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1. Introduction

The realization of a discrete-time, linear, time-invariant (LTI) filter from its impulse response
provides insight into the role of linear algebra in the analysis of both dynamical systems and
rational functions. For an LTI filter, a sequence of output data measured over some finite pe‐
riod of time may be expressed as the linear combination of the past input and the input
measured over that same period. For a finite-dimensional LTI filter, the mapping from past
input to future output is a finite-rank linear operator, and the effect of past input, that is, the
memory of the system, may be represented as a finite-dimensional vector. This vector is the
state of the system.

The central idea of realization theory is to first identify the mapping from past input to fu‐
ture output and to then factor it into two parts: a map from the input to the state and anoth‐
er from the state to the output. This factorization guarantees that the resulting system
representation is both casual and finite-dimensional; thus it can be physically constructed,
or realized.

System identification is the science of constructing dynamic models from experimentally
measured data. Realization-based identification methods construct models by estimating the
mapping from past input to future output based on this measured data. The non-determin‐
istic nature of the estimation process causes this mapping to have an arbitrarily large rank,
and so a rank-reduction step is required to factor the mapping into a suitable state-space
model. Both these steps must be carefully considered to guarantee unbiased estimates of dy‐
namic systems.

The foundations of realization theory are primarily due to Kalman and first appear in the
landmark paper of [1], though the problem is not defined explicitly until [2], which also
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coins the term “realization” as being the a state-space model of a linear system constructed
from an experimentally measured impulse response. It was [3] that introduced the struc‐
tured-matrix approach now synonymous with the term “realization theory” by re-interpret‐
ing a theorem originally due to [4] in a state-space LTI system framework.

Although Kalman's original definition of “realization” implied an identification problem, it
was not until [5] proposed rank-reduction by means of the singular-value decomposition
that Ho's method became feasible for use with non-deterministic data sets. The combination
of Ho's method and the singular-value decomposition was finally generalized to use with
experimentally measured data by Kung in [6].

With the arrival of Kung's method came the birth of what is now known as the field of sub‐
space identification methods. These methods use structured matrices of arbitrary input and
output data to estimate a state-sequence from the system. The system is then identified from
the propagation of the state over time. While many subspace methods exist, the most popu‐
lar are the Multivariable Output-Error State Space (MOESP) family, due to [7], and the Nu‐
merical Algorithms for Subspace State-Space System Identification (N4SID) family, due to
[8]. Related to subspace methods is the Eigensystem Realization Algorithm [9], which ap‐
plies Kung's algorithm to impulse-response estimates, which are typically estimated
through an Observer/Kalman Filter Identification (OKID) algorithm [10].

This chapter presents the central theory behind realization-based system identification in a
chronological context, beginning with Kronecker's theorem, proceeding through the work of
Kalman and Kung, and presenting a generalization of the procedure to arbitrary sets of data.
This journey provides an interesting perspective on the original role of linear algebra in the
analysis of rational functions and highlights the similarities of the different representations
of LTI filters. Realization theory is a diverse field that connects many tools of linear algebra,
including structured matrices, the QR-decomposition, the singular-value decomposition,
and linear least-squares problems.

2. Transfer-function representations

We begin by reviewing some properties of discrete-time linear filters, focusing on the role of
infinite series expansions in analyzing the properties of rational functions. The reconstruc‐
tion of a transfer function from an infinite impulse response is equivalent to the reconstruc‐
tion of a rational function from its Laurent series expansion. The reconstruction problem is
introduced and solved by forming structured matrices of impulse-response coefficients.

2.1. Difference equations and transfer functions

Discrete-time linear filters are most frequently encountered in the form of difference equa‐
tions that relate an input signal uk  to an output signal yk . A simple example is an output yk

determined by a weighted sum of the inputs from uk  to uk -m,
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yk = bmuk + bm-1uk -1 + ⋯ + b0uk -m. (id2)

More commonly, the output yk  also contains a weighted sum of previous outputs, such as a
weighted sum of samples from yk -1 to yk -n,

yk = bmuk + bm-1uk -1 + ⋯ + b0uk -m - an-1yk -1 - an-2yk -2 - ⋯ + a0yk -n. (id3)

The impulse response of a filter is the output sequence gk = yk  generated from an input

uk = {1 k = 0,
0 k ≠ 0.

(id4)

The parameters gk  are the impulse-response coefficients, and they completely describe the
behavior of an LTI filter through the convolution

yk = ∑
j=0

∞
gjuk - j. (id5)

Filters of type (▭) are called finite-impulse response (FIR) filters because gk  is a finite-length
sequence that settles to 0 once k > m. Filters of type (▭) are called infinite impulse response
(IIR) filters since generally the impulse response will never completely settle to 0.

