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1. Introduction

Nonnegative matrices have long been a sorce of interesting and challenging mathematical
problems. They are real matrices with all their entries being nonnegative and arise in a num‐
ber of important application areas: communications systems, biological systems, economics,
ecology, computer sciences, machine learning, and many other engineering systems. Inverse
eigenvalue problems constitute an important subclass of inverse problems that arise in the
context of mathematical modeling and parameter identification. A simple application of
such problems is the construction of Leontief models in economics [1]-[2].

The nonnegative inverse eigenvalue problem (NIEP) is the problem of characterizing those lists
Λ = {λ1, λ2, ..., λn} of complex numbers which can be the spectra of n × n entrywise nonnega‐
tive matrices. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realiz‐
ed by A and that A is the realizing matrix. A set K of conditions is said to be a realizability
criterion if any list Λ = {λ1, λ2, ..., λn},  real or complex, satisfying conditions K  is realizable.
The NIEP is an open problem. A full solution is unlikely in the near future. The problem has
only been solved for n = 3 by Loewy and London ([3], 1978) and for n = 4 by Meehan ([4],
1998) and Torre-Mayo et al.([5], 2007). The case n = 5 has been solved for matrices of trace
zero in ([6], 1999). Other results, mostly in terms of sufficient conditions for the problem to
have a solution (in the case of a complex list Λ), have been obtained, in chronological order,
in [7]-[8].

Two main subproblems of the NIEP are of great interest: the real nonnegative inverse eigenval‐
ue problem (RNIEP), in which Λ is a list of real numbers, and the symmetric nonnegative inverse
eigenvalue problem(SNIEP), in which the realizing matrix must be symmetric. Both problems,
RNIEP and SNIEP are equivalent for n ≤ 4 (see [9]), but they are different otherwise (see
[10]). Moreover, both problems remains unsolved for n ≥ 5. The NIEP is also of interest for
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nonnegative matrices with a particular structure, like stochastic and doubly stochastic, circu‐
lant, persymmetric, centrosymmetric, Hermitian, Toeplitz, etc.

The first sufficient conditions for the existence of a nonnegative matrix with a given real
spectrum (RNIEP) were obtained by Suleimanova ([11], 1949) and Perfect ([12], [13], 1953
and 1955). Other sufficient conditions have also been obtained, in chronological order in
[14]-[15], (see also [16], [17], and references therein for a comprehensive survey).

The first sufficient conditions for the SNIEP were obtained by Fiedler ([18], 1974). Other re‐
sults for symmetric realizability have been obtained in [19], [7] and [20]-[21]. Recently, new
sufficient conditions for the SNIEP have been given in [22]-[23].

1.1. Necessary conditions

Let A be a nonnegative matrix with spectrum Λ = {λ1, λ2, ..., λn}. Then, from the Perron Fro‐
benius theory we have the following basic necessary conditions

(1) Λ̄ = {λ1̄, ..., λn̄} = Λ
(2) max j {|λj|} ∈ Λ

(3) sm(Λ) = ∑
j=1

n
λ j

m ≥ 0, m = 1, 2, ...,
(id2)

where Λ̄ = Λ means that Λ is closed under complex comjugation.

Moreover, we have

(4) (sk (Λ))m ≤ n m-1skm(Λ), k , m = 1, 2, ...

(5) (s2(Λ))2 ≤ (n - 1)s4(Λ), n odd, tr(A) = 0.
(id3)

Necessary condition (4) is due to Loewy and London [3]. Necessary condition (5),  which is
a refinement of (4),  is due to Laffey and Meehan [24]. The list Λ = {5, 4, - 3, - 3, - 3} for in‐
stance, satisfies all above necessary conditions, except condition (5). Therefore Λ is not a re‐
alizable list. In [25] it was obtained a new necessary condition, which is independent of the
previous ones. This result is based on the Newton's inequalities associated to the normalized
coefficients of the characteristic polynomial of an M-matrix or an inverse M-matrix.

The chapter is organized as follows: In section 2 we introduce two important matrix results,
due to Brauer and Rado, which have allowed to obtain many of the most general sufficient
conditions for the RNIEP, the SNIEP and the complex case. In section 3 we consider the real
case and we introduce, without proof (we indicate where the the proofs can be found), two
sufficient conditions with illustrative examples. We consider, in section 4, the symmetric
case. Here we introduce a symmetric version of the Rado result, Theorem ▭, and we set,
without proof (see the appropriate references), three sufficient conditions, which are, as far
as we know, the most general sufficient conditions for the SNIEP. In section 5,  we discuss

Linear Algebra2



the complex (non real) case. Here we present several results with illustrative examples. Sec‐
tion 6 is devoted to discuss some Fiedler results and Guo results, which are very related
with the problem and have been employed with success to derive sufficient conditions. Fi‐
nally, in section 7, we introduce some open questions.

