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1. Introduction 

Salmonellae are Gram-negative facultative anaerobes that have been divided into two species: 

S. enterica, which is subdivided into over 2,500 serovars, and Salmonella bongori. Some serovars 

of S. enterica, such as S. Typhi, cause systemic infections and typhoid fever, whereas others, 

such as S. Typhimurium, cause gastroenteritis. Nontyphoidal Salmonella are a major cause of 

food poisoning being Salmonellosis one of the most common and widely distributed 

foodborne diseases. Millions of human cases are reported worldwide every year and the 

disease constitutes a major public health burden, causing significant morbidity and mortality 

in several countries. Since the beginning of the 1990s, strains of Salmonella which are resistant 

to a range of antimicrobials, including first-choice agents for human treatment, have emerged 

and are threatening to become a serious public health problem. Multidrug-resistant strains of 

Salmonella are now frequently encountered and the rates of multidrug-resistance (MDR) have 

been increasing considerably in recent years [World Health Organization (WHO, 2005)].  

Strains of Salmonella spp. with resistance to antimicrobial drugs are now widespread in both 
developed and developing countries. Effective antimicrobial agents are essential for human 
and animal health and welfare. However, infections caused by resistant microorganisms 
often fail to respond to standard treatment, resulting in prolonged illness and greater risk of 
death. Hence, the increasing antimicrobial resistance is considered a public health problem 
at a global level (Musgrove et al., 2006; Võ, 2007). A diversity of foods and environmental 
sources harbor bacteria that are resistant to antimicrobial drugs used in medicine and in 
food-animal production (Bager & Helmuth, 2001; Schroeder et al., 2004). Also the misuse 
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and/or excessive use of antibiotics in human and veterinary medicine are in certain cases 
responsible for the increase and spread of resistance seen among the bacterial population. 
Antimicrobial agents are known to be clinically prescribed in situations where there is no 
bacterial infection or the illness event is a viral infection. In other cases, the treatment of an 
infection is made with the incorrect antibiotic combinations, doses or durations that are 
sometimes excessive. Antimicrobial resistance reduces the effectiveness of treatment as 
patients remain infected for longer, thus potentially spreading resistant microorganisms to 
others. The achievements of modern medicine are also at risk since, without effective 
antimicrobials for care and prevention of infections, the success of treatments such as organ 
transplantation, cancer chemotherapy and major surgery would be compromised. In 
addition, the growth of global trade and travel allows resistant microorganisms to be spread 
rapidly to distant countries and continents; this represents a threat to health security, and 
damages trade and economies (WHO, 2011). 

Bacterial antibiotic resistance can be classified in five different main mechanisms, involving 
the antibiotic molecules or its targets in the cell (Figure 1). 

 

Fig. 1. Antibiotic resistance mechanisms. Adapted from Yao & Moellering, 2003. Antibacterial 
Agents American Society for Microbiology, Washington. 

Although genes encoding efflux pumps can be found on plasmids, the carriage of efflux 
pump genes on the chromosome gives the bacterium an intrinsic mechanism that allows 
survival in a hostile environment (e.g. the presence of antibiotics), and so mutant bacteria 
that over-express efflux pump genes can be selected without the acquisition of new genetic 
material (Webber & Piddock, 2003). Before the development of genomics, the scientific 
community focused investigations on single or small groups of genes or proteins. The 
genome-sequencing projects of the late 1990’s yielded entire genome sequences of many 
bacteria, leading to a large amount of genetic data. These new platforms of the so-called 
“omic” technologies allow the analysis and characterization of biological systems and 
promised to facilitate our understanding of normal cellular function and dysfunction by 
permitting simultaneous monitoring of thousands of molecular components. There are 
currently 1587 complete bacterial genomes and 4901 bacterial genomes in-progress at NCBI 
(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). Even though the number of encoding 
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entities (open reading frames, ORFs) can be predicted from the genome, the number of 
different proteins that an organism is capable of generating cannot directly be deduced - a 
global protein analysis is needed to define the protein composition of a given cell under a 
certain circumstance (Brotz-Oesterhelt et al., 2005). 

Proteomics, defined as the global analysis of cellular proteins, is a key area of research that 
is developing in the post-genome era (Osman et al., 2009). The term proteome, in analogy to 
the term genome, was coined to describe the complete set of proteins that an organism has 
produced under a defined set of conditions (Wasinger et al., 1995). In the last few years 
proteomics has become a powerful tool for the investigation of complex biochemical 
processes, the discovery of new proteins and investigation of protein-protein interactions. 
The proteome is highly dynamic and much more complex than the genome - the number of 
encoding entities can be predicted from the genome, but the number of different proteins 
that an organism is capable of generating cannot be directly deduced. Hence, a global 
protein analysis is needed to define the protein composition of a given cell under a specific 
circumstance (Brotz-Oesterhelt et al., 2005). Moreover, the evaluation of protein profiles in 
response to multiple stress mechanisms, such as sensitivity to antibiotics or modifications 
related to antibiotic resistance, could represent a valid and integrating approach for the 
development of new therapeutic strategies. In complement, Mass Spectrometry (MS)-based 
proteomics and bioinformatics were shown to be suitable for evaluation of the effect of 
protein extracts, whole cell versus outer membrane proteome (OMP), on the identification of 
Gram-negative organisms. Different numbers of distinguishing, unique proteins were 
obtained by the bioinformatics procedure between the two protein extraction methods. 

This chapter will present an overview of the major achievements of proteomic approaches to 
study Salmonella and its adaptation networks that are crucial for bacteria. Furthermore the 
published efforts to exploit the knowledge derived from the proteomic studies directly for 
the antibacterial drug discovery process will be reviewed. Special focus will be placed on 
antibiotic treatment induced stress and particular stressful environments. Finally, recent 
developments related to the Salmonella proteome and technological determinants used as 
biomarkers will be discussed. 

2. Proteomics in practice 

In the mid-1990’s, two factors arose that substantially simplified proteomic analysis. For the 
first time, DNA sequences of whole bacterial genomes became available and allowed the 
prediction of the approximate total number of encoded ORFs (Brotz-Oesterhelt et al., 2005). 
At the same time, progress in MS facilitated the analysis of peptides and small proteins, and 
the accuracy of the measured peptide masses was sufficient to allow protein identification. 
The introduction of user-friendly, browser-based bioinformatics tools to extract information 
from these databases constituted a key of the post-genomic era. It is now possible to search 
entire genome sequences for specific nucleic acid or protein sequences to have a global view 
of living organisms through in silico analysis. Proteome informatics tools span today a large 
panel of very diverse applications ranging from simple tools to compare protein amino acid 
compositions to sophisticated software for large-scale protein structure determination 
(Palagi et al., 2006). The application of proteomics provides major opportunities to elucidate 
disease mechanisms and to identify new diagnostic markers and therapeutic targets. 
Significant progress has been made in the characterisation of bacterial pathogens using a 



 
Salmonella – Distribution, Adaptation, Control Measures and Molecular Technologies 190 

combination of genomic and proteomic technologies. Pathogenic determinants are identified 
through comparative proteomics between virulent and avirulent isolates whereas complex 
disease phenotypes can be correlated with specific proteomic signatures identified through 
the analysis of large collections of natural isolates (Osman et al., 2009). 

Proteomics is used to describe any large-scale investigation of proteins and can be approached 

in many ways but in principle it consists in three steps (Figure 2): (1) protein extraction, (2) 

separation and (3) identification. Most of the approaches require MS and database searching 

for protein identification but differ in the way the proteins are separated and isolated 

(Westermeier & Naven, 2002). In the extraction process, depending on the source, the proteins 

have to be brought into solution by breaking the tissue or cells containing them. Several 

methods like repeated freezing and thawing, sonication, homogenization by high pressure, 

filtration, or permeabilization by organic solvents are used to achieve this purpose. The 

methodology used depends on how fragile the protein is and how sturdy the cells are. 

 

Fig. 2. Typical proteomic workflow representing the classical components of protein 
identification. Proteins are extracted and then separated according to isoelectric point and 
molecular mass (two-dimensional gel electrophoresis, 2-DE). Spots of interest are excised, 
digested and then proteins are identified by MS followed by data interrogation against 
genomic or proteomics databases using bioinformatic tools. 

