoded proteins. 

Fig. 3. Structure and organization of Salmonella T3SS-1. 
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2.2 Regulation of T3SS-1 expression  

During Salmonella infection, a crucial step is the crossing of the intestinal barrier. The host 
environment encountered by the bacteria, and more particularly the small intestine 
environment, plays a major role in the invasion as it controls expression of the secretion 
apparatus. Coordination of T3SS-1 expression genes, almost all located on the Salmonella 
Pathogenicity Island 1 (SPI-1) is complex and well-timed. In response to different 
environmental stimuli, a sophisticated regulatory network controlling the expression of SPI-
1 has been established (Figure 4). Our purpose here is not to set up the thorough state-of-
the-art on all the regulators involved in Salmonella invasion, but to give a general overview 
of this system (for a review, see (Ellermeier & Slauch, 2007)). 

SPI-1 contains 39 genes encoding structural T3SS-1 proteins (inv/spa and prg operon), 
translocon proteins (SipB, C, D), some effectors (SipA, SptP and AvrA), some chaperones 
(SicA, InvB, SicP) and finally four transcriptional regulators (HilA, hilC, HilD and InvF) 
(Figure 3B and C). Other genes encoding secreted effectors (sopA, sopB, sopD, sopE, sopE2, 
slrP, sspH1, sspH2) are located elsewhere on the chromosome.  

HilA is central for SPI-1 transcriptional regulation. This protein activates directly the 
transcription of prg, inv/spa and sip operons, encoding structural components and some 
secreted effectors of T3SS-1 respectively. In addition, HilA induces the transcription of invF, 
encoding a transcriptional activator and targeting, among others, sip operon, sopE and sopB 
genes (Darwin & Miller, 1999). The sequential expression of HilA and InvF regulators allows 
a hierarchical regulation of invasion genes.  

Then, a second crucial level of SPI-1 transcriptional regulation takes place through the 
regulation of HilA via a feed-forward loop, involving three homologous transcriptional 
regulators: HilC, HilD and RtsA. Each of them binds directly to the hilA promoter and is 
able to activate its own expression. In fact, HilC, HilD and probably RtsA, act as 
derepressors of hilA transcription by counteracting the silencing exerted by nucleoid-
structuring proteins such as H-NS or Hha (Akbar et al., 2003; Queiroz et al., 2011). The 
reason why HilC, HilD and RtsA play such an important role in T3SS-1 expression through 
hilA regulation is that they are at the integration point of a lot of signals that control SPI-1 
expression (Figure 4). In this regulatory circuit, it is currently admitted that HilD has a 
predominant role whereas HilC and RtsA simply act as signal amplifiers. However, it has 
also been shown that these three regulators are also directly implicated in the regulation of 
others invasion genes (Akbar et al., 2003; Ellermeier & Slauch, 2004).  

Moreover, besides these direct regulators, a great number of other hilA regulators, acting 
mainly through HilD, have been identified. Among them, two-component systems play a 
major role. They sense environmental conditions and allow the transmission of different 
signals which modulate T3SS-1 genes expression. Some are able to activate indirectly HilA 
expression such as BarA/SirA and OmpR/EnvZ, whereas others such as PhoP/PhoQ and 
PhoB/PhoR repress it. In fact, HilA expression can also be inhibited. HilE has been 
identified as a negative regulator of hilA transcription preventing HilD activity (Fahlen et al., 
2000; Baxter et al., 2003). It has been suggested that the two-component systems PhoP/PhoQ 
and PhoB/PhoR act through HilE to regulate SPI-1 (Baxter & Jones, 2005).  

As stated above, environmental signals play a major role in Salmonella invasion. Low oxygen 
tension, high osmolarity, high iron concentration, neutral pH are conditions found in the 
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ileum, known to be the preferential invasion site of Salmonella. Thus, as expected in these 
conditions, invasion genes are activated through hilA expression. In contrast, when 
Salmonella are located at unfavorable sites for invasion in the host organism, the presence of 
signals such as bile, secreted into the proximal small intestine or cationic peptides, known to 
exist in macrophages, inhibits T3SS-1 expression (Figure 4). 

Although much has already been identified about the regulation of SPI-1, recently, it 
became more evident that mechanisms regulating this system are more complex than 
previously thought. 

 

Fig. 4. Environmental and transcriptional regulation of SPI-1 encoded genes. HilA is the 
major regulator of SPI-1 and is itself regulated by other regulators such as HilC, HilD, RtsA 
and HilE. When Salmonella reach the small intestine, a low O2 tension, a neutral pH, a high 
iron concentration and a high osmolarity activate SPI-1 expression. In contrast, the presence 
of bile or cationic peptides represses its expression.  