2. Brauer and Rado Theorems

A real matrix A = (aij)i=1
n  is said to have constant row sums if all its rows sum up to the same

constant, say, α,  that is, 
j=1

n aij = α,  i = 1, ..., n. The set of all real matrices with constant row

sums equal to α is denoted by ����α. It is clear that any matrix in ����α has eigenvector
��= (1, 1, ..., 1)T  corresponding to the eigenvalue α. Denote by ��k  the n - dimensional vector
with one in the k - th  position and zeros elsewhere.

It is well known that the problem of finding a nonnegative matrix with spectrum
Λ = {λ1, ..., λn} is equivalent to the problem of finding a nonnegative matrix in ����λ1

 with spec‐
trum Λ (see [26]). This will allow us to exploit the advantages of two important theorems,
Brauer Theorem and Rado Theorem, which will be introduced in this section.

The spectra of circulant nonnegative matrices have been characterized in [27], while in [28],
a simple complex generalization of Suleimanova result has been proved, and efficient and
general sufficient conditions for the realizability of partitioned spectra, with the partition al‐
lowing some of its pieces to be nonrealizable, provided there are other pieces, which are re‐
alizable and, in certain way, compensate the nonnrealizability of the former, have been
obtained. This is the procedure which we call negativity compensation. This strategy, based in
the use of the following two perturbation results, together with the properties of real matri‐
ces with constant row sums, has proved to be successful.

Theorem 1 Brauer [29] Let A be an n × n arbitrary matrix with eigenvalues λ1, ..., λn. Let
��= (v1, ..., vn)T  an eigenvector of A associated with the eigenvalue λk  and let ��= (q1, ..., qn)T  be any n-

dimensional vector. Then the matrix A + ����T  has eigenvalues λ1, ..., λk -1, λk + v T q, λk +1, ..., λn.

Let U  be an n × n nonsingular matrix such that

U -1AU =

λ1 * ⋯ *
λ2 ⋱ ⋮

⋱ *
λn

()

is an upper triangular matrix, where we choose the first column of U  as  (U  there exists
from a well known result of Schur). Then,
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U -1(A + ����T )U = U -1AU +
q1 q2 ⋯ qn U =

λ1 + ��T �� * ⋯ *

λ2 ⋱ ⋮
⋱ *

λn

. ()

and the result follows.

This proof is due to Reams [30].

Theorem 2 Rado [13] Let A be an n × n arbitrary matrix with eigenvalues λ1, ..., λn and let
Ω = diag{λ1, ..., λr} for some r ≤ n. Let X  be an n × r matrix with rank r such that its columns
x1, x2, ..., xr  satisfy Axi = λi xi, i = 1, ..., r . Let C be an r × n arbitrary matrix. Then the matrix
A + XC has eigenvalues μ1, ..., μr , λr+1, ..., λn,  where μ1, ..., μr  are eigenvalues of the matrix
Ω + CX .

Let S = X ∣ Y  a nonsingular matrix with S -1 = UV . Then UX = Ir ,  VY = In-r  and VX = 0,
UY = 0. Let C = C1 ∣ C2 ,  X = X1X2,  Y = Y1Y2. Then, since AX = XΩ,

S -1AS = UV XΩ ∣ AY =
Ω UAY
0 VAY

()

and

S -1XCS = Ir0 C1 ∣ C2 S =
C1 C2

0 0

X1 Y1

X2 Y2
=

CX CY
0 0 . ()

Thus,

S -1(A + XC)S = S -1AS + S -1XCS =
Ω + CX UAY + CY

0 VAY , ()

and we have σ(A + XC) = σ(Ω + CX ) + σ(A) - σ(Ω).

3. Real nonnegative inverse eigenvalue problem.

Regarding the RNIEP, by applying Brauer Theorem and Rado Theorem, efficient and gener‐
al sufficient conditions have been obtained in [13], [31], [32], [33].