A system is stable if a bounded uk  results in a bounded yk . Because the output of LTI filters
is a linear combination of the input and previous output, any input-output sequence can be
formed from a linear superposition of other input-output sequences. Hence proving that the
system has a bounded output for a single input sequence is necessary and sufficient to prove
the stability of an LTI filter. The simplest input to consider is an impulse, and so a suitable
definition of system stability is that the absolute sum of the impulse response is bounded,

∑
k=0

∞
|gk| < ∞. (id6)

Though the impulse response completely describes the behavior of an LTI filter, it does so
with an infinite number of parameters. For this reason, discrete-time LTI filters are often
written as transfer functions of a complex variable z. This enables analysis of filter stability
and computation of the filter's frequency response in a finite number of calculations, and it
simplifies convolution operations into basic polynomial algebra.

The transfer function is found by grouping output and input terms together and taking the
Z -transform of both signals. Let Y (z) = ∑k =-∞

∞ yk z -k  be the Z -transform of yk  and U (z) be the
Z -transform of uk . From the property
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��yk -1 = Y (z)z -1 ()

the relationship between Y (z) and U (z) may be expressed in polynomials of z as

a(z)Y (z) = b(z)U (z). ()

The ratio of these two polynomials is the filter's transfer function

G(z) =
b(z)
a(z) =

bmz m + bm-1z m-1 + ⋯ + b1z + b0

z n + an-1z n-1 + ⋯ + a1z + a0
. (id7)

When n ≥ m, G(z) is proper. If the transfer function is not proper, then the difference equa‐
tions will have yk  dependent on future input samples such as uk +1. Proper transfer functions
are required for causality, and thus all physical systems have proper transfer function repre‐
sentations. When n > m, the system is strictly proper. Filters with strictly proper transfer func‐
tions have no feed-through terms; the output yk  does not depend on uk , only the preceding
input uk -1, uk -2, ⋯ . In this chapter, we assume all systems are causal and all transfer func‐
tions proper.

If a(z) and b(z) have no common roots, then the rational function G(z) is coprime, and the
order n of G(z) cannot be reduced. Fractional representations are not limited to single-input-
single-output systems. For vector-valued input signals uk ∈ ℝnu and output signals yk ∈ ℝny,
an LTI filter may be represented as an ny × nu matrix of rational functions Gij(z), and the sys‐
tem will have matrix-valued impulse-response coefficients. For simplicity, we will assume
that transfer function representations are single-input-single-output, though all results pre‐
sented here generalize to the multi-input-multi-output case.

2.2. Stability of transfer function representations

Because the effect of b(z) is equivalent to a finite-impulse response filter, the only require‐
ment for b(z) to produce a stable system is that its coefficients be bounded, which we may
safely assume is always the case. Thus the stability of a transfer function G(z) is determined
entirely by a(z), or more precisely, the roots of a(z). To see this, suppose a(z) is factored into
its roots, which are the poles pi of G(z),

G(z) =
b(z)

∏i=1
n (z - pi)

. (id9)

To guarantee a bounded yk , it is sufficient to study a single pole, which we will denote sim‐
ply as p. Thus we wish to determine necessary and sufficient conditions for stability of the
system

Linear Algebra4



G '(z) =
1

z - p . (id10)

Note that p may be complex. Assume that | z | > | p | . G '(z) then has the Laurent-series
expansion

G '(z) = z -1( 1
1 - pz -1 ) = z -1∑

k=0

∞
p k z -k = ∑

k=1

∞
p k -1z -k . (id11)

From the time-shift property of the z-transform, it is immediately clear that the sequence

gk
' = {0 k = 1,

p k -1 k > 1,
(id12)

is the impulse response of G '(z). If we require that (▭) is absolutely summable and let
| z | = 1, the result is the original stability requirement (▭), which may be written in terms

of p as

∑
k=1

∞ |p k -1| < ∞. ()

This is true if and only if | p | < 1, and thus G '(z) is stable if and only if | p | < 1. Finally,
from (▭) we may deduce that a system is stable if and only if all the poles of G(z) satisfy the
property | pi | < 1.

2.3. Construction of transfer functions from impulse responses

Transfer functions are a convenient way of representing complex system dynamics in a fi‐
nite number of parameters, but the coefficients of a(z) and b(z) cannot be measured directly.
The impulse response of a system can be found experimentally by either direct measure‐
ment or from other means such as taking the inverse Fourier transform of a measured fre‐
quency response [11]. It cannot, however, be represented in a finite number of parameters.
Thus the conversion between transfer functions and impulse responses is an extremely use‐
ful tool.

For a single-pole system such as (▭), the expansion (▭) provides an obvious means of recon‐
structing a transfer function from a measured impulse response: given any 2 sequential im‐
pulse-response coefficients gk  and gk +1, the pole of G '(z) may be found from

p = gk
-1gk +1. (id14)
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Notice that this is true for any k , and the impulse response can be said to have a shift-invari‐
ant property in this respect.

Less clear is the case when an impulse response is generated by a system with higher-order
a(z) and b(z). In fact, there is no guarantee that an arbitrary impulse response is the result of
a linear system of difference equations at all. For an LTI filter, however, the coefficients of
the impulse response exhibit a linear dependence which may be used to not only verify the
linearity of the system, but to construct a transfer function representation as well. The exact
nature of this linear dependence may be found by forming a structured matrix of impulse
response coefficients and examining its behavior when the indices of the coefficients are
shifted forward by a single increment, similar to the single-pole case in (▭). The result is
stated in the following theorem, originally due to Kronecker [4] and adopted from the Eng‐
lish translation of [12].