2.3 Subversion of the cellular machinery during T3SS-1-dependent entry 

Among the effectors that are translocated into host cell by the T3SS-1, six are essential to 
cell invasion (SipA, SipC, SopB, SopD, SopE, SopE2) while the other effectors contribute to 
a variety of post-invasion processes such as host cell survival and modulation of the 
inflammatory response (Patel & Galan, 2005). To trigger internalization into cells, effectors 
manipulate actin cytoskeleton either directly or indirectly. They also manipulate the 
delivery of vesicles to the site of bacterial entry to provide additional membrane and 
allow the extension and ruffling of the plasma membrane necessary to promote invasion. 
In later steps, membrane fission occurs to induce the sealing of the future Salmonella-
containing vacuole (SCV) and actin filaments are depolymerized, enabling the host cell to 
recover its normal shape (Figure 5).  
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Fig. 5. Intracellular activities of the T3SS-1 effectors: SipA and SipC bind actin directly 

whereas SopE, SopE2 and SopB stimulate RhoGTPase activity. SipC and SopE also act in 

cooperation to recruit exocytic vesicles at the entry site. SopB plays diverse roles during 

invasion: it promotes actomyosin contractility and changes phosphoinositide concentrations 

to facilitate the dissociation between actin cytoskeleton and membrane at the entry site. 

SopB also probably triggers the delivery of vesicles to the bacterial entry site in a VAMP-8 

dependent way and activate SopD which seems to contribute to the sealing and the 

formation of the SCV. The last effector SptP turns off the activity of RhoGTPases to allow the 

host cell to regain its initial shape. 

2.3.1 Actin manipulation 

Actin polymerization is an essential process induced by T3SS-1 effectors during entry. Some 

effectors stimulate actin rearrangements indirectly and two effectors, SipA and SipC, 

manipulate actin directly. SipA and SipC are localized at the eukaryotic plasma membrane 

during entry (Scherer et al., 2000) but they are also translocated into the host cell cytoplasm 

(Hueck et al., 1995; Kaniga et al., 1995). 

SipC, as part of the translocon, is required for T3SS-1 effector translocation and involved in 
actin nucleation and bundling. Due to its various functions, a 95% decrease in invasion is 
observed when sipC is deleted (Chang et al., 2005). The C-terminal region of SipC (amino-
acids A321-A409) encodes the effector translocation activity (Chang et al., 2005) and its 
central region (amino-acids N201–S220) binds to actin and induces a rapid nucleation and 
elongation of actin filaments. More precisely the regions containing the amino acids from 
H221–M260 and L381–A409 bind to and bundle actin filaments in vitro (Myeni & Zhou, 
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2010). The bundling activity of SipC is essential for internalization as a sipC mutant lacking 
bundling activity is impaired in cell invasion. SipC dimerization / multimerization seems to 
be required for nucleation and a sipC mutant deficient for multimerization and actin 
nucleation failed to cause severe colitis in a mouse model (Chang et al., 2007).  

As SipC, SipA binds directly to actin (amino acids P446-R685) and modulates cytoskeleton 
dynamics in different ways (Galkin et al., 2002; Higashide et al., 2002). A Salmonella 
Typhimurium sipA mutant exhibits a 60-80% decrease in invasion compared to the wild-
type strain (Perrett & Jepson, 2009), which can be correlated to the fact that SipA is a 
multifunctional effector. First, Zhou et al. (1999b) have observed that SipA reduces the 
critical concentration of G-actin in the cytosol required for polymerization. In addition, to 
facilitate polymerization, SipA also stabilizes actin filaments by displacing ADF / cofilin 
factor which stimulates actin depolymerization and by protecting F-actin from gelsolin 
severing (McGhie et al., 2004). Moreover, SipA enhances actin cross-linking both by 
interacting with T-Plastin, a cellular bundling protein, and by enhancing SipC activity 
(Zhou et al., 1999a; McGhie et al., 2001). Interestingly, Perrett and Jepson have 
demonstrated that a sipA deletion induces a decrease in host cell invasion but without 
affecting the frequency of membrane ruffle formation (Perrett & Jepson, 2009). By 
visualizing the membrane ruffles in the absence of SipA, they have observed that SipA is 
required to ensure the spatial localization of actin rearrangement beneath invading 
Salmonella for efficient uptake of bacteria. 

In contrast to SipA and SipC, SopB, SopE and SopE2 exert their activity into host cells by 

inducing actin polymerization in an indirect way. They activate RhoGTPases which are key 

cellular effectors that regulate actin cytoskeleton remodeling (Patel & Galan, 2005).  

During Salmonella T3SS-1 dependent invasion, SopE and SopE2 effectors mimic GEF 

activity to activate RhoGTPases. Their activation induces actin polymerization by 

stimulating downstream cellular proteins such as N-WASP, WAVE and WASH which 

activate the Arp2/3 nucleator complex (Buchwald et al., 2002; Schlumberger et al., 2003). 