Theorem 3 [32] Let Λ = {λ1, λ2, ..., λn} be a given list of real numbers. Suppose that:

i) There exists a partition Λ = Λ1 ∪ ... ∪ Λt ,  where

Linear Algebra4



Λk = {λk 1, λk 2, ...λk pk
}, λ11 = λ1, λk 1 ≥ ⋯ ≥ λk pk

, λk 1 ≥ 0, ()

k = 1, ..., t ,  such that for each sublist Λk  we associate a corresponding list

Γk = {ωk , λk 2, ..., λk pk
}, 0 ≤ ωk ≤ λ1, ()

which is realizable by a nonnegative matrix Ak ∈ CSωk
 of order pk .

ii) There exists a nonnegative matrix B ∈ CSλ1
 with eigenvalues λ1, λ21, ..., λt1 (the first ele‐

ments of the lists Λk) and diagonal entries ω1, ω2, ..., ωt  (the first elements of the lists Γk).

Then Λ is realizable by a nonnegative matrix A ∈ CSλ1
.

Perfect [13] gave conditions under which λ1, λ2, ..., λt  and ω1, ω2, ..., ωt  are the eigenvalues

and the diagonal entries, respectively, of a t × t  nonnegative matrix B ∈ CSλ1
. For t = 2 it is

necessary and sufficient that λ1 + λ2 = ω1 + ω2,  with 0 ≤ ωi ≤ λ1. For t = 3 Perfect gave the fol‐

lowing result:

Theorem 4 [13] The real numbers λ1, λ2, λ3 and ω1, ω2, ω3 are the eigenvalues and the diago‐

nal entries, respectively, of a 3 × 3 nonnegative matrix B ∈ CSλ1
,  if and only if:

i) 0 ≤ ωi ≤ λ1, i = 1, 2, 3

ii) λ1 + λ2 + λ3 = ω1 + ω2 + ω3

iii) λ1λ2 + λ1λ3 + λ2λ3 ≤ ω1ω2 + ω1ω3 + ω2ω3

iv) maxkωk ≥ λ2

(id8)

Then, an appropriate 3 × 3 nonnegative matrix B is

B =

ω1 0 λ1 - ω1

λ1 - ω2 - p ω2 p
0 λ1 - ω3 ω3

, (id9)

where

p =
1

λ1 - ω3
(ω1ω2 + ω1ω3 + ω2ω3 - λ1λ2 + λ1λ3 + λ2λ3). ()

For t ≥ 4,  we only have a sufficient condition:

Nonnegative Inverse Eigenvalue Problem
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i) 0 ≤ ωk ≤ λ1, k = 1, 2, ...t ,

ii) ω1 + ω2 ⋯ + ωt = λ1 + λ2 ⋯ + λt ,

iii) ωk ≥ λk , ω1 ≥ λk , k = 2, 3, ..., t ,
(id10)

with the following matrix B ∈ CSλ1
 having eigenvalues and diagonal entries λ1, λ2, ..., λt

and ω1, ω2, ..., ωt ,  respectively:

B =

ω1 ω2 - λ2 ⋯ ωr - λt

ω1 - λ2 ω2 ⋯ ωr - λt

⋮ ⋮ ⋱ ⋮
ω1 - λt ω2 - λ2 ⋯ ωt

. (id11)

Example 1 Let us consider the list Λ = {6, 1, 1, - 4, - 4} with the partition

Λ1 = {6, - 4}, Λ2 = {1, - 4}, Λ3 = {1} ()

and the realizable associated lists

Γ1 = {4, - 4}, Γ2 = {4, - 4}, Γ3 = {0}. ()

From (▭) we compute the 3 × 3 nonnegative matrix

B =

4 0 2
3
2 4 1

2
0 6 0

()

with eigenvalues 6, 1, 1,  and diagonal entries 4, 4, 0. Then
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A =

0 4 0 0 0
4 0 0 0 0
0 0 0 4 0
0 0 4 0 0
0 0 0 0 0

+

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

0 0 0 0 2
3
2 0 0 0 1

2
0 0 6 0 0

=

0 4 0 0 2
4 0 0 0 2
3
2 0 0 4 1

2
3
2 0 4 0 1

2
0 0 6 0 0

()

is nonnegative with spectrum Λ.

A map of sufficient conditions for the RNIEP it was constructed in[17], There, the sufficient
conditions were compared to establish inclusion or independence relations between them. It
is also shown in [17] that the criterion given by Theorem ▭ contains all realizability criteria
for lists of real numbers studied therein. In [33], from a new special partition, Theorem ▭ is
extended. Now, the first element λk 1 of the sublist Λk  need not to be nonnegative and the
realizable auxiliar list Γk = {ωk , λk 1, ..., λk pk

} contains one more element. Moreover, the num‐
ber of lists of the partition depend on the number of elements of the first list Λ1,  and some
lists Λk  can be empty.