Theorem 1 (Kronecker's Theorem) Suppose G(z) : ℂ → ℂ is an infinite series of descending
powers of z, starting with z -1,

G(z) = g1z -1 + g2z -2 + g3z -3 + ⋯ = ∑
k=1

∞
gk z -k . (id16)

Assume G(z) is analytic (the series converges) for all | z | > 1. Let H  be an infinitely large
matrix of the form

H =

g1 g2 g3 ⋯
g2 g3 g4 ⋯
g3 g4 g5 ⋯
⋮ ⋮ ⋮

(id17)

Then H  has finite rank n if and only if G(z) is a strictly proper, coprime, rational function of
degree n with poles inside the unit circle. That is, G(z) has an alternative representation

G(z) =
b(z)
a(z) =

bmz m + bm-1z m-1 + ⋯ + b1z + b0

z n + an-1z n-1 + ⋯ + a1z + a0
, (id18)

in which m < n, all roots of a(z) satisfy | z | < 1, a(z) and b(z) have no common roots, and
we have assumed without loss of generality that a(z) is monic.

To prove Theorem ▭, we first prove that for k > n, gk  must be linearly dependent on the pre‐
vious n terms of the series for H  to have finite rank.

Theorem 2 The infinitely large matrix H  is of finite rank n if and only if there exists a finite
sequence α1, α2, ⋯ , αn such that for k ≥ n,

Linear Algebra6



gk +1 = ∑
j=1

n
αjgk - j+1, (id20)

and n is the smallest number with this property.

Let h k  be the row of H  beginning with gk . If H  has rank n, then the first n + 1 rows of H  are

linearly dependent. This implies that for some 1 ≤ p ≤ n, h p+1 is a linear combination of

h 1, ⋯ , h p, and thus there exists some sequence αk  such that

h p+1 = ∑
j=1

p
αjh p- j+1. (id21)

The structure and infinite size of H  imply that such a relationship must hold for all follow‐
ing rows of H , so that for q ≥ 0

h q+ p+1 = ∑
j=1

p
αjh q+ p- j+1. ()

Hence any row h k , k > p, can be expressed as a linear combination of the previous p rows.

Since H  has at least n linearly independent rows, p = n, and since this applies element-wise,
error (H ) = n implies (▭).

Alternatively, (▭) implies a relationship of the form (▭) exists, and hence error (H ) = p.
Since n is the smallest possible p, this implies error (H ) = n.

We now prove Theorem ▭. Suppose G(z) is a coprime rational function of the form (▭) with
series expansion (▭), which we know exists, since G(z) is analytic for | z | < 1. Without
loss of generality, let m = n - 1, since we may always let bk = 0 for some k . Hence

bn-1z n-1 + bn-2z n-2 + ⋯ + b1z + b0

z n + an-1z n-1 + ⋯ + a1z + a0
= g1z -1 + g2z -2 + g3z -3 + ⋯ ()

Multiplying both sides by the denominator of the left,

bn-1z n-1 + bn-2z n-2 + ⋯ + b1z + b0

= g1z n-1 + (g2 + g1an-1)z n-2 + (g3 + g2an-1 + g1an-2)z n-3 + ⋯ ,
()

and equating powers of z, we find
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bn-1 = g1

bn-2 = g2 + g1an-1

bn-3 = g3 + g2an-1 + g1an-2

=
b1 = gn-1 + gn-2an-1 + ⋯ + g1a2

b0 = gn + gn-1an-1 + ⋯ + g1a1

0 = gk +1 + gkan-1 + ⋯ + gk -n+1a0 k ≥ n.

(id22)

From this, we have, for k ≥ n,

gk +1 = ∑
j=1

n
- ajgk - j+1, ()

which not only shows that (▭) holds, but also shows that αj = - aj. Hence by Theorem ▭, H
must have finite rank.

Conversely, suppose H  has finite rank. Then (▭) holds, and we may construct a(z) from αk

and b(z) from (▭) to create a rational function. This function must be coprime since its order
n is the smallest possible.

The construction in Theorem ▭ is simple to extend to the case in which G(z) is only proper
and not strictly proper; the additional coefficient bn is simply the feed-through term in the
impulse response, that is, g0.