SopE specifically targets the Rho GTPases Rac and Cdc42 in vitro whereas SopE2 only 

activates Cdc42 (Friebel et al., 2001). The role of Rac in Salmonella T3SS-1-dependent entry 

is well characterized but the role of Cdc42 is controversial. Criss et al. (2001) have 

demonstrated by using dominant negative forms and by pull-down assays that, in 

contrast to non-polarized cells, Cdc42 is not required and not activated during invasion of 

MCDK polarized epithelial cells. In the same way, Patel and Galan have observed that the 

depletion of Cdc42 by RNA interference (RNAi) in COS-2 and Henle-407 had no effect on 

membrane ruffling and efficient uptake (Patel & Galan, 2006). In contrast, a recent 

genome-scale RNAi screening in HeLA cells indicated that Cdc42 depletion induced a 

70% decrease in invasion, suggesting that it is required for the T3SS-1-dependent invasion 

process (Misselwitz et al., 2011). All together, it is difficult to conclude about the 

involvement of Cdc42 during T3SS-1-dependent entry.  

Salmonella mutant strains lacking both sopE and sopE2 are still able to invade cells in a SopB 
dependent way (Zhou et al., 2001). SopB is an inositol phosphatase which shares homology 
with eukaryotic phopho-inositol (PI) phosphatases (Norris et al., 1998). Like SopE and 
SopE2, SopB targets a GTPase from the Rho family, RhoG, but in an indirect manner since 
SopB activates the GEF protein that allows RhoG activation (Patel & Galan, 2006). Once 
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activated, RhoG induces actin polymerization at the entry site presumably by stimulating 
the Arp2/3 complex (Patel & Galan, 2006). A sopB deletion in S. Typhimurium induces a 
50% decrease in invasion. But when sopB deletion is coupled with a sopE deletion, Salmonella 
uptake is drastically impaired (Zhou et al., 2001), demonstrating that all the T3SS-1 effectors 
work in concert to trigger entry.  

Recently, SopB was also shown to manipulate actomyosin contractility to mediate 
invasion. SopB recruits myosin II by activating RhoA and its Rho kinase downstream 
effector. In contrast to the process leading to actin polymerization during Salmonella entry, 
myosin II recruitment at the entry site is independent on Arp2/3 nucleator activity 
(Hanisch et al., 2011).  

In addition, different cellular proteins are involved during the T3SS-1 dependent entry of 

Salmonella without the identification of the bacterial effector responsible of this effect. This 

includes the focal adhesion kinase FAK, the Abelson tyrosine kinase Abl, and Shank3 (Shi & 

Casanova, 2006; Huett et al., 2009; Ly & Casanova, 2009). During Salmonella uptake, FAK acts 

as a scaffolding protein, but not as a protein tyrosine kinase and its interaction with p130Cas 

is involved in actin reorganization and membrane ruffle formation (Shi & Casanova, 2006). 

But how Salmonella can nucleate assembly of focal adhesion-like complexes is still unclear 

and further research is needed to determine if this mechanism involves secreted bacterial 

effector proteins, other transmembrane host proteins, or both. Another scaffolding protein 

Shank3 also seems to regulate actin rearrangement during entry but the mechanisms leading 

to its recruitment and its activation have to be elucidated (Huett et al., 2009). As the 

experiments were performed using HeLa cells which are highly permissive to the T3SS-1-

dependent entry and with bacterial culture conditions that allow T3SS-1 expression, it is 

more probable that the Salmonella entry process inducing Shank3 recruitment is dependent 

on the T3SS-1. However, a T3SS-1-independent invasion process could also be involved 

because no mutant deficient for T3SS-1 expression was used as a control to analyze the 

involvement of Shank3.  

Abelson tyrosine kinase Abl is also involved during Salmonella invasion as well as its 
effectors Abi1, a member of the WAVE2 complex, and CrkII (Ly & Casanova, 2009). Abi1 
could thus enhance actin polymerization at the entry site but the role of CrkII during the 
invasion process remains poorly characterized. 

2.3.2 Subversion of exocytosis machinery and membrane fusion during entry 

Recent data indicate that membrane fusion is a major process involved during entry, 
suggesting that membrane ruffling requires the addition of intracellular membrane. A 
study focusing on the subversion of the host exocyst complex during Salmonella entry has 
showed cooperation between SipC and SopE (Nichols & Casanova, 2010). The exocyst is 
an octomeric complex (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, Exo84) involved in 
vesicular trafficking which directs post-Golgi vesicules at specific site on the plasma 
membrane prior to their fusion. Nichols and Casanova have demonstrated that the mature 
exocyst complex is recruited at the entry site through an interaction between its subunit 
Exo70 and SipC. A depletion of exo70 or Sec5, another component of the exocyst complex, 
impairs S. Typhimurium invasion. Moreover, they have shown that SopE activates the 
Ras-related protein RalA, a small GTPase required for exocyst complex assembly (Nichols 
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& Casanova, 2010). It appears that SopE and SipC effectors manipulate the host exocyst to 
bring new membrane at the entry site in order to allow the formation of membrane ruffles 
and internalization. 