One of the most important ways that proteins are separated is by electrophoresis, including 
two-dimensional gel electrophoresis (2-DE) and capillary electrophoresis (Mishra, 2010). The 
latter involves the separation of proteins and peptides carried in a thin glass tube under high 
voltage before injection into the mass spectrometer for their identification. Thin tubes have the 
advantage of dissipating heat by high voltage, and separated proteins can be visualized and 
monitored by ultraviolet (UV) light during the eletrophoretic run. However, protein 
separation by 2-DE is the most commonly used method in proteomics. Proteins are separated 
according to isoelectric point (pI) in the first dimension and to molecular mass (Mr) in the 
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second. The gels are stained to visualize the resolved proteins using a dye that can contain zinc 
or copper, Coomassie Blue, silver or a fluorescent dye (Mishra, 2010). Zinc or copper staining 
is a negative staining because it stains the gel and not the protein spots; this method is 
inexpensive and has a sensitivity to detect spots containing 6-12 ng of protein, but it has 
difficulty in handling thin gels. Coomassie Blue is an easy and an inexpensive stain that is used 
to identify proteins by mass spectrometry; it has a sensitivity of 36-45 ng of protein per spot in 
the gel. Silver staining is expensive and time consuming but with high sensitivity as it can 
detect 0.5-1.2 ng of protein per spot in the gel. 2D Differential Gel Electrophoresis (DIGE) is a 
modification of 2D gel electrophoresis to avoid any differences that are usually encountered 
when samples are run on different gels even under identical conditions. In this method, 
multiple protein samples are separately labelled with different fluorescent dyes and then co-
electrophoresed on the same 2-DE gel. Fluorescent dyes come in a variety of choices; they are 
quick and easy to use and are highly sensitive like silver staining but not compatible to 
subsequent techniques of protein identification by MS (Mishra, 2010).  

After staining, the spots of interest are excised, either manually or automatically. An in-gel 
tryptic digestion of the gel spot is conducted and the protein is identified by MS analysis of 
the resultant peptides followed by data interrogation against genomic or proteomics 
databases using bioinformatic tools. This technique was initiated by Stegemann (1970) (as 
cited in Westermeier & Naven, 2002), combining isoelectric focusing (IEF) and SDS 
polyacrylamide gel electrophoresis (SDS-PAGE). 2-DE resolution was considerably 
increased when O’Farrell, in 1975, introduced denaturating conditions during sample 
preparation and IEF. This modification gave wide acceptance to the method but the 
technique only became reproducible enough for proteome analysis in 1982, with the 
application of immobilized pH gradients for the first dimension (Bjellqvist et al., 1982). 2-
DE/MS provides a direct method to separate proteins and to visualize changes between 
complex proteome samples and it is able to resolve thousands of proteins. Many 
technological improvements have made 2-DE relatively inexpensive and accessible to most 
biomedical research labs but criticisms such as the inability of 2D-PAGE to resolve 
membrane proteins and its lack of reproducibility have been to some extent tempered by the 
development of better reagents, techniques, and gel alignment software. Even though 2-DE 
is still limited in sensitivity and dynamic range (Veenstra, 2007), it is still the most widely 
used method for protein separation. Nonetheless, liquid chromatography methods which 
includes gel filtration, affinity chromatography, ion exchange chromatography, Reverse-
Phase (RP) and High-Performance Liquid Chromatography (HPLC), and multidimensional 
chromatography are also used for protein separation in proteomic analysis (Mishra, 2010). 

For protein identification one can use an approach that is not based on spectrometry 
(determination of the amino acid sequence from the DNA sequence or the identification of 
one amino acid at a time from the N-terminus of the peptide - Edman Degradation) or a MS 
approach which allows protein identification based on their amino acid sequence (Mishra, 
2010). Peptide mass fingerprinting (PMF) is the easiest and fastest way to identify proteins 
(Westermeier & Naven, 2002). In this method, the protein of interest is digested with a 
proteolytic enzyme, commonly trypsin, inside a gel plug and the cleavage products 
(peptides) are eluted and submitted to MS analysis. MALDI-TOF (Matrix-assisted laser 
desorption/ionization – Time-of-flight) instruments are preferably used because they are 
easier to handle than electrospray systems (ESI-TOF). The mass spectrum with the 
accurately measured peptide masses is matched with theoretical peptide spectra in various 
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databases using adequate bioinformatic tools. Even though this procedure works very well 
for protein identification, the method can be compromised for several reasons. In these 
circumstances, more specific information is needed for unambiguous protein identification 
and so the amino acid sequence is determined. During MS analysis a peptide can be selected 
from the spectrum and fragmented inside the instrument, termed tandem MS (MS/MS). The 
resultant fragment ion masses are indicative of amino acid sequence that can be used to 
search not only protein databases but also Expressed Sequence Tag (EST) databases and 
used for de novo sequencing when necessary. 

The evolution of MS-based proteomic technologies has advanced our understanding of the 
complex and dynamic nature of proteomes while simultaneously revealing that no 
proteomic strategy can be used alone to address all biological questions. Figure 3 depicts a 
typical proteomic workflow with examples of commonly used techniques that may be  

 

Fig. 3. Technologies for proteomics. This figure depicts the proteomic workflow from 
sample extraction to protein quantification. For each step in the workflow, the text boxes 
give examples of commonly used techniques, many of which may be combined in any one 
study. Reprinted by permission from Macmillan Publishers Ltd: [Nature Biotechnology] 
(Proteomics: A Pragmatic Perspective., 28(7): 695-709), copyright (2010) (Mallick & Kuster, 
2010). 
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applied in most types of proteomics studies. Several tools are available to help quantify and 
interpret data generated through specific applications of MS. MS-based quantitative 
approaches include tagging or chemical modification methods, such as isotope-coded 
affinity tags (ICAT), isobaric tag for relative and absolute quantitation (iTRAQ) or stable 
isotope labelling by amino acids in cell culture (SILAC). A further detailed description of 
proteomic techniques can be consulted in Hamacher et al., 2011; Mallick & Kuster, 2010; 
Mishra, 2010; Parker et al., 2010; Veenstra, 2007; Westermeier & Naven, 2002. 

Despite the variation in proteomics approaches, all techniques generate large quantities of 
data. Bioinformatics approaches appear as an essential mean for analysis, storage and 
retrieval of all that information. In 2-DE, there are several software available for image 
analysis that allow the comparison of different gels. 2-DE gels are not exactly identical; 
different factors may cause variation between analysis, such as preparation methods, 
staining, and unequal mobility in the different gels’ regions and variations in 
electrophoretic conditions, even when studying the same sample. Automatic gel matching 
methods include features like spot detection, gel warping and auto-matching; this 
matching is the starting point for deeper analysis and statistical studies. Through MS, 
integrated systems allow protein identification, based on comparison of peptide 
fingerprints with proteins in databases (Vihinen, 2003). Bioinformatics not only helps the 
interpretation of results but it also may guide the course of new investigations since 
results and new discoveries from laboratories from all over the world can be stored in 
online databases, available to any researcher. 

Due to the wide diversity of proteins and properties in complex proteomes, it is anticipated 
that no single proteome analysis technology will be able to effectively address all proteome 
analysis requirements. 2-DE gels will probably remain the ‘‘gold standard’’ within the 
foreseeable future to which any competing method should be compared, and to which it 
should display clear advantages of 2-DE with IPGs (Görg et al., 2009). In contrast to the 2-
DE approaches, information about protein abundances is initially unavailable in the non-
gel-based technologies, unless stable isotope labelling is applied. Moreover, 2-DE is highly 
parallel and unsurpassed for its ability to run as far as 20 2-D gels at a time with thousands 
of proteins per gel. Post-translationally modified (PTM) proteins can be readily located in 2-
DE gels because they appear as distinctive spot clusters, which can be subsequently 
identified by MS analysis. For a global view, post-translational modifications (PTMs) (e.g. 
glycosylation or phosphorylation) can be visualized with specific fluorescent dyes (Hecker 
et al., 2008; Zong et al., 2008). However, there are challenges, in particular, with respect to 
detection of low-abundance proteins and, particularly, of integral membrane proteins, 
whereas non-gel-based methods are unsurpassed by their potential to cover the whole 
proteome (de Godoy et al., 2008).  