A result of Theorem ▭ is that given finite-dimensional, full-rank matrices

Hk =

gk gk +1 ⋯ gk +n-1

gk +1 gk +2 ⋯ gk +n

⋮ ⋮ ⋮
gk +n-1 gk +n ⋯ gk +2n-2

(id23)

and

Hk +1 =

gk +1 gk +2 ⋯ gk +n

gk +2 gk +3 ⋯ gk +n+1

⋮ ⋮ ⋮
gk +n gk +n+1 ⋯ gk +2n-1

, (id24)

the coefficients of a(z) may be calculated as

Linear Algebra8



0 0 ⋯ 0 -a0

1 0 ⋯ 0 -a1

0 1 ⋯ 0 -a2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 -an-1

= Hk
-1Hk +1. (id25)

Notice that (▭) is in fact a special case of (▭). Thus we need only know the first 2n + 1 im‐

pulse-response coefficients to reconstruct the transfer function G(z): 2n to form the matrices

Hk  and Hk +1 from (▭) and (▭), respectively, and possibly the initial coefficient g0 in case of

an n th -order b(z).

Matrices with the structure of H  are useful enough to have a special name. A Hankel matrix

H  is a matrix constructed from a sequence {h k } so that each element H ( j ,k ) = h j+k . For the

Hankel matrix in (▭), h k = gk -1. Hk  also has an interesting property implied by (▭): its row

space is invariant under shifting of the index k . Because its symmetric, this is also true for its

column space. Thus this matrix is also often referred to as being shift-invariant.

While (▭) provides a potential method of identifying a system from a measured impulse re‐

sponse, this is not a reliable method to use with measured impulse response coefficients that

are corrupted by noise. The exact linear dependence of the coefficients will not be identical

for all k , and the structure of (▭) will not be preserved. Inverting Hk  will also invert any

noise on gk , potentially amplifying high-frequency noise content. Finally, the system order n

is required to be known beforehand, which is usually not the case if only an impulse re‐

sponse is available. Fortunately, these difficulties may all be overcome by reinterpreting the

results Kronecker's theorem in a state-space framework. First, however, we more carefully

examine the role of the Hankel matrix in the behavior of LTI filters.

2.4. Hankel and Toeplitz operators

The Hankel matrix of impulse response coefficients (▭) is more than a tool for computing

the transfer function representation of a system from its impulse response. It also defines the

mapping of past input signals to future output signals. To define exactly what this means,

we write the convolution of (▭) around sample k = 0 in matrix form as

Identification of Linear, Discrete-Time Filters via Realization
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⋮
y-3

y-2

y-1

y0

y1

y2

⋮

=

⋱ ⋯ 0
⋯ g0 ⋮
⋯ g1 g0

⋯ g2 g1 g0

⋯ g3 g2 g1 g0

⋯ g4 g3 g2 g1 g0

⋯ g5 g4 g3 g2 g1 g0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⋮
u-3

u-2

u-1

u0

u1

u2

⋮

, ()

where the vectors and matrix have been partitioned into sections for k < 0 and k ≥ 0. The
output for k ≥ 0 may then be split into two parts:

y0

y1

y2

⋮



xk +1 = Axk + Buk

yk = C xk + Duk ,
(id28)

in which xk ∈ ℝn is the system state. The matrices A ∈ ℝn×n, B ∈ ℝn×nu, C ∈ ℝny×n, and

D ∈ ℝny×nu completely parameterize the system. Only D uniquely defines the input-output
behavior; any nonsingular matrix T ' may be used to change the state basis via the relation‐
ships

x ' = T 'x A ' = T 'AT '-1 B ' = T 'B C ' = CT '-1. ()

The Z -transform may also be applied to the state-space equations (▭) to find Z[xk+1] = A
Z[xk] + B Z[uk] X(z) z = A X(z) + B U(z)

Z[yk] = C Z[xk] + D Z[uk] Y(z) = C X(z) + D U(z)

Y (z)
U (z) = G(z) G(z) = C(zI - A)-1B + D, (id29)

and thus, if (▭) is the state-space representation of the single-variable system (▭), then a(z)
is the characteristic polynomial of A, det (zI - A).

Besides clarifying the effect of initial conditions on the output, state-space representations
are inherently causal, and (▭) will always result in a proper system (strictly proper if D = 0).
For this reason, state-space representations are often called realizable descriptions; while the
forward-time-shift of z is an inherently non-causal operation, state-space systems may al‐
ways be constructed in reality.

3.1. Stability, controllability, and observability of state-space representations

The system impulse response is simple to formulate in terms of the state-space parameters
by calculation of the output to a unit impulse with x0 = 0:

gk = {D k = 0,
C A k -1B k > 0 . (id31)

Notice the similarity of (▭) and (▭). In fact, from the eigenvalue decomposition of A,

A = VΛV -1, ()

we find
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∑
k=1

∞
|gk| = ∑

k=1

∞ |C A k -1B| = ∑
k=1

∞
|CV |( | Λ k -1 | )|V -1B|. ()

The term | Λ k -1|  will only converge if the largest eigenvalue of A is within the unit circle,
and thus the condition that all eigenvalues λi of A satisfy | λi | < 1 is a necessary and suffi‐
cient condition for stability.

For state-space representations, there is the possibility that a combination of A and B will
result in a system for which xk  cannot be entirely controlled by the input uk . Expressing xk  in
a matrix-form similar to (▭) as

xk = ��

uk -1

uk -2

uk -3

⋮

, ��= B AB A 2B ⋯ (id32)

demonstrates that xk  is in subspace ℝn if and only if  has rank n.  is the controllability matrix
and the system is controllable if it has full row rank.