SopB is also involved in this membrane fusion process through its inositol phosphatase 
activity. Dai et al. (2007) have shown that SopB-generated PI3P at the entry site leads to the 
recruitment of VAMP8, a host V-SNARE protein that mediates fusion between early and late 
endosomes. Moreover, depletion of VAMP8 by RNAi induces a decrease in invasion rate of 
a wild-type S. Typhimurium strain which is equivalent to that obtained with a sopB mutant. 
Thus, it seems that SopB promotes invasion by manipulating eukaryotic vesicular trafficking 
probably to induce fusion of intracellular vesicles to the cell membrane at the entry site. 

How these events of vesicle-membrane fusion interact with actin cytoskeleton 

rearrangements to trigger entry has not been investigated yet. These different processes 

may synergize to induce internalization since actin dynamics is closely related to the 

metabolism of phosphoinosides (Honda et al., 1999; Sechi & Wehland, 2000). However, 

VAMP8 which seems to be a marker of membrane fusion involved during S. 

Typhimurium invasion does not co-localize with F-actin during entry (Dai et al., 2007). In 

addition, it could be interesting to better characterize the role of the cellular factor 

IQGAP1 which is required for Salmonella uptake and acts following an interaction with 

actin and the RhoGTPases Rac1 and Cdc42 (Brown et al., 2007). Indeed, IQGAP1 is known 

to regulate actin architecture and interestingly, it also seems to act as a regulator of 

exocytosis by interacting with Exo70 (Rittmeyer et al., 2008). IQGAP1 could thus be one of 

the missing links between actin rearrangement and membrane fusion during Salmonella 

entry. Further studies could overcome this issue. 

2.3.3 Phagosome closure and restoration of the host cell normal shape 

As described above, inositol phosphatase activity of SopB drives to changes in cellular 

phosphoinosite concentrations at the bacteria/cell contact. In addition to generate PI3P at the 

entry site, translocation of SopB into host cells also induces PI(4,5)P2 hydrolysis, which leads to 

an almost complete absence of PI(4,5)P2 at the membrane invagination regions (Terebiznik et 

al., 2002). By reducing the local concentration of PI(4,5)P2, SopB destabilizes cytoskeleton-

plasma membrane interactions, thus reducing the rigidity of the membrane and promoting 

invasion by facilitating the fission and the sealing of the future Salmonella-containing vacuole. 

In addition to SopB, SopD also contributes to membrane fission. Boonyom et al. have 

demonstrated that a sopD deletion, like the sopB mutant, leads to a decrease in membrane 

fission during invasion and that SopD is recruited at the bacterial invasion site dependently on 

the phosphatase activity of SopB (Bakowski et al., 2007). Thus, SopD seems to cooperate with 

SopB and contribute to Salmonella uptake by facilitating membrane fission at the entry site 

leading to the formation of the SCV (Bakowski et al., 2007).  

Following the formation of intense membrane ruffling and internalization, the eukaryotic cell 
regains its normal shape, inducing the closure of the vacuole of endocytosis containing the 
bacteria. The restoration of actin cytoskeleton is promoted by the effector SptP, a tyrosine 
phosphatase which inactivates the RhoGTPases Rac-1 and Cdc42 by stimulating their intrinsic 
GTPase activity (Fu & Galan, 1998; Fu & Galan, 1999). The N- terminal region of SptP interacts 
with Rac-1 and Cdc42 and a structural study of SptP indicates that this effector mimics the 
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activity of host cell GAPs factors (Stebbins & Galan, 2000). Interestingly, SptP is regulated by 
two different mechanisms in order to delay its activity in host cell compared to that of SopE or 
SipA. A microscopy analysis revealed that SipA is injected earlier than SptP in the host 
cytoplasm, which would imply that SipA has a higher affinity for the exportation apparatus of 
the T3SS-1 than SptP (Winnen et al., 2008). Moreover, SptP degradation by the host cell 
proteasome occurs later than SopE degradation (Kubori & Galan, 2003). 