3. Antimicrobial resistance in Salmonella 

An alarming increase in the incidence of antibiotic resistant strains of Salmonella was pointed 
out by the World Health Organization more than 20 years ago (Brisabois et al., 1997). 
Multiple antibiotic resistance in Salmonella has also been increasing; about 45% of the 
isolates of Salmonella Typhimurium reported to the Enter-net surveillance network in recent 
years presented a MAR phenotype (International surveillance network for the enteric 
infections Salmonella and VTEC O157, 2008). 
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Salmonella commonly show resistance to ampicillin, chloramphenicol, streptomycin/ 
spectinomycin, sulphonamides and tetracyclines (R-type ACSSuT), with additional 
resistance to third-generation cephalosporins mediated by the CMY-2 beta-lactamase gene 
(Antunes et al., 2006; Threlfall, 2002; Threlfall, 2008). The increasing number of infections 
with R-type ACSSuT Salmonella, with extended-spectrum ß-lactamase (ESBL)-producing 
Salmonella and with quinolone-resistant Salmonella strains, have emerged as a global health 
problem and deserve special attention (Antunes et al., 2006; Threlfall, 2008).  

Infections due to antibiotic-resistant Salmonella may have different consequences. People 
treated with antimicrobial drugs for unrelated reasons, such as upper respiratory tract 
infections, are at increased risk of infection with Salmonella that are resistant to the given 
antibiotic. Infections by resistant Salmonella have been proven to be more severe than 
infections with susceptible strains and resistance is directly associated with increased 
frequency of treatment failures, mainly when there is a prolonged duration of illness, 
associated with increased hospitalization (WHO, 2005). 

The emergence of MDR Salmonella strains with resistance to fluoroquinolones and third-
generation cephalosporins is also a serious development, which results in severe limitation 
of the possibilities for effective treatment of human infections. Ceftiofur and ceftriaxone are 
two of the most common antimicrobials used for treatment of infections caused by 
Salmonella, especially invasive ones, but there are already records of strains containing the 
blaCMY-2 cephalosporine-resistance gene (Dunne et al., 2000; Fey et al., 2000; Winokur et al., 
2000). The concern rises from the fact that third generation cephalosporins are drugs of 
choice in invasive infections caused by strains with resistance to ciprofloxacin (Threlfall, 
2002). Also, mobile genetic elements allow and have been associated to resistance 
transmission as they may contain one or more resistance-associated genes (White et al., 
2001). This spread of resistances has led to a predominance of resistant strains in several 
countries. In the United States of America, United Kingdom, France and Germany, the 
predominant Salmonella type is resistant to at least five drugs: ampicillin, chloramphenicol, 
streptomycin, sulfonamides and tetracycline (Helms et al., 2002). 

While resistance to fluoroquinolones often emerges as a result of mutations in the bacterial 
genome (DNA), resistance to other antimicrobials often spread by DNA transfer between 
bacterial strains through plasmids. Nalidixic acid was the first quinolone antibacterial agent 
licensed for use in the United States. Since introduction of nalidixic acid in the 1960s, 
subsequent generations of fluoroquinolones have been licensed by the US Food and Drug 
Administration (FDA). Fluorination of quinolone compounds resulted in the introduction of 
norfloxacin in 1986 and ciprofloxacin in 1987, followed by other second-generation 
fluoroquinolones. Additional modifications resulted in third- and fourth-generation 
fluoroquinolones. Some fluoroquinolones are no longer available, and others are of limited 
use clinically. Currently, ciprofloxacin, levofloxacin, gatifloxacin, and moxifloxacin are the 
most widely used fluoroquinolones. When fluoroquinolones were first licensed for human 
therapy, no immediate rise in Salmonella resistance was observed (WHO, 2005). In contrast, 
when fluoroquinolones were subsequently licensed for use in food animals, the rates of 
fluoroquinolone-resistant Salmonella in animals and food, and then subsequently in human 
infections, rapidly increased in several countries (WHO et al., 2003). Even worse than the 
increasing rates of drug-resistant Salmonella is the fact that some variants of Salmonella have 
developed MDR as an integral part of the genetic material of the organism, and are therefore 
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likely to retain their drug-resistant genes even when antimicrobial drugs are no longer used, 
a situation where other resistant strains would typically lose their resistance (WHO, 2005). 

Evidence from many countries supports the role of agricultural antimicrobial use and 

increasing prevalence of resistance among commensal and pathogenic bacteria isolated from 

food animals, humans, the food supply, and the environment. First, a mass flow concept of 

antimicrobial pressure and resistance evolution supports the importance of controlling the 

agricultural use of antimicrobials because this is the primary category of use worldwide; 

and second, the problem must be redefined as one of resistance and gene flow, thus 

challenging the basis of policies that respond to or prioritize specific drug/bug 

combinations (Silbergeld et al., 2008). In developed countries the existence of Salmonella 

organisms resistant to antibiotics is an almost inevitable consequence of the use of 

antimicrobial drugs in food-producing animals. Although legislation targeted at controlling 

the overall usage of antimicrobials in livestock, in recent years there have been significant 

increases in the occurrence of resistance in non-typhoidal Salmonella. Selective pressure from 

the use of antimicrobials in food animals may be a major driving force behind the 

emergence of resistance but other factors must also be considered; some Salmonella serotypes 

are more prone to develop resistance than others and major shifts in the occurrence of 

Salmonella serotypes in food animal and humans are regularly seen. An example is the 

global spread of a multidrug-resistant S. Typhimurium phage type DT104 in animals and 

humans that may not only have been facilitated by the use of antimicrobials, but also 

worsened by international and national trade of infected animals. 

In the past, studies on Salmonella isolates from human infection cases and clinical animal 
samples showed low resistance levels (Seyfarth et al., 1997). Nevertheless, it has been shown 
that the occurrence of resistant Salmonella strains in domestic animals is associated with the 
continuing use of antimicrobial agents in animal herds (van Leeuwen et al., 1979; Threlfall et 
al., 1993, as cited in Seyfarth et al., 1997). The routine practice of giving antimicrobial drugs 
to domestic livestock as a mean of preventing and treating diseases, as well as promoting 
growth, is an important factor in the emergence of antibiotic-resistant bacteria that are 
subsequently transferred to humans by the food chain (Angulo et al., 2004, as cited in Miko 
et al., 2005). Even indirect contact between animals, humans and ecosystems may lead to the 
transference of bacteria and/or resistance genes from one microorganism to another 
(Radhouani et al., 2010), making resistant Salmonella strains a cross-species problem. 
Hence, the emergence and dissemination of antimicrobial-resistant pathogens such as 
Salmonella has become a serious health hazard worldwide. The comparison between the 
genomes of different serovars revealed that despite their similarities, each serovar has 
many insertions and deletions in relation to the others, which vary in size from 1 to 50 kB 
(Edwards et al., 2002). However, the observed differences at the DNA level proved to be 
unrelated to protein expression. Therefore, it is of great importance to determine if the 
observed genomic difference could impact its expressed protein outcome. Taoka et al. 
(2004) found that the majority of horizontally transferred genes in the genome of E. coli 
are not translated into proteins. Recent data from transcriptomic and/or proteomic 
profiling suggest that marker panels derived from transcriptomic or proteomic profiling 
are superior to single genes or markers, in differentiating non-infectious from sepsis-
associated systemic inflammation, and thus may overcome some of the limitations of 
procalcitonin (Johnson et al., 2007; Tang et al., 2009).  
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The use of biomarkers might help to avoid antibiotic misuse and overuse and to curb the 
rising incidence of microbial resistance. Increasing rates of bacterial resistance among 
common pathogens are threatening the effectiveness of even the most potent antibiotics. 
Through proteome analysis we showed how mechanisms of antimicrobial resistance can 
affect other important characteristics, like virulence, possibly resulting in low dissemination 
of such strains. Further work focusing on the interactions between antimicrobial resistance 
and virulence mechanisms is important. There is also a need for further epidemiological 
studies to determine whether different kinds of disinfectants contribute to the emergence of 
antibiotic resistance in order to establish the best practices to prevent or minimize the 
selection of antibiotic resistance (Karatzas et al., 2008). 

4. The potential role of proteomics in Salmonella research 

Functional genomics allows identification of complex pathways and interactions between 
gene expression products that provides insight into processes beyond their clinical 
appearance. Single cell signaling stimuli can define complex cellular pathways but 
multicellular and whole organism systems require an understanding of complex 
interrelationships, both structurally and temporally. These complex interrelationships are 
based on numerous individual components, diffuse interconnectivity between 
components, differences in spatio-temporal relations, and complexity in signaling 
network control interactions. Together, comparative proteomics, MS and bioinformatics 
contributed to the achievement of significant progress on the characterization of bacterial 
pathogens (Osman et al., 2009). MALDI has been used for the identification of bacteria 
since 1996 (Holland et al., 1996; Krishnamurthy & Ross, 1996) and this technique can be 
used for determining the causes of infection in patients, for the detection of bioterrorism 
agents, for the detection of toxic molds and bacteria in indoor air and for the detection of 
infectious agents in water (Parker et al., 2010). 