Similarly, the state xk  may not uniquely determine the output for some combinations of A
and C . Expressing the evolution of the output as a function of the state in matrix-form as

yk

yk +1

yk +2

⋮

= ��xk , ��=

C
CA
C A 2

⋮

()

demonstrates that there is no nontrivial null space in the mapping from xk  to yk  if and only
if  has rank n.  is the observability matrix and the system is observable if it has full column rank.

Systems that are both controllable and observable are called minimal, and for minimal sys‐
tems, the dimension n of the state variable cannot be reduced. In the next section we show
that minimal state-space system representations convert to coprime transfer functions that
are found through (▭).

3.2. Construction of state-space representations from impulse responses

The fact that the denominator of G(z) is the characteristic polynomial of A not only allows
for the calculation of a transfer function from a state-space representation, but provides an
alternative version of Kronecker's theorem for state-space systems, known as the Ho-Kal‐
man Algorithm [3]. From the Caley-Hamilton theorem, if a(z) is the characteristic polyno‐
mial of A, then a(A) = 0, and
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C A ka(A)B = C A k (A n + an-1A n-1 + ⋯ + a1A + a0)B

= C A k +nB + ∑
j=0

n-1
ajC A k + j B,

()

which implies

C A k +nB = - ∑
j=0

n-1
ajC A k + j B. (id34)

Indeed, substitution of (▭) into (▭) and rearrangement of the indices leads to (▭). Addition‐
ally, substitution of (▭) into the product of  and  shows that

����=

CB CAB C A 2B ⋯
CAB C A 2B C A 3B ⋯

C A 2B C A 3B C A 4B ⋯
⋮ ⋮ ⋮

=

g1 g2 g3 ⋯
g2 g3 g4 ⋯
g3 g4 g5 ⋯
⋮ ⋮ ⋮

= H , ()

which confirms our previous statement that H  effectively represents the memory of the sys‐
tem. Because

error (H ) = min { error (��), error (��)}, ()

we see that error (H ) = n implies the state-space system (▭) is minimal.

If the entries of H  are shifted forward by one index to form

H̄ =

g2 g3 g4 ⋯
g3 g4 g5 ⋯
g4 g5 g6 ⋯
⋮ ⋮ ⋮

, ()

then once again substituting (▭) reveals

H̄ = ��A��. (id35)

Thus the row space and column space of H  are invariant under a forward-shift of the indi‐
ces, implying the same shift-invariant structure seen in (▭).

The appearance of A in (▭) hints at a method for constructing a state-space realization from
an impulse response. Suppose the impulse response is known exactly, and let Hr  be a finite
slice of H  with r  block rows and L  columns,
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Hr =

g1 g2 g3 ⋯ gL

g2 g3 g4 ⋯ gL +1

g3 g4 g5 ⋯ gL +2

⋮ ⋮ ⋮ ⋮
gr -1 gr gr+1 ⋯ gr+L -1

. ()

Then any appropriately dimensioned factorization

Hr = ��r ��L =

C
CA
C A 2

⋮
C A r -1

B AB A 2B ⋯ A L -1B (id36)

may be used to find A for some arbitrary state basis as

A = (��r)†H̄ r(��L )† (id37)

where H̄ r  is Hr  with the indices shifted forward once and ( · )† is the Moore-Penrose pseu‐

doinverse. C  taken from the first block row of ��r , B taken from the first block column of ��L ,
and D taken from g0 then provides a complete and minimal state-space realization from an
impulse response. Because Hr  has rank n and det (zI - A) has degree n, we know from Kro‐
necker's theorem that G(z) taken from (▭) will be coprime.

However, as mentioned before, the impulse response of the system is rarely known exactly.
In this case only an estimate Ĥ r  with a non-deterministic error term is available:

Ĥ r = Hr + E . ()

Because E  is non-deterministic, Ĥ  will always have full rank, regardless of the number of
rows r . Thus n cannot be determined from examining the rank of H , and even if n is known
beforehand, a factorization (▭) for r > n will not exist. Thus we must find a way of reducing
the rank of Ĥ r  in order to find a state-space realization.

3.3. Rank-reduction of the Hankel matrix estimate

If Ĥ r  has full rank, or if n is unknown, its rank must be reduced prior to factorization. The
obvious tool for reducing the rank of matrices is the singular-value decomposition (SVD). As‐
sume for now that n is known. The SVD of Ĥ r  is
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Ĥ r = UΣV T ()

where U  and V T  are orthogonal matrices and Σ is a diagonal matrix containing the nonneg‐
ative singular values σi ordered from largest to smallest. The SVD for a matrix is unique and
guaranteed to exist, and the number of nonzero singular values of a matrix is equal to its
rank [14].