2.4 T3SS-1 contribution to Salmonella pathogenesis 

The T3SS-1 is the main invasion factor of Salmonella in vitro. Nevertheless, its contribution to 
pathogenesis depends on the model used. In vivo studies with S. Dublin and S. 
Typhimurium serotypes have demonstrated that the T3SS-1 is essential for intestinal 
colonization and is required to induce enterocolitis in bovine, rabbit and murine models 
(Wallis & Galyov, 2000). In contrast, recent studies demonstrate that different serotypes of 
Salmonella lacking T3SS-1 still have the ability to invade in vitro cells of diverse origins and 
can be pathogenic in different in vivo infection models (Aiastui et al., 2010; Rosselin et al., 
2011). In addition, it was shown that the T3SS-1 is not required for Salmonella internalization 
into a 3-Dimensional intestinal epithelium (Radtke et al., 2010). Moreover, a SPI-1 mutant of 
S. Gallinarum exhibits a reduced invasiveness into avian cells but is fully virulent in adult 
chicken (Jones et al., 2001). In S. Enteritidis and S. Typhimurium, the T3SS-1 is not essential 
during systemic infection of one week-old chicken or BalB/c mouse nor during the 
intestinal colonization of rabbit ileal loops (Coombes et al., 2005; Jones et al., 2007; Karasova 
et al., 2010). Moreover, S. Senftenberg strains lacking SPI-1 are isolated from human clinical 
cases, suggesting that the T3SS-1 is dispensable by this serotype for the establishment of 
infection in humans (Hu et al., 2008).  

Taken together, these results indicate that T3SS-1- independent invasion mechanisms also 
play an important role in Salmonella infection and pathogenesis. 

3. Invasion mechanisms independent of the T3SS-1 

A Salmonella mutant, unable to express its T3SS-1 is still able to invade numerous cell lines and 
cell types and is shown to induce both intense and local membrane rearrangements (Rosselin 
et al., 2011). However, to date, little is known about the entry factors mediating these T3SS-1 
independent invasion mechanisms. Here, we describe and sum up the state-of-art regarding 
these new invasion systems. Rck, PagN and HlyE are the three invasins identified as involved 
in Salmonella uptake. Moreover, Rosselin et al. (2011) have described that others unknown 
invasion factors exist although they are still not identified.  

3.1 The Rck invasin 

Among invasins that play a role in Salmonella invasion in a T3SS-1-independent way, Rck 
is clearly the best characterized. Rck is an 17kDa outer membrane protein (OMP) encoded 
by the large virulence plasmid of S. Enteritidis and S. Typhimurium (Heffernan et al., 
1992; Rotger & Casadesus, 1999). In addition to its ability to induce adhesion to and 
invasion of eukaryotic cells, Rck confers a high resistance level to complement killing by 
preventing the formation of the membrane attack complex (Heffernan et al., 1992; Cirillo et 
al., 1996; Rosselin et al., 2010).  
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3.1.1 Rck structure 

Rck is a member of an outer membrane protein family named “Ail/Lom family”. This 
family consists of five members (Rck, Ail, Lom, OmpX and PagC) which are predicted to 
have eight transmembrane beta-sheets and four cell surface-exposed loops. Even if these 
proteins present a similar conformation, they have different functions. Rck and Ail (encoded 
by a chromosomal gene of Yersinia Enterocolitica) share the ability to promote serum 
resistance and epithelial cell invasion. These proteins do not exhibit homologous regions 
that could be related to these two identical roles. In Ail, the cell invasion property is 
associated with loop2 whereas loop3 and more precisely the region from the amino acids 
G113 to V159 was shown to be the minimal region of Rck required and sufficient for cell 
adhesion and invasion (Miller et al., 2001; Rosselin et al., 2010).  

Another member of this family involved in virulence is PagC which is encoded by a phoP-
regulated gene on the Salmonella chromosome and plays a role in intracellular macrophage 
survival in Salmonella (Miller et al., 1989; Gunn et al., 1995). Others members of this family 
are OmpX of Enterobacter cloacae (Mecsas et al., 1995) and Lom, a protein expressed by 
bacteriophage λ from lysogenic E. coli (Reeve & Shaw, 1979) but none of them have known 
virulence-associated phenotype.  

3.1.2 Rck regulation  

A genetic screening performed in S. Typhimurium to identify genes regulated by SdiA 
(suppressor of division inhibition), a transcriptional regulator of quorum sensing, has 
suggested that rck belongs to a putative operon called the “rck operon” whose expression is 
activated by SdiA in an Acyl Homoserine Lactone (AHLs)-dependent manner (Figure 6) 
(Ahmer et al., 1998; Michael et al., 2001).  

The rck operon contains 6 open reading frames: pefI, srgD, srgA, srgB, rck and srgC (Figure 6). 
Two genes in this operon, pefI (plasmid encoded fimbriae) and srgA (sdiA-regulated gene), 
affect the expression and function of the pef operon located upstream of the rck operon and 
involved in the biosynthesis of the Pef fimbriae. pefI encodes a transcriptional regulator of 
the pef operon, and SrgA is a DsbA paralog that efficiently oxidizes the disulfide bond of 
PefA, the major structural subunit of the Pef fimbriae (Bouwman et al., 2003). These fimbriae 
are involved in biofilm formation, adhesion to murine small intestine and fluid 
accumulation in the infant mouse (Baumler et al., 1996; Ledeboer et al., 2006). Also localized 
on the rck operon, srgD encodes a putative transcriptional regulator. Recently, it has been 
shown that SrgD acts in cooperation with PefI to induce a synergistic negative regulation of 
flagellar genes expression (Wozniak et al., 2009; Wallar et al., 2011). The remaining genes on 
the rck operon have unknown functions and encode a putative outer membrane protein, 
SrgB, and a putative transcriptional regulator, SrgC. 