Nevertheless, a broader definition states that proteomics deals with the large-scale 
analysis of proteins, including identification, measure of expression levels and partial 
characterization by the analysis of pre-, co-, and post-translational modifications, their 
structures, functions and interactions. Proteomics has four main objectives: (i) to identify 
all proteins from a proteome creating a catalogue of information; (ii) to analyze 
differential protein expression associated to a disease, different cell states, sample 
treatments and drug targets; (iii) to characterize proteins by discovering their function, 
cellular localization, PTMs, etc. and (iv) to describe and understand protein interaction 
networks (Palagi et al., 2006). 

Proteomic profiling is a useful approach to obtain an overview of the proteins present in a 
bacterial system under differing conditions (DelVecchio et al., 2002; Lipton et al., 2002). 
Additionally, it can aid in understanding the molecular determinants involved with 
pathogenesis, which is essential for the development of effective strategies to combat infection 
and revealing new therapeutic targets (Lucas & Lee, 2000). Therefore, proteomics presents one 
of the best ways to investigate changes in the genome expression profile (Leverrier et al., 2004). 
Protein profiles can reveal the complexity of expressed proteins in bacteria, representing 
phenotypic characteristics, but they can also provide an excellent approximation of a 
microorganism’s genome information. Also, proteomic methodologies contribute to the 
determination of antimicrobial resistance mechanisms, through the capacity to analyze global 
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changes of bacteria (Radhouani et al., 2010). The use of Salmonella reference protein maps may 
be helpful in the identification of proteins in different Salmonella strains. In addition, these 
maps can facilitate the determination of different growth conditions (Qi et al., 1996). Studying 
the proteome of Salmonella with its small genome (with an estimated coding potential of 4000 
gene products) makes it theoretically simple to determine if a certain protein is known or 
novel. Further, the close evolutionary relationship between E. coli and Salmonella, in which 
protein homologues usually have similar sequences, allows a reliable assignment of proteins 
and PTMs which appears to be relatively rare. Also, the availability of decreased-virulence-
strains, as a result of mutations in key regulatory proteins, allows the comparison of protein 
expression profiles between strains, which permits the identification of proteins under the 
control of a specific regulator (O'Connor et al., 1997).  

Because Salmonella need to invade a specific host cell to initiate the disease process, the 

characterization of the Salmonella proteins that are induced during and following invasion of 

different types of mammalian cells is of particular interest (O'Connor et al., 1997), 

particularly in the development of new antimicrobial approaches. Studies performed by our 

research group have proven the capability of proteomics to provide results that allow the 

comparison between Salmonella strains, as long as the detection of proteins related to 

antibiotic resistance, pathogenesis and virulence in this species (Pinto et al., 2010). Therefore, 

our group developed an integrated genomic and proteomic evaluation of antibiotic 

resistance in Salmonella strains with different serotypes and antibiotic resistance phenotypes, 

recovered from faecal samples of wild rabbits and wild boars from the North of Portugal. 

All strains used in the referred study are listed in Table 1, which shows the resistance 

profiles of the different samples of Salmonella serotypes displayed in the 1-D gel. Analysis of 

different strains by SDS-PAGE gave reproducible whole-cell protein patterns which allowed 

differentiation among the serovars included in this study (Figure 4). The genetic 

characterization of antimicrobial resistance genes as well as their location and diversity is 

important in identifying factors involved in resistance, understanding the diversity of multi-

drug resistant strains, identifying genetic linkages among markers, understanding potential 

transfer mechanisms, and developing efficient detection methods. 

Cell wall changes that result in reduced permeability can also be responsible for resistance to 

biocides and antibiotics. These common mechanisms of resistance to biocides and antibiotics 

should be a public health concern, and prevention of the dissemination of antibiotic-resistant 

strains in the environment and animal hosts, including farm animals and humans, is important 

(Karatzas et al., 2008). The application of proteomics to the antibiotic-discovery process, 

technically spoken, requires the same methodological approaches as those applied to study the 

physiological response to environmental stresses. Nevertheless, there are many potential 

questions to be asked that are specific for drug-discovery applications. Antibiotics exert their 

antibacterial activity via binding to and inhibition of certain molecular targets, thereby usually 

blocking a function essential for microbial survival. Therefore, one application of proteomics in 

drug discovery is the identification of novel antibacterial targets. Target identification will 

critically rely either on the availability of similar protein expression profiles for comparison or 

on the detailed investigation of proteome signatures induced by the compound tested. For 

target validation, proteome analysis of mutants may be helpful if an inhibitor of a novel target 

of interest is not yet available. For certain groups of inhibitors it might be beneficial to extend 

the analysis to different pI ranges or to include different protein fractions to increase the 
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number of marker proteins. For instance, it would be interesting to identify marker proteins in 

the membrane fraction that help differentiate between membrane-active antibacterial 

compounds (Apfel et al., 2001; Bandow et al., 2003; Evers et al., 2001; Gmuender et al., 2001; 

Gray & Keck, 1999; Singh et al., 2001). 

Sample Serotype Resistance profile 

J27(1) S. Typhimurium AMP; TET; STR; CHL 

J32(2) S. Typhimurium AMP; TET; STR; CHL 

C71(1) S. Typhimurium AMP; TET; STR; CHL 

P40(a) S. Typhimurium AMP; TET; STR; CHL 

P16(1) S. Typhimurium AMP; TET; STR; CHL 

P20(2) S. Enteritidis AMP; TET; STR; NAL; CHL 

P29(2) S. Rissen AMP; TET; STR; NAL; SXT 

J45(1) S. Rissen AMP; TET; SXT 

P1(1) S. Enteritidis AMP; TET; NAL; SXT 

AVT14(1) ND TET; SXT 

C12(1) S. Rissen AMC; AMP; TET; STR; SXT 

C16(1) S. Typhimurium AMP; TET; AK; STR; CHL 

C40(2) S. Typhimurium AMP; STR; CHL 

P57(c) S. Enteritidis TOB; STR 

C37(1) S. Enteritidis - 
J15(2) S. Typhimurium AMP; STR; CHL 

J—wild boars; C—wild rabbit; P—swine; AVT—ostrich; AK—amikacin; AMC—amoxicillin–clavulanic 
acid; AMP—ampicillin; CHL—chloramphenicol; NAL—nalidixic acid; STR—streptomycin; SXT—
sulfamethoxazole–trimethoprim; TET—tetracycline; TOB—tobramycin; ND—not determined. Adapted 
from Journal of Proteomics, 73 (8), (Pinto et al., 2010), Genomic and proteomic evaluation of antibiotic 
resistance in Salmonella strains, 1535-1541, Copyright (2010), with permission from Elsevier. 

Table 1. Resistance profiles of the different samples of Salmonella serotypes displayed in 
the 1-D gel. 

According to these patterns, two different serotypes were chosen based on differences in 
serotypification and antibiotic resistance to proceed to a full proteomic study: the wild boar 
S. Typhimurium J15(2) strain, which demonstrated resistance to three antimicrobial agents 
(ampicillin, streptomycin and chloramphenicol) and S. Enteritidis C37(1), recovered from a 
wild rabbit, where no antibiotic resistance was found. 2-DE (Figure 5) combined with MS 
(MALDI-TOF/TOF) and then the correlation with web databases allowed the exact 
identification and characterization of proteins related to antibiotic resistance, pathogenesis 
and virulence in both Salmonella strains (Table 2). In S. Enteritidis isolated from a wild rabbit 
[C37(1)], the protein “Virulence transcriptional regulatory protein phoP” was detected in 
spot 47 and was previously reported in three different Salmonella strains: S. Typhi (accession 
number Q8Z7H2), S. Typhimurium (P14146) and S. Choleraesuis (Q57QC3). Protein phoP is 
a member of the two-component regulatory system phoQ/phoP that regulates the gene 
expression involved in virulence and resistance to host defensive antimicrobial peptides, 
promoting intramacrophage survival of S. Typhimurium (Miller et al., 1989). Transcriptional 
regulatory protein basR/pmrA (P36556) was also found in C37(1), and is related to S. 
Typhimurium where it is involved with processes of antibiotic resistance and pathogenesis, 
more exactly in the resistance to polymyxin (McClelland et al., 2001). 
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Adapted from Journal of Proteomics, 73 (8), (Pinto et al., 2010), Genomic and proteomic evaluation of 
antibiotic resistance in Salmonella strains, 1535-1541, Copyright (2010), with permission from Elsevier. 