Because U  and V T  are orthogonal, the SVD satisfies

Ĥ r = ||UΣV T ||2 = ||Σ||2 = σ1 (id41)

where || · ||2 is the induced matrix 2-norm, and

Ĥ r = ||UΣV T ||F = ||Σ||F = (∑
i

l
σi

2)1/2
(id42)

where || · ||F  is the Frobenius norm. Equation (▭) also shows that the Hankel norm of a
system is the maximum singular value of Hr . From (▭) and (▭), we can directly see that if
the SVD of Hr  is partitioned into

Ĥ r = Un Us
Σn 0
0 Σs

Vn
T

V s
T , ()

where Un is the first n columns of U , Σn is the upper-left n × n block of Σ, and Vn
T  is the first

n rows of V T , the solution to the rank-reduction problem is [14]

Q = arg~min
error(Q)=n

||Q - Ĥ r||2 = arg~min
error(Q)=n

||Q - Ĥ r||F = UnΣnVn
T . ()

Additionally, the error resulting from the rank reduction is

e = ||Q - Ĥ r||2 = σn+1, ()

which suggests that if the rank of Hr  is not known beforehand, it can be determined by ex‐
amining the nonzero singular values in the deterministic case or by searching for a signifi‐
cant drop-off in singular values if only a noise-corrupted estimate is available.

3.4. Identifying the state-space realization

From a rank-reduced Ĥ r , any factorization
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Ĥ r = ��
^
r ��
^
L ()

can be used to estimate ��r  and ��L . The error in the state-space realization, however, will de‐
pend on the chosen state basis. Generally we would like to have a state variable with a norm
||xk||2 in between ||uk||2 and ||yk||2. As first proposed in [5], choosing the factorization

��
^
r = UnΣn

1/2 and ��
^
L = Σn

1/2Vn
T (id44)

results in

|| ��
^
r||2 = || ��

^
L ||2 = ||Ĥ r||2, (id45)

and thus, from a functional perspective, the mappings from input to state and state to out‐
put will have equal magnitudes, and each entry of the state vector xk  will have similar mag‐
nitudes. State-space realizations that satisfy (▭) are sometimes called internally balanced
realizations [11]. (Alternative definitions of a “balanced” realization exist, however, and it is
generally wise to verify the definition in each context.)

Choosing the factorization (▭) also simplifies computation of the estimate Â, since

Â = ( ��
^
r)†H̄

^
r( ��

^
L )†

= Σn
-1/2Un

T H̄
^

rVnΣn
-1/2.

()

By estimating B̂ as the first block column of ��
^
L , Ĉ  as the first block row of ��

^
L , and D̂ as g0, a

complete state-space realization (Â, B̂, Ĉ , D̂) is identified from this method.

3.5. Pitfalls of direct realization from an impulse response

Even though the rank-reduction process allows for realization from a noise-corrupted esti‐
mate of an impulse response, identification methods that generate a system estimate from a
Hankel matrix constructed from an estimated impulse response have numerous difficulties
when applied to noisy measurements. Measuring an impulse response directly is often in‐
feasible; high-frequency damping may result in a measurement that has a very brief re‐
sponse before the signal-to-noise ratio becomes prohibitively small, and a unit pulse will
often excite high-frequency nonlinearities that degrade the quality of the resulting estimate.

Taking the inverse Fourier transform of the frequency response guarantees that the esti‐
mates of the Markov parameters will converge as the dataset grows only so long as the in‐
put is broadband. Generally input signals decay in magnitude at higher frequencies, and
calculation of the frequency response by inversion of the input will amplify high-frequency
noise. We would prefer an identification method that is guaranteed to provide a system esti‐
mate that converges to the true system as the amount of data measured increases and that
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avoids inverting the input. Fortunately, the relationship between input and output data in
(▭) may be used to formulate just such an identification procedure.

4. Realization from input-output data

To avoid the difficulties in constructing a system realization from an estimated impulse re‐
sponse, we will form a realization-based identification procedure applicable to measured in‐
put-output data. To sufficiently account for non-deterministic effects in measured data, we
add a noise term vk ∈ ℝny to the output to form the noise-perturbed state-space equations

xk +1 = Axk + Buk

yk = C xk + Duk + vk .
(id47)

We assume that the noise signal vk  is generated by a stationary stochastic process, which
may be either white or colored. This includes the case in which the state is disturbed by
process noise, so that the noise process may have the same poles as the deterministic system.
(See [15] for a thorough discussion of representations of noise in the identification context.)