Another locus regulated by SdiA-AHLs has been identified during screening. This 
chromosomal locus encodes a single gene named srgE (STM1554) (Ahmer et al., 1998). No 
function for SrgE is described but a computational approach has suggested that SrgE is 
secreted by the T3SS-1 (Samudrala et al., 2009) (Figure 6).  

As E. coli and Klebsiella, Salmonella lack an AHL synthase and thus do not produce AHLs. 
However, SdiA can detect and bind AHLs produced by others bacterial species (Michael et 
al., 2001). SdiA is a LuxR homologue and has two functional domains. The C-terminal 
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region contains a predicted helix-turn-helix motif implicated in DNA binding and a N-
terminal domain called “autoinducer domain” that interacts with AHLs. By NMR analysis, 
Yao et al. (2007) have shown that a direct interaction between SdiA and AHLs is required for 
SdiA folding and function.  

Temperature also affects rck operon expression. At temperature below 30°C, the 
transcription of rck operon is repressed, while srgE is repressed only at temperature below 
22°C (Smith & Ahmer, 2003)(Figure 6). As SdiA expression is not temperature regulated, 
another level of rck operon regulation remains to be identified.  

In addition, a transcriptomic study has shown that Hha and its paralogue YdgH could be 
involved in the regulation of the rck operon (Vivero et al., 2008).  

 

Fig. 6. Regulation of rck operon expression. When bound to AHLs, SdiA activates the 
expression of rck operon and srgE. Under temperatures that are lower than 30°C or 22°C, the 
expression of rck operon and srgE is inhibited, respectively. 

3.1.3 Rck-mediated entry mechanism 

When a rck mutant is grown under swarming conditions known to induce SdiA expression, 
a 2-3 fold decrease in epithelial cell invasion has been observed compared to the wild-type 
strain (Rosselin et al., 2010). Moreover, in standard culture conditions, Rck overexpression 
leads to an increase in invasion.  

By using both an initially non-invasive E. coli strain overexpressing Rck and latex beads 
coated with the minimal region of Rck inducing invasion (G113-V159), it was demonstrated 
that Rck alone is able to induce entry by a receptor-mediated process. This mechanism 
promotes local actin remodelling and weak and closely adherent membrane extensions 
(Rosselin et al., 2010). Salmonella can thus enter cells through two distinct mechanisms: the 
Trigger mechanism mediated by its T3SS-1 apparatus and a Zipper mechanism induced by 
Rck. A model of this Zipper entry process is shown in figure 7. Following an interaction 
between Rck and its unknown cellular receptor, it was shown by using specific drugs and a 
dominant negative form that the class I PI3-kinase made of the p85-p110 heterodimer is 
required for Rck mediated entry. Moreover, Rck induces an increase in the interactions 
between p85 and phosphotyrosine residues, leading to the class I PI3-Kinase activation. 
Pharmacological approaches or Akt knockout cells also demonstrate that Akt is necessary to 
Rck-mediated internalization. Probably by binding to PI(3,4,5)P3, Akt is recruited at the 
entry site and activated in a PI3-Kinase dependent way (Mijouin et al., 2012). 
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The GTPase Rho is not involved during the Rck entry process but the use of dominant 
negatives demonstrates that Rac1 and Cdc42 are required (Rosselin et al., 2010). Moreover, 
Rac1 is recruited at the entry site and Rck induces an increase in the level of active Rac1, 
demonstrating that it activates this GTPase (Rosselin et al., 2010; Mijouin et al., 2012). Rac1 
activation occurs downstream on the PI-3kinase activity. Finally, overexpression of 
inhibitory constructs has shown that actin polymerization is dependent on the Arp2/3 
nucleator complex during Rck-mediated entry (Rosselin et al., 2010).  

 

Fig. 7. Model of the cellular signaling pathway induces by Rck and leading to invasion. This 
Zipper entry process involves different cellular proteins: Class I PI3-Kinase, Akt, Rac and 
Cdc42, the Arp2/3 complex and actin. Dotted arrows: possible signalling events and/or 
interactions. 