Table 2. Protein spots identification and sequencing results from Salmonella spp. isolates 
C37(1) and J15(2) 2-DE gels, by MALDI-TOF. 
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Fig. 4. SDS-PAGE of total protein extracts from Salmonella serotypes. 1-J27(1); 2-J32(2); 3-
C71(1); 4-P40(a); 5-P16(1); 6-P20(2); 7-P29(2); 8-J45(1); 9-P1(1); 10-AVT14(1); 11-C12(1); 12-
C16(1); 13-C40(2); 14- Marker; 15-P57(c); 16-C37(1); 17-J15(2). Arrows indicate the clearest 
differences between protein samples. Reprinted from Journal of Proteomics, 73 (8), (Pinto et 
al., 2010), Genomic and proteomic evaluation of antibiotic resistance in Salmonella strains, 
1535-1541, Copyright (2010), with permission from Elsevier. 

Since horizontal gene transfer among bacteria is a common mechanism of antibiotic 
resistance transmission within different bacteria, the presence of this protein in Salmonella 
carried in a faecal sample of a wild animal represents a concern, in the event of contact with 
domestic or commercial animals, or even humans. In S. Typhimurium J15(2), recovered 
from the faecal sample of a wild boar, the transcriptional regulatory protein basR/pmrA 
(P36556) was also found. Protein Superoxide dismutase [Mn] (sodA) was found in both 
isolates and is known to be responsible for the destruction of radicals that are normally 
produced within the cells and that are toxic to biological systems. The presence of this 
protein allows these bacteria to prevent an early killing by J774 cells and thus play a minor 
role in Salmonella pathogenesis (Tsolis et al., 1995). Chaperone protein dnaJ was also 
identified and is important for its relationship with the stress response mechanism towards 
heat, a very important reaction for the survival of bacteria such as Salmonella and its 
contribution to antibiotic resistance capability. This work, albeit preliminary in nature, 
reveals the complexity of expressed proteins in bacteria or different serotypes and profiles of 
antibiotic resistance. Bearing in mind that serotypes are related to infectious processes in 
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humans and animals, it is important to explore the proteome of new strains which might 
serve as protein biomarkers for biological activity.  

 

 
 

Fig. 5. 2-DE gel image of Salmonella samples with IPG strips pH3–10. Left: Serotype C37(1); 

Right: Serotype J15(2). Reprinted from Journal of Proteomics, 73 (8), (Pinto et al., 2010), 

Genomic and proteomic evaluation of antibiotic resistance in Salmonella strains, 1535-1541, 

Copyright (2010), with permission from Elsevier. 

4.1 Proteomic mapping analysis and proteomic signatures 

Proteomics already allowed substantial progress in elucidating the basic regulatory 

networks that form the basis for the extraordinary capacity of bacteria to adapt to a 

diversity of lifestyles and external stress factors. The application of this method for 

antibacterial drug-discovery purposes, however, is still in its early days. One reason for 

this phenomenon is the fact that the discovery of novel targets, which is one of the most 

important applications of proteome studies in other areas of drug discovery, is not so 

much a bottleneck in antibiotic research, because the pathophysiology of most bacterial 

infections is relatively well-understood and simple: killing the bacterium or interfering 

with its growth and, possibly, its virulence is usually all it takes. The term “proteomic 

signature” is defined by a subset of proteins, whose expression levels are characteristic for 

a defined condition (VanBogelen et al., 1999). To spot a proteomic signature, it is essential 

to recognize the connection between the expression levels of specific proteins and a 

particular physiological state. The establishment of protein signatures can be extremely 

helpful in the interpretation of a protein expression profile obtained under an 

unprecedented growth condition (Brotz-Oesterhelt et al., 2005). 

Since its inception, the goal of proteomics has been the complete characterization of all 

proteins. However, considering the proteome of an organism as all protein forms expressed, 

including splice isoforms and PTMs, this goal consists of a considerably complex amount of 

information that needs to be gathered. Whereas the genome of an organism generally does 
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not vary from cell to cell, the proteome will change in response to different stimuli, even for 

a single cell (Han et al., 2008). When grown under moderate stress conditions, bacteria may 

develop an adaptive response, allowing them to cope with subsequent more severe stresses. 

In general, this adaptation phenomenon appears to involve multiple genes encoding stress 

proteins, which can be specifically induced by a particular stress factor or induced by 

several conditions (Rince et al., 2002). 

Protein maps associate a protein spot from a 2D gel to its corresponding ORF and also 

provide the respective knowledge pertaining to protein function (Brotz-Oesterhelt et al., 

2005). 2D-PAGE, as already referred, is the most used technique for protein mapping and 

analysis. However, there are by now published studies proving the potential of non-gel-

based technologies, like liquid chromatography coupled with ion-trap tandem MS. The 

number of proteins identified in both techniques may be quite similar, but it is possible to 

detect some different types of proteins (Brotz-Oesterhelt et al., 2005). Analyzing the 

proteome of a human pathogen like Salmonella has proven to be crucial. The establishment 

of protein reference maps is a significant point for many physiological studies that may 

follow. Nevertheless, protein maps only represent virtual compilations of all proteins ever 

detected or identified in an organism; they do not disclose which subset of proteins is 

expressed under specific growth conditions. In order to obtain such information, protein-

expression profiles must be generated (Brotz-Oesterhelt et al., 2005). 

The adaptation status of each organism to a specific ecological niche is reflected by the 

different types of proteins encoded and variations in their amino acid sequences. That 

adaption is achieved by differences in post-transcriptional and post-translational regulation 

that mediate the adaptation on the protein level. Thus, proteins that constitute a proteomic 

signature for a specific condition in one organism do not necessarily belong to the proteomic 

signature for the same physiological state in another organism. 

Genomic and proteomic technologies have revolutionized the way we design and conduct 

current biological experiments. Our ability to rapidly analyze hundreds of expressed 

proteins and identify which gene encodes a specific protein generates a vast amount of 

information essential in examining different but interrelated pathways within the organism. 

Knowing which proteins are phosphorylated, for instance, may explain the differential 

expression of certain genes responsible for attenuating virulence or conferring host 

specificity. Beyond these, results of proteomics studies may be used in the development of a 

more potent vaccine, rapid detection methodology and fingerprinting, and novel 

antimicrobial drugs (DelVecchio et al., 2002; Lipton et al., 2002). Proteomic technologies 

have been greatly refined during the past decade and have been applied to investigate 

differences in the protein expression profiles of cells grown under a broad spectrum of 

growth conditions and with different stress factors including some antibiotics inhibiting 

protein synthesis or gyrase function. 

4.2 Comparative proteomics and antibacterial drug discovery process 

Evaluation of protein profiles in response to multiple stress mechanisms, such as sensitivity 

to antibiotics or modifications related to antibiotic resistance, could represent a valid and 

integrating approach for the development of new therapeutic strategies (Roncada et al., 
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2009). It is widely recognized that the development of novel antibacterial agents without 

cross-resistance to existing antibiotics should have high priority on any meaningful public 

health agenda. Therefore, it is not surprising that proteome analysis of the consequences of 

antimicrobial treatment for bacteria has recently gained increasing interest. This approach 

provides a deeper insight into bacterial response to a certain antimicrobial treatment and 

benefits are expected in many other aspects of modern drug development such as the 

identification of novel target areas and the elucidation of the molecular mechanisms of 

action of novel drug candidates. 

Antibiotics exert their antibacterial activity by binding to and inhibiting certain molecular 

targets, thereby usually blocking a function essential for microbial survival. Thus, one 

application of proteomics in drug discovery is the identification of novel antibacterial 

targets. Some available studies in which proteomics was performed with clear emphasis on 

antibacterial drug discovery focus on either target validation or mode of action, including 

those that aim at a better molecular understanding of the mechanisms of action of existing 

drugs (Apfel et al., 2001; Bandow et al., 2003; Evers et al., 2001; Gmuender et al., 2001; Gray 

& Keck, 1999; Singh et al., 2001). In these studies, the proteome of bacteria grown in vitro 

under standardized conditions in the presence and absence of the antibiotic of interest is 

analyzed with respect to changes in the protein-expression pattern. 