4.1. Data-matrix equations

The goal is to construct a state-space realization using the relationships in (▭), but doing so
requires a complete characterization of the row space of Hr . To this end, we expand a finite-
slice of the future output vector to form a block-Hankel matrix of output data with r  block
rows,

Y =

y0 y1 y2 ⋯ yL

y1 y2 y3 ⋯ yL +1

y2 y3 y4 ⋯ yL +2

⋮ ⋮ ⋮ ⋮
yr -1 yr yr+1 ⋯ yr+L -1

. ()

This matrix is related to a block-Hankel matrix of future input data

U f =

u0 u1 u2 ⋯ uL

u1 u2 u3 ⋯ uL +1

u2 u3 u4 ⋯ uL +2

⋮ ⋮ ⋮ ⋮
ur -1 ur ur+1 ⋯ ur+L -1

, ()
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a block-Toeplitz matrix of past input data

Up =

u-1 u0 u1 ⋯ uL -1

u-2 u-1 u0 ⋯ uL -2

u-3 u-2 u-1 ⋯ uL -3

⋮ ⋮ ⋮ ⋮

, ()

a finite-dimensional block-Toeplitz matrix

T =

g0 ⋯ 0
g1 g0 ⋮
g2 g1 g0

⋮ ⋮ ⋮ ⋱
gr -1 gr -2 gr -3 ⋯ g0

, ()

the system Hankel matrix H , and a block-Hankel matrix V  formed from noise data vk  with

the same indices as Y  by the equation

Y = H Up + T U f + V . (id49)

If the entries of Y f  are shifted forward by one index to form

Ȳ =

y1 y2 y3 ⋯ yL +1

y2 y3 y4 ⋯ yL +2

y3 y4 y5 ⋯ yL +3

⋮ ⋮ ⋮ ⋮
yr yr+1 yr+2 ⋯ yr+L

, ()

then Ȳ f  is related to the shifted system Hankel matrix H̄ , the past input data Up, T  with a

block column appended to the left, and U f  with a block row appended to the bottom,

T̄ =

g1

g2

g3 T
⋮
gr

, Ū f =
U f

ur ur+1 ur+2 ⋯ ur+L
, ()
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and a block-Hankel matrix V̄  of noise data vk  with the same indices as Ȳ  by the equation

Ȳ = H̄ Up + T̄ Ū f + V̄ . (id50)

From (▭), the state is equal to the column vectors of Up multiplied by the entries of the con‐
trollability matrix , which we may represent as the block-matrix

X = x0 x1 x2 ⋯ xL = ��Up, ()

which is an alternative means of representing the memory of the system at sample 0, 1, ....
The two data matrix equations (▭) and (▭) may then be written as Y = Or X + T Uf + V ,

Y = Or A X + T  Uf + V . Equation (▭) is basis for the field of system identification methods
known as subspace methods. Subspace identification methods typically fall into one of two
categories. First, because a shifted observability matrix

��¯=

CA
C A 2

C A 3

⋮

, ()

satisfies

im(��) = im(��)̄, ()

where im( · ) of denotes the row space (often called the “image”), the row-space of  is shift-
invariant, and A may be identified from estimates ��r  and ��r̄  as

Â = ��
^
r
† ��¯̂r . ()

Alternatively, because a forward-propagated sequence of states

X̄ = AX ()

satisfies

im(X T ) = im(X̄ T ), ()

the column-space of X  is shift-invariant, and A may be identified from estimates X̂  and X̄
^

as
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Â = X̄
^

X̂ †. ()

In both instances, the system dynamics are estimated by propagating the indices forward by
one step and examining a propagation of linear dynamics, not unlike (▭) from Kronecker's
theorem. Details of these methods may be found in [16] and [17]. In the next section we
present a system identification method that constructs system estimates from the shift-invar‐
iant structure of Y  itself.

4.2. Identification from shift-invariance of output measurements

Equations (▭) and (▭) still contain the effects of the future input in Ū f . To remove these
effects from the output, we must first add some assumptions about Ū f . First, we assume
that Ū f  has full row rank. This is true for any U f  with a smooth frequency response or if
Ū f  is generated from some pseudo-random sequence. Next, we assume that the initial con‐
ditions in X  do not somehow cancel out the effects of future input. A sufficient condition for
this is to require

error ( X
Ū f

) = n + rnu ()

to have full row rank. Although these assumptions might appear restrictive at first, since it
is impossible to verify without knowledge of X , it is generally true with the exception of
some pathological cases.

Next, we form the null-space projector matrix

Π = I L +1 - Ū f
T (Ū f Ū f

T )-1Ū f , (id52)

which has the property

Ū f Π = 0. ()

We know the inverse of (Ū f Ū f
T ) exists, since we assume Ū f  has full row rank. Projector

matrices such as (▭) have many interesting properties. Their eigenvalues are all 0 or 1, and if
they are symmetric, they separate the subspace of real vectors — in this case, vectors in
ℝL +1 — into a subspace and its orthogonal complement. In fact, it is simple to verify that the
null space of Ū f  contains the null space of U f  as a subspace, since

Ū f Π =
U f

⋯
Π = 0. ()
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Thus multiplication of (▭) and (▭) on the right by Π results in

Y = Or X + V ,

Y = Or A X + V . It is also unnecessary to compute the projected products YΠ and Ȳ Π direct‐
ly, since from the QR-decomposition

Ū T Y T = Q1 Q2
R11 R12

0 R22
, ()

we have

Y = R12
T Q1

T + R22
T Q2

T (id53)

and U = R11
T Q1

T . Substitution into (▭) reveals

Π = I - Q1Q1
T . (id54)

Because the columns of Q1 and Q2 are orthogonal, multiplication of (▭) on the right by (▭)

results in

YΠ = R22
T Q2

T . ()

A similar result holds for Ȳ Π. Taking the QR-decomposition of the data can alternatively be
thought of as using the principle of superposition to construct new sequences of input-out‐
put data through a Gram-Schmidt-type orthogonalization process. A detailed discussion of
this interpretation can be found in [18].