3.1.4 Rck contribution to Salmonella pathogenesis 

The role of Rck in Salmonella invasion is clearly demonstrated in vitro, but its role in 
Salmonella pathogenesis is poorly understood. Indeed, in vivo conditions allowing rck 
expression are unclear. The fact that Rck is regulated by SdiA, a quorum sensing regulator 
suggests an intestinal role of this invasin (Ahmer et al., 1998). However, the mechanisms 
leading to SdiA activation and rck expression are not well characterized. SdiA activation 
has been investigated in different hosts including rabbit, guinea pig, cow, turtle, mouse, 
pig and chicken but no activated-SdiA has been detected in the gastro-intestinal tract of 
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these animals, except for turtles which were found to be co-infected with AHLs-
producing Aeromonas hydrophila (Smith et al., 2008). Another work has demonstrated that 
SdiA is activated in mice previously infected with Yersinia enterocolitica, which is able to 
synthesize AHLs (Dyszel et al., 2010). However, in these conditions, SdiA activation does 
not confer a fitness advantage for Salmonella intestinal colonization in comparison to a 
sdiA mutant (Dyszel et al., 2010). These results suggest that even if SdiA activation is 
achieved when AHL-producing strains colonize the gastrointestinal tract, it is not always 
sufficient to induce the expression of its regulon including rck. To assess the role of SdiA 
and its regulon during intestinal infection, Dyszel et al. (2010) have constructed a 
Salmonella strain able to produce AHLs. After co-infection of mice with the AHL-
producing Salmonella strain and a sdiA mutant, it was shown that the constant activation 
of SdiA confers a selective advantage to Salmonella. Moreover, a loss of this selective 
advantage was observed when all individual SdiA-regulated genes were deleted, 
including rck, suggesting a role during intestinal colonization. Nevertheless, an in vivo 
model allowing a physiological activation of SdiA would be needed to assess the 
contribution of Rck to intestinal infection.  

In addition, as rck is also regulated by an unidentified SdiA-independent system (Smith et 

al., 2008), it is conceivable that Rck invasion mechanism is not restricted to the 

gastrointestinal tract. Considering that Rck is also involved in the resistance to complement 

killing, a systemic function of Rck is possible. 

3.2 The PagN invasin 

In addition to the T3SS-1 and Rck, the PagN outer membrane protein has also been 

identified as being involved in Salmonella invasion (Lambert & Smith, 2008). pagN, is 

localized on the centisome 7 genomic island and is widely distributed among Salmonella 

enterica serotypes (Folkesson et al., 1999). The pagN ORF was originally identified during a 

TnphoA random-insertion screening in S. Typhimurium performed to discover PhoP-

activated genes (Belden & Miller, 1994). 

3.2.1 PagN structure 

PagN shares similarity to both the Tia and Hek invasins of E. coli, and presents 39% and 42% 

identity in amino acids with these two invasins, respectively. Tia and Hek are predicted to 

have eight transmembrane regions, four long exposed extracellular loops and three short 

periplasmic turns (Mammarappallil & Elsinghorst, 2000; Fagan et al., 2008). Thus, PagN 

probably adopts a similar conformation as that of Hek and Tia.  

3.2.2 PagN regulation 

The pagN (phoP-activated gene) gene is phoP-regulated. The PhoP/PhoQ system is a two-
component transcriptional regulatory system which modulates transcription of a multitude 
of virulence genes in Salmonella. This regulatory system is composed of the PhoQ sensor 
kinase (located at the membrane) and the PhoP response regulator. In response to specific 
stimuli such as acidified macrophage phagosome environment or low Mg2+ concentration, 
PhoQ is auto-phosphorylated and transfers its phosphates to the cytoplasmic DNA-binding 
protein PhoP, regulating specific genes.  
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3.2.3 PagN-mediated entry mechanism 

Lambert & Smith (2008) have demonstrated that pagN deletion in S. Typhimurium leads to 

a 3-fold decrease in invasion of enterocytes without altering cell adhesion. At the cellular 

level, the PagN-mediated entry process is poorly characterized. It was only shown that 

actin polymerization is required during invasion (Lambert & Smith, 2008) and that PagN 

is able to interact with extracellular heparin proteoglycans (Lambert & Smith, 2009). 

However, proteoglycans cannot transduce a signaling cascade so it is probable that they 

act as co-receptors for invasion and not as the receptor itself. Moreover, although an 

interaction between PagN and heparin has been suggested, no clear heparin-binding 

motif was detected. Moreover, all PagN loops are required for invasion in epithelial cells 

(Lambert & Smith, 2009).   

3.2.4 PagN contribution to Salmonella pathogenesis 

PagN is required for survival in BALB/c mice (Heithoff et al., 1999) and a pagN mutant is 

less competitive to colonize the spleen of mice compared to its parental strain (Conner et al., 

1998). However, the role of PagN in Salmonella pathogenesis is still unclear. pagN is activated 

by PhoP and thus maximally expressed intracellularly, a condition in which the SPI-1 island 

encoding the T3SS-1 is downregulated (Conner et al., 1998; Heithoff et al., 1999; Eriksson et 

al., 2003). Lambert & Smith (2008) thus postulate that bacteria which exit epithelial cells or 

macrophages have an optimal level of PagN expression, but have a low T3SS-1 expression 

and this might facilitate subsequent interactions with mammalian cells that the pathogen 

encounters after host cell destruction. 