Thus, significant progress has been made on the characterization of bacterial pathogens 

through comparative proteomics correlated with MS and bioinformatics (Pinto et al., 

2010). In comparative proteomic studies, proteins from different biological states are 

quantitatively compared to obtain a complete understanding of the biological processes 

affecting their expression and/or in which they are involved (Renzone et al., 2005). This is 

a two-step process in which proteins within cellular extracts are first fractionated to 

reduce sample complexity, and then the proteins are identified by MS (Minden, 2007). 

Two-dimensional electrophoresis is the long-time standard for protein separation as it 

provides a direct method to visualize changes in proteins between complex proteome 

samples and is able to resolve thousands of proteins; however, it has suffered from poor 

reproducibility and limited sensitivity (Minden, 2007; Veenstra, 2007). DIGE was 

developed to overcome the reproducibility and sensitivity limitations and provides a 

reliable and sensitive platform to discover proteome changes in a boundless variety of 

circumstances (Minden, 2007). Discovery proteomics also involves multi-dimensional 

separation steps and liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

with long gradients (Qi et al., 1996). 

According to Brotz-Oesterhelt et al. (2005) successful exploitation of those technologies for 

the antibacterial drug discovery process depends on further progress in three main areas: 

i) data collection, which should be expanded to comprise as many antibacterial 

compounds with diverse mechanisms of action as possible, to ideally cover all relevant 

targets (for novel targets, where such reference antibiotics are not always available, the 

analysis of conditional mutants should be included); ii) the data analysis tools, which 

should be optimized or developed to efficiently handle the enormous datasets and to 

facilitate data evaluation in terms of mechanism-specific signatures (by including 

clustering, chemometric, and artificial intelligence approaches, for example); and iii) 
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further methodological progress in order to increase the speed, throughput, and 

reproducibility of 2D gel-based as well as non-gel-based techniques. In comparative 

proteomics, data analysis in most cases concentrates on listing the proteins with 

significantly altered expression levels, which are subsequently discussed with respect to 

the current knowledge of the antibiotic’s mode of action. It is known that antibiotics such 

as β-lactams, glycopeptides, D-cycloserine and fosfomycin, act at different stages of 

bacterial cell wall synthesis and that compounds such as quinolones inhibit DNA gyrase. 

For all proteins with an altered expression in response to a particular stimulus, the term 

‘‘stimulon’’ was coined (Neidhardt et al., 1990) to describe the changes in protein 

expression on a phenotypic level. Therefore, if antibiotics with known activity in a certain 

metabolic pathway are investigated, the data can be exploited to define a pathway-

specific stimulon or a proteomic signature that is indicative of the inhibition of a specific 

target, which might prove to be useful later in identifying and characterizing novel 

antibiotics that act within that pathway. Another application for proteomic studies within 

the drug-discovery process is the verification that a compound, which inhibits the activity 

of a desired isolated protein in a biochemical target assay, acts indeed as expected when 

tested against whole bacterial cells, and does not kill the cell due to other, not target-

related, possibly undesired and non-specific activities such as general membrane 

perturbation or intercalation into nucleic acids. 

Gene-expression analysis is increasingly important in many fields of biological research. 

Understanding patterns of expressed genes is expected to provide insight into complex 

regulatory networks and will most probably lead to the identification of genes relevant to 

new biological processes, or implicated in disease. Real-time PCR provides the 

simultaneous measurement of gene expression in many different samples for a limited 

number of genes, and is especially suitable when only a small number of cells are 

available (Fink et al., 1998). Many changes in the protein synthesis patterns in response to 

the antibiotics were consistent with existing knowledge on the modes of action and on the 

cellular responses to changes in environmental conditions. Inhibition of Ile-tRNA 

synthetase induced the stringent response, and protein synthesis inhibitors that interfere 

with translation accuracy induced class I heat shock proteins known to be induced by 

misfolded proteins. Each response, however, also yielded new information, for example, 

the expression of proteins with unknown function, a shift in the pIs of proteins newly 

synthesized after actinonin treatment, or the good correlation of the protein expression 

profiles of nitrofurantoin and diamide (Bandow et al., 2003). The NCBI-matched proteins 

that show overregulation were then further confirmed on the mRNA level by quantitative 

real time PCR. Identified proteins were representing diverse functional activities 

including energy production, metabolism, and nucleic acid synthesis. Interestingly, some 

recognized proteins have some relevance to bacterial virulence e.g. Salmonella 

pathogenicity island 1 effector protein, T-cell inhibitor protein, response regulator protein, 

paratose synthetase protein (RfbS) and heat shock protein 90. Comparative proteomics 

analysis of the cytosolic proteins of S. Gallinarum and S. Enteritidis isolated from poultry 

was performed and revealed the presence of some proteins of unknown function, which 

raise the speculation for their importance in either host adaptation or pathogenicity 

among S. Gallinarum serovars (Osman et al., 2009). 
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Current strategies for the discovery of novel antibacterial agents can be categorized as being 

either directed against a specific molecular target or based on reverse genomics. In the 

target-based approach, a certain molecular target is carefully selected and then compound 

libraries are screened specifically for inhibitors of its function. In the ‘‘reverse-genomics’’ 

approach, a compound is selected for its promising antibacterial activity and the target is 

determined in a second step.  

In antibiotic drug discovery two major strategies are used (Bandow et al., 2003): the 

evaluation of structural variations among existing antibiotic classes in order to find 

compounds which hit the same targets by similar molecular mechanisms and the evaluation 

of novel antibiotic substances arising either from high-throughput target-based assays, or 

from antibacterial activity screening. If, through its antibacterial activity alone, a novel 

compound class arouses interest, its molecular target needs to be identified so that 

undesirable side effects on eukaryotic cells can be minimized (target identification). In 

addition, for structurally modified antibiotics or compounds derived from the target-based 

assays it is necessary to prove that interaction with the cellular target is indeed the direct 

cause for bacterial cell death (target validation).  

Bandow et al. (2003) used a proteomic approach to study the responses of bacteria to 

antibacterial compounds and demonstrated that proteome analysis is useful for both target 

identification and target validation. They began building a database from 2D protein 

analysis of bacterial responses to antibiotic treatment, considering all important established 

and emerging antibiotic classes as well as some substances causing generalized cell damage. 

Bacillus subtilis was the chosen organism because its genome is fully sequenced and earlier 

proteome studies focusing on the description of protein signatures of environmental stimuli 

were accessible in the Sub2D database. Therefore, 30 antimicrobial compounds were 

studied, most of which have been well characterized in terms of their mechanisms of action 

and by comparison with known antibiotics, and they were able to predict the mode of action 

of the structurally new antibacterial BAY 50-2369. This study also provided a better 

understanding of nitrofurantoin’s mode of action, which has been used for decades in the 

treatment of urinary tract infections. Hence, Bandow et al. (2003) showed that, by mirroring 

the complex molecular reactions of bacteria, proteomics is able to enlarge the view of known 

antibiotics and assist in the discovery of new drugs. 

5. Effects of external stress on the Salmonella proteome 

The capability of growing many bacterial species in well-defined artificial culture media has 

been a pre-requisite for the current in-depth understanding of bacterial physiology. 

Repeatedly, those culture media provide the most advantageous growth conditions that 

allow maximal and uniform logarithmic bacterial growth until some components of the 

medium become exhausted and logarithmic growth ceases. Under such optimal conditions, 

the protein composition of the cell is usually quite constant and tuned to support the special 

conditions of rapid growth. However, on the external environment, outside the laboratory, 

bacteria face much less supportive and highly variable growth conditions, with respect to 

temperature, pH, osmolarity, nutrient availability, host interactions, etc. Those stress 

situations do not principally differ from the stresses induced by antibiotic attack. Antibiotics 

are frequently encountered by many bacteria in their natural habitats, because many 
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microorganisms produce them to suppress the growth of competitors. Hence, even 

antibiotic classes that stem from purely synthetic approaches and are never encountered by 

bacteria during evolution can, to a certain extent, mimic “natural” processes for which 

bacteria have developed regulatory mechanisms (Brotz-Oesterhelt et al., 2005). 