Thus we have successfully removed the effects of future input on the output while retaining
the effects of the past, which is the foundation of the realization process. We still must ac‐
count for non-deterministic effects in V  and V̄ . To do so, we look for some matrix Z  such
that

V ZT 0 ,

V ZT 0 . This requires the content of Z  to be statistically independent of the process that gen‐
erates vk . The input uk  is just such a signal, so long as the filter output is not a function of the

input — that is, the data was measured in open-loop operation,. If we begin measuring in‐
put before k = 0 at some sample k = - ζ and construct Z  as a block-Hankel matrix of past in‐
put data,
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Z =
1
L

u-ζ u-ζ+1 u-ζ+2 ⋯ u-ζ+L

u-ζ+1 u-ζ+2 u-ζ+3 ⋯ u-ζ+L +1

u-ζ+2 u-ζ+3 u-ζ+4 ⋯ u-ζ+L +2

⋮ ⋮ ⋮ ⋮
u-1 u0 u1 ⋯ ur+L -2

, ()

then multiplication of (▭) and (▭) on the right by Z T  results in

Y ZT Or X ZT ,

Y ZT Or A ZT , as L → ∞. Note the term 1
L  in Z  is necessary to keep (▭) and (▭) bounded.

Finally we are able to perform our rank-reduction technique directly on measured data
without needing to first estimate the impulse response. From the SVD

YΠZ T = UΣV T , ()

we may estimate the order n by looking for a sudden decrease in singular values. From the
partitioning

YΠZ T = Un Us
Σn 0
0 Σs

Vn
T

V s
T , ()

we may estimate ��r  and XΠZ T  from the factorization

��
^
r = UnΣn

1/2 and X̂ ΠZ T = Σn
1/2Vn

T . ()

A may then be estimated as

Â = ( ��
^
r)†Ȳ ΠZ T (X̂ ΠZ T )† = Σn

-1/2Un
T Ȳ ΠZ T VnΣn

-1/2

≈ (��r)†(H̄ UpΠ)(��L UpΠ)† ≈ (��r)†H̄ (��L )†.
()

And so we have returned to our original relationship (▭).

While C  may be estimated from the top block row of ��
^
r , our projection has lost the column

space of Hr  that we previously used to estimate B, and initial conditions in X  prevent us
from estimating D directly. Fortunately, if A and C  are known, then the remaining terms B,
D, and an initial condition x0 are linear in the input output data, and may be estimated by
solving a linear-least-squares problem.
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4.3. Estimation of B, D, and x0

The input-to-state terms B and D may be estimated by examining the convolution with the

state-space form of the impulse response. Expanding (▭) with the input and including an

initial condition x0 results in

yk = C A k x0 + ∑
j=0

k -1
C A k - j-1Buj + Duk + vk . (id56)

Factoring out B and D on the right provides

yk = C A k x0 + (∑
j=0

k -1
uk

T ⊗C A k - j-1)vec(B) + (uk
T ⊗ Iny

)vec(D) + vk , ()

in which vec( · ) is the operation that stacks the columns of a matrix on one another, ⊗  is the

(coincidentally named) Kronecker product, and we have made use of the identity

vec(AXB) = (B T ⊗ A)vec(X ). ()

Grouping the unknown terms together results in

yk = C A k ∑
j=0

k -1
uk

T ⊗C A k - j-1 uk
T ⊗ Iny

x0

vec(B)
vec(D)

+ vk . ()

Thus by forming the regressor

φk = Ĉ Âk ∑
j=0

k -1
uk

T ⊗ Ĉ Âk - j-1 uk
T ⊗ Iny

()

from the estimates Â and Ĉ , estimates of B and D may be found from the least-squares solu‐

tion of the linear system of N  equations

y0

y1

y2

⋮
yN

=

φ0

φ1

φ2

⋮
φN

x̂0

vec(B̂)
vec(D̂)

. ()
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Note that N  is arbitrary and does not need to be related in any way to the indices of the data
matrix equations. This can be useful, since for large-dimensional systems, the regressor φk

may become very computationally expensive to compute.

5. Conclusion

Beginning with the construction of a transfer function from an impulse response, we have
constructed a method for identification of state-space realizations of linear filters from meas‐
ured input-output data, introducing the fundamental concepts of realization theory of linear
systems along the way. Computing a state-space realization from measured input-output
data requires many tools of linear algebra: projections and the QR-decomposition, rank re‐
duction and the singular-value decomposition, and linear least squares. The principles of re‐
alization theory provide insight into the different representations of linear systems, as well
as the role of rational functions and series expansions in linear algebra.
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