3.3 The HlyE invasin  

The hlyE gene is localized on the Salmonella pathogenicity island SPI-18 and is expressed 

by serotypes associated with systemic infection in humans including S. Typhi and S. 

Paratyphi A (Fuentes et al., 2008). The hlyE sequence shares more than 90% identity with 

that of Escherichia coli HlyE (ClyA) hemolysin.The HlyE protein is able to lyse epithelial 

cells when exported from bacterial cell via outer membrane vesicule release (Wai et al., 

2003). Recently, Fuentes et al. (2008) have demonstratred that HlyE contributes to 

epithelial cell invasion of S. Typhi. However, the cellular events leading to HlyE-mediated 

invasion have not been characterized.  

In vivo studies have shown that HlyE contributes to colonization of mouse deep organs 
(Fuentes et al., 2008). However, how HlyE participates in establishment of systemic infection 
of Salmonella is not well understood. 

3.4 Non-identified invasion factors 

Several studies have revealed that invasion systems in S. Typhimurium and S. Enteritidis 
are not restricted to the T3SS-1, Rck and PagN. Indeed, a strain which does not express 
rck, pagN and the T3SS-1 is still able to significantly invade fibroblasts, epithelial and 
endothelial cells (Rosselin et al., 2011). Results obtained by Aiastui et al. (2010) and van 
Sorge et al. (2011) have reinforced the idea that non-identified invasion factors are 
involved during entry into these cell types since Salmonella strains that cannot express the 
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T3SS-1 still enter into epithelial cells, endothelial cells and  fibroblasts in a significant way. 
Moreover, invasion analyses of a 3-D intestinal epithelium by S. Typhimurium have also 
highlighted the fact that Salmonella possess non-characterized invasion factors (Radtke et 
al., 2010).  

Actin network remodeling and membrane rearrangements induced by these unknown 

factors have been visualized by confocal and electron microscopy as well as both Zipper-

like and Trigger-like membrane alterations (Rosselin et al., 2011). Identification of these 

factors is required to confirm these observations. It suggests that Salmonella express non-

identified invasins able to mediate a Zipper process and factor(s) other than the T3SS-1 

that induce Trigger-like invasion process(es). Type IV or type VI secretion systems are 

good candidates to induce Trigger-like cellular structures as they are able to translocate 

proteins directly into the host cell cytosol and as they are major virulence determinants 

involved in the pathogenesis of diverse Gram-negative bacteria (Oliveira et al., 2006; 

Filloux et al., 2008; Blondel et al., 2010).  

These observations thus open new avenues for identification of new invasion factors.  

4. Conclusions and perspectives  

Until recently, it was accepted that Salmonella enter cells only via its T3SS-1, which 
mediates a Trigger entry process. The T3SS-1-dependent invasion system has been widely 
described in the literature both at the bacterial and the cellular molecular levels. 
Moreover, the requirement of the T3SS-1 during intestinal and systemic infections has 
been demonstrated in some animals (Wallis & Galyov, 2000). However, an increasing 
number of reports describe that different serotypes of Salmonella can induce host infection 
without a functional T3SS-1 (Penheiter et al., 1997; Jones et al., 2001; Karasova et al., 2010). 
This has been demonstrated with T3SS-1 mutants but also with clinical Salmonella strains 
(Hu et al., 2008). However, the majority of Salmonella invasion system studies have 
focused on the T3SS-1 and we have little information concerning the T3SS-1-independent 
entry processes. Several invasins including PagN, Rck and HlyE have been recently 
identified in Salmonella and different investigations have provided evidences for other 
non-identified invasion factors (Aiastui et al., 2010; Radtke et al., 2010; Rosselin et al., 2011; 
van Sorge et al., 2011). In addition, the vast majority of this information has been obtained 
in a mouse model and with S. Typhimurium and much less data are available for other 
serotypes especially those adapted to pigs, cattle or poultry which represent major 
reservoirs of Salmonella. Salmonella enterica contain, over 2,500 diverse serotypes that have 
different host ranges, and cause diseases with severity ranging from subclinical 
colonization to serious systemic disease. Because the essential feature of the pathogenicity 
of Salmonella is its interaction with host cells, the identification of new entry routes could, 
in part, explain their different host ranges and disease symptoms.  

The finding that Salmonella serotypes use different cell receptors and cell routes for host 
infection shows that the contribution of Salmonella genes to pathogenesis may be more 
complex than previously thought. These findings are changing our classical view of 
Salmonella pathogenicity. This new paradigm will modify the understanding of the 
mechanisms that lead to the different Salmonella-induced diseases and could allow us to 
revisit the host specificity bases. 
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