It is critical for survival that the protein composition of a cell is constantly adjusted to 

meet the challenges of changing environmental conditions. Thus, bacteria respond to their 

environment with programmed changes in gene expression and their evolutionary 

success is strongly dependent on their ability to respond to external adverse conditions 

through a set of behavioural responses (Brotz-Oesterhelt et al., 2005). Proteomic 

technologies appear to be the natural tools to study the consequences of these regulatory 

processes on protein composition since a large number of external and internal signal 

molecules and signal transduction processes are present in bacteria to adapt their protein 

composition to the changing requirements of their environment (Armitage et al., 2003). 

During the past decade, proteomic technologies have been greatly refined and have been 

applied to investigate differences in the protein expression profiles of cells grown under a 

broad spectrum of growth conditions and with different stress factors, including some 

antibiotics (Bandow et al., 2003). 

The number of detected proteins in response to stress mechanisms represents only a small 

proportion of the predicted proteome, as many genes may only be induced and expressed 

under certain conditions. Coldham et al. (2006) evaluated the effect of fluoroquinolone 

exposure on the proteome of S. enterica serovar Typhimurium using strain SL1344 and a 

MAR mutant. Broth cultures of strain SL1344 were treated with ciprofloxacin and 

enrofloxacin. Then, protein expression was determined by two-dimensional HPLC-MSn and 

also, after exposure to ciprofloxacin, by two-dimensional gel electrophoresis (Figure 6).  

 

  
 

Fig. 6. Silver-stained second-dimension electrophoretogram of the proteome of S. 
Typhimurium extracted from untreated cultures (left) and from a culture following 
treatment with ciprofloxacin (right). Coldham et al., 2006, Effect of fluoroquinolone 
exposure on the proteome of S. Enterica serovar Typhimurium. Journal of Antimicrobial 
Chemotherapy, 2006, 58 (6): 1145-1153, by permission of Oxford University Press. 
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Coordinated regulation of protein effector expression is a key feature of innate reduced 

susceptibility to multiple antibiotics (Randall & Woodward, 2002). The chromosomal MAR 

locus of E. coli, in cooperation with other regulatory loci, plays a pivotal role in innate 

reduced susceptibility (circa 4-fold) to some unrelated antibiotics and certain disinfectants 

(Levy, 2002). Overexpression of the AcrAB-TolC efflux pump contributes to multiple 

antibiotic resistance in E coli, and has also been associated in conjunction with mutations in 

gyrA with resistance to fluoroquinolones in S. enterica. The AcrAB efflux pump of E. coli and 

S. enterica belongs to the resistance/nodulation/cell division (RND) family and consists of a 

proton antiporter (AcrB) and a membrane fusion protein (AcrA) (Borges-Walmsley & 

Walmsley, 2001; Zgurskaya & Nikaido, 2000). These two proteins associate with an outer 

membrane channel protein, such as TolC, to form a functional efflux pump unit providing 

selective molecular translocation of solutes from the periplasm to the external environment. 

Reduced expression of porin proteins located in the outer cell membrane may act 

synergistically with efflux pumps to reduce penetration of antibiotic into the bacterial 

periplasm. Whilst much is understood about the mechanisms of efflux, little is known of the 

secondary responses enabling the physiological adaptation of Salmonella to 

fluoroquinolones. This study demonstrated an increased and decreased expression of a wide 

range of proteins on the proteome of S. enterica serovar Typhimurium after fluoroquinolone 

exposure; the basal expression of the efflux system AcrAB/TolC, which contributes to 

antibiotic resistance, was elevated in the multiple antibiotic resistant mutant when 

compared with the untreated wild-type and also increased following treatment with 

ciprofloxacin. Therefore, an amplified expression of AcrAB/TolC was associated with 

resistance while other increases, such as in F1F0-ATP synthase and Imp, were a response to 

fluoroquinolone exposure (Coldham et al., 2006).  

Proteomic analysis of triclosan resistance in S. enterica serovar Typhimurium by 

proteomics identified a set of proteins with commonly altered expression in all triclosan-

resistant mutants. According to the authors, this ‘triclosan resistance network’ included 

nine proteins involved in the production of pyruvate or fatty acid. This may represent a 

mechanism by which the triclosan-resistant mutants have increased throughput of fatty 

acid biosynthesis by increased pyruvate production or have altered metabolic pathways 

in order to produce fatty acid via a different pathway (conversion of glycerol to 

hexadecanoate or increased citrate production to feed acetyl-CoA production). Proteomic 

data revealed specific patterns of protein expression in each mutant as well as the 25 

proteins that constitute a common metabolic resistance network in all mutants studied. 

These data show that triclosan resistance is multifactorial and a number of resistance 

mechanisms act in synergy to achieve high-level resistance. This indicates that triclosan is 

likely to act on multiple targets within the cell rather than being exclusively an inhibitor 

of fabI (Webber et al., 2008). The physiological status of supercritical carbon dioxide (SC-

CO2) treated S. enterica serotype Typhimurium was analyzed by using gas 

chromatography mass spectrometry (GC–MS) analysis of fatty acids with principal 

component analysis and two-dimensional electrophoresis for protein profiling. From the 

results of these systemic analyses, it was revealed that SC-CO2 caused significant 

alterations to the profiles of fatty acids and proteins of the cells (Kim et al., 2009). This 

data and other results of stress induced/repressed proteins obtained by proteomics in 

Salmonella spp. are summarized in Table 3. 
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Stress 
Differential 

expression 

Identified 

Proteins 

Relevant Protein 

Function 
Reference 

Acid Overexpression fliC  
Virulence during 

infection 

Jindal  

et al., 2011 

Anaerobiosis 

Overexpression 

38 proteins, more 

importantly Mdh, 

PflI, FrdA, AckA, 

AdhE  

Metabolism (mixed-

acid fermentation) 

Encheva  

et al., 2009 

Underexpression

42 proteins, more 

importantly ArgT, 

HisJ, GlnQ, GltI, 

OppA, DppA, 

SodA, SuhB, DnaK, 

GroS, SspA, PspA, 

OsmC, UspG 

Transport, stress-

response and 

chaperone function 

Fluoroquinolone Overexpression 

43 proteins, more 

importantly AtpA, 

AtpC, AtpD, 

AtpH, Imp, TolC, 

AcrB 

Mechanisms of 

resistance 

Coldham 

et al., 2006 

Hydrogen 

Peroxide (H2O2)

Over- and 

underexpression 

76 proteins, more 

importantly SipC, 

SopB, SipA 

Survival and 

replication under 

oxidative stress and 

during infection  

Kim et al., 

2010 

Propionate (PA) Overexpression 
Dps, CpxR, RplE, 

RplF, SodA  

PA-induced acid 

resistance, virulence 

and pathogenesis  

Calhoun  

et al., 2010 

Thymol 
Over- and 

underexpression 

45 proteins, more 

importantly Trx1, 

FtsZ, CheW, 

GroEL, DnaK 

Antioxidant and 

chaperon function 

Di Pasqua 

et al., 2010 

Triclosan Overexpression 

25 proteins, more 

importantly ArcA, 

GcvP, MdH, MaeB,

GapA, PpS, FadB, 

GltA, GlpK 

Pyruvate or fatty acid 

production 

(Metabolic triclosan 

resistance network) 

Webber  

et al., 2008 

Table 3. Summary of some results on stress induced/repressed proteins obtained by 
proteomics in Salmonella spp. 

6. Remarks on proteomics as a biomarker search tool 

After its steep rise in the late 1970s and the early 1980s after O’Farrell’s outstanding 

publication, there was a slow decline of the application of 2-DE in the late 1980s due to the 
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inability to identify the gel-separated proteins of interest on a large scale. However, after the 

introduction of large-scale genome sequencing, the development of MS methods for the 

analysis of proteins and peptides, progress in bioinformatic tools and the rise of proteomics 

in general has experienced a revival and is today by far the most commonly applied protein 

separation technology in proteome research (Görg et al., 2009). Recent advances in biological 

and analytical sciences have led to an unprecedented interest in the discovery and 

quantification of endogenous molecules which serve as indicators of drug safety, 

mechanism of action, efficacy, and disease state progression. By allowing better decision-

making, these indicators, referred to as biomarkers, can dramatically improve the efficiency 

of drug discovery and development (Ackermann et al., 2006). 

Comparative genomics and several genomic tools have been used to identify virulence 
factors and genes involved in environmental persistence of pathogens. Proteomics has 
been contributing to a wide-range of scientific disciplines, but perhaps no area is more 
critical than the discovery of novel biomarkers. The extraordinary developments made in 
proteomic technologies in the past decade have enabled investigators to search for 
biomarkers by scanning complex proteome samples using unbiased methods (Veenstra, 
2007). Currently, the search for protein biomarkers has been dominated by the 
employment of MS. Its high mass accuracy, resolution, dynamic range, sensitivity and 
even more importantly the speed at which MS/MS is performed, allowing thousands of 
proteins to be unambiguously identified, have made MS an invaluable tool for biomarker 
discovery (Blonder et al., 2011).  

To identify novel diagnostic and therapeutic biomarkers, investigators focus on the 

discovery of proteins that are more or less abundant in samples obtained from patients with 

a specific disease compared to those acquired from healthy-matched control patients. There 

are a number of different MS-based methods to conduct these studies such as 2-DE/MS, 

proteomic profiling, stable-isotope proteome tagging and subtractive proteomics (for 

detailed description of each method see Veenstra, 2007). 

Recent data suggests that marker panels derived from transcriptomic or proteomic profiling 

are superior to single genes or markers in differentiating non-infectious from sepsis-

associated systemic inflammation (Johnson et al., 2007). Early and adequate antibiotic 

therapy is mandatory for successful sepsis therapy; hence a rapid diagnosis of infection and 

sepsis is of great significance. Diagnostic uncertainty is usually compensated by the liberal 

use of broad-spectrum antibiotics which leads to increased drug resistance. Therefore, the 

use of these biomarkers might help to avoid antibiotic misuse and overuse and to curb the 

rising incidence of microbial resistance (Reinhart & Hartog, 2010). 

With the advent of large-scale proteomic sequencing, the general belief was that biomarkers 
would be obvious within the data sets but unfortunately the results showed numerous 
background proteins that are routinely identified but have little value as biomarkers and 
numerous proteins that show a difference in comparative studies but their value as a 
reliable biomarker is extremely difficult to determine (Blonder et al., 2011). Having too 
many potential biomarkers is considered a problem when examining the workflow required 
to validate a biomarker for clinical use (Figure 7). In this scheme, thousands of analytes are 
measured in a few samples and when potential biomarkers are found, a more direct 
approach is taken to specifically measure these potential biomarkers again in a small 
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number of samples to qualify the results from the discovery stage. The analytes that pass the 
qualification stage are then specifically measured in a larger number of samples to verify 
their utility as biomarkers. Those that pass the verification stage are then measured in a very 
large number of clinical samples to provide final validation that these proteins can function 
reliably (Blonder et al., 2011).  

 

Fig. 7. The six essential process components in the biomarker pipeline: candidate discovery, 
qualification, verification, research assay optimization, biomarker validation and 
commercialization. Based on Rifai et al., 2006: Protein biomarker discovery and validation: 
The long and uncertain path to clinical utility. Nat Biotechnol, 24(8): 971-983. 

The advances made in proteomic technology, primarily in the field of MS, allowed to 

scrutinize proteome samples to a far greater extent than previously possible. There are 

many options available to measure the relative abundance of proteins but unfortunately 

the number of biomarkers that have ultimately been successfully validated using these 

discovery approaches is discouraging - between 2003 and 2008, only 7 protein biomarkers 

were approved by the US FDA (Qi et al., 1996). In fact, MS-based studies are able to come 

up with very large numbers of “potential” biomarkers but the challenge relies on how to 

identify those that have the highest chance of being validated in a well-controlled clinical 

trial. Validation of a single biomarker is expensive in terms of money and time and so it is 

impossible to graduate a large number of potential biomarkers to a validation phase. 

Unfortunately, it is difficult to inherently recognize those proteins identified in the 

discovery phase that may turn out to be the best biomarker. Nevertheless, encouragement 

can be found in the progress that has been made in the past years, allowing investigators 

to attempt the types of biomarker studies that are being conducted today (Veenstra, 2007). 

On the other hand, the current proteomic technology still does not allow studying the full 

genomic equivalent of all proteins, whereas transcriptome analyses cover the whole 

genomic sequence and are also able to produce data at a much higher pace. Nevertheless, 

transcript expression profiling is unable to distinguish between different gene products 

derived from the same coding region on the genome (due to, e.g., modifications, 

truncations, or splice variants). It should also be kept in mind that none of these 

technologies alone will be able to deliver novel drugs. 

7. Outlook 

The genomics revolution has changed the paradigm for the comprehensive analysis of 

biological processes. The genomic era began in the year 1995 when the first complete 

bacterial genomic sequence of Haemophilus influenzae was published. Since that moment, a 

distinct change in the quality of microbial genetic studies can be observed. Analyses of 

single genes leads presently to global analyses of microbial cells, while analyses of full 

genetic sequences, whole transcriptomes as well as total protein content or networks of 

protein-protein interactions is directed to the genome, transcriptome, proteome and 

interactome, respectively. The word Proteome describes the ensemble of protein forms 



The Role of Proteomics in Elucidating Multiple Antibiotic  
Resistance in Salmonella and in Novel Antibacterial Discovery 211 

expressed in a biological sample at a given point in time and in a given situation. Proteomics 

has seen the increasing creation of new useful techniques, but the study of proteomes is still 

based on 2-DE, allied with MS analysis. Among the proteomic techniques commonly used 

for analysis of protein expression in biological samples, 2D-PAGE is a popular technique for 

the separation of proteins. However, 2-DE still has some drawbacks, like excluding the 

smallest and the largest proteins, those which are extremely acidic and those extremely basic 

(Gygi et al., 2000). Furthermore, some proteins cannot be detected due to the low sensitivity 

of the system (Washburn et al., 2001; Wu & Han, 2006). On the other hand, there are certain 

limitations to the universal use of this technology, such as low detection sensitivity and 

linearity, poor solubility of membrane proteins, limited loading capacity of gradient pH 

strips, gel reproducibility, relatively low throughput and low linear range of visualisation 

procedures (López et al., 2004). RNA profiling, which is capable of addressing the 

expression of all genes in an organism, can be used to complement proteome analysis. An 

increase in sensitivity can be achieved through modifications or additions to the common 

proteomic methods. Loading higher amounts of proteins onto a 2-DE gel can help in the 

identification of low-expressed proteins, despite the fact that, in this case, these can be 

“hidden” by high-abundance proteins. Also, the use of different protein extraction buffers 

and detergents can improve the sensitivity and resolution of the 2-DE profiles. IPG strips 

provide reproducibility, increased resolution and loading capacity and simplicity to 

isoelectric focusing of 2-DE. With this technique, a higher number of different proteins can 

be resolved where previously a single spot was present in the gel (Fey & Larsen, 2001; 

Wildgruber et al., 2000). Non-equilibrium pH gel electrophoresis (NEPHGE) is another 

method that allows a better resolution of protein spots; the resulting peptides are then 

separated through multi-dimensional chromatography and analyzed using tandem-MS, and 

if combined with stable isotope labeling experiment methods, it can be a very powerful tool 

for proteome characterization. Protein arrays and antibody microarrays can create 

proteomic maps, revealing the proteome (Souza et al., 2008; Wingren & Borrebaeck, 2004). 

Substantial progress has already been made in elucidating the basic regulatory networks 

that form the basis for the extraordinary capacity of bacteria to adapt to a diversity of 

lifestyles and external stress factors. A database of these results will be able to facilitate the 

identification of more comprehensive signatures for treatment with antimicrobial agents 

and support functional analysis by combined protein and RNA profiling. However, since 

classical proteomic approaches alone mainly provide information on the relative amounts of 

protein species and only rarely provides information on the activity of these protein species, 

it is necessary to complement these findings with metabolomics and interaction studies to 

determine the true functional level of biological systems. Proteomics and genomics 

technologies offer more sensitive and specific methods for identification of microbial food 

contaminants and their toxins. Classical antibiotics are characterized as compounds which 

influence microbial life processes without harming the host’s cells. Their main mechanism of 

action is based on blocking cell wall synthesis and replication or translation inhibition. 

Metagenomic techniques, based on direct cloning of DNA present in natural environments, 

allow the identification of several new antibiotics. The increasing resistance of bacterial 

pathogens to present day antibiotics and the lack of a robust pipeline of innovative 

antimicrobial substances demand innovative and more efficient approaches towards the 

development of anti-infective drugs. 
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