Theorem 5 [33] Let Λ = {λ1, λ2, ..., λn} be a list of real numbers and let the partition
Λ = Λ1 ∪ ⋯ ∪ Λp1+1 be such that

Λk = {λk 1, λk 2, ...λk pk
}, λ11 = λ1, λk 1 ≥ λk 2 ≥ ⋯ ≥ λk pk

, ()

k = 1, ..., p1 + 1,  where p1 is the number of elements of the list Λ1 and some of the lists Λk

can be empty. Let ω2, ..., ωp1+1 be real numbers satisfying 0 ≤ ωk ≤ λ1,  k = 2, ..., p1 + 1. Sup‐
pose that the following conditions hold:

i) For each k = 2, ..., p1 + 1,  there exists a nonnegative matrix Ak ∈ CSωk
 with spectrum

Γk = {ωk , λk 1, ..., λk pk
},

ii) There exists a p1 × p1 nonnegative matrix B ∈ CSλ1,
 with spectrum Λ1 and with diagonal

entries ω2, ..., ωp1+1.

Then Λ is realizable by a nonnegative matrix A ∈ CSλ1
.

Example 2 With this extension, the authors show for instance, that the list
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{5, 4, 0, - 3, - 3, - 3} ()

is realizable, which can not be done from the criterion given by Theorem ▭. In fact, let the
partition

Λ1 = {5, 4, 0, - 3}, Λ2 = { - 3}, Λ3 = { - 3} with
Γ2 = {3, - 3}, Γ3 = {3, - 3}, Γ4 = Γ5 = {0}.

()

The nonnegative matrix

B =

3 0 2 0
0 3 0 2
3 0 0 2
0 3 2 0

()

has spectrum Λ1 and diagonal entries 3, 3, 0, 0. It is clear that

A2 = A3 =
0 3
3 0 realizes Γ2 = Γ3. ()

Then

A =

A2

A3

0
0

+

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0 2 0
0 0 0 0 0 2
3 0 0 0 0 2
0 0 3 0 2 0

=

0 3 0 0 2 0
3 0 0 0 2 0
0 0 0 3 0 2
0 0 3 0 0 2
3 0 0 0 0 2
0 0 3 0 2 0

()

has the desired spectrum {5, 4, 0, - 3, - 3, - 3}.

4. Symmetric nonnegative inverse eigenvalue problem

Several realizability criteria which were first obtained for the RNIEP have later been shown
to be symmetric realizability criteria as well. For example, Kellogg criterion [14] was showed
by Fiedler [18] to imply symmetric realizability. It was proved by Radwan [7] that Borobia's
criterion [34] is also a symmetric realizability criterion, and it was proved in [21] that Soto's
criterion for the RNIEP is also a criterion for the SNIEP. In this section we shall consider the
most general and efficient symmetric realizability criteria for the SNIEP (as far as we know
they are). We start by introducing a symmetric version of the Rado Theorem:.

Linear Algebra8



Theorem 6 [22] Let A be an n × n symmetric matrix with spectrum Λ = {λ1, λ2, ..., λn} and
for some r ≤ n,  let {��1, ��2, ..., ��r} be an orthonormal set of eigenvectors of A spanning the invar‐
iant subspace associated with λ1, λ2, ..., λr . Let X  be the n × r  matrix with i - th  column ��i,
let Ω = diag{λ1, ..., λr},  and let C  be any r × r  symmetric matrix. Then the symmetric matrix

A + XC X T  has eigenvalues μ1, μ2, ..., μr , λr+1, ..., λn,  where μ1, μ2, ..., μr  are the eigenval‐
ues of the matrix Ω + C .

Since the columns of X  are an orthonormal set, we may complete X  to an orthogonal matrix
W = X  Y ,  that is, X T X = Ir ,  Y T Y = In-r ,  X T Y = 0,  Y T X = 0. Then

W -1AW = X T Y T A X Y =
Ω X T AY
0 Y T AY

W -1(XC X T )W = Ir0C Ir 0 =
C 0
0 0 .

()

Therefore,

W -1(A + XC X T )W =
Ω + C X T AY

0 Y T AY
()

and A + XC X T  is symmetric with eigenvalues μ1, ..., μr , λr+1, ..., λn.

By using Theorem ▭, the following sufficient condition was proved in [22]:

Theorem 7 [22] Let Λ = {λ1, λ2, ..., λn} be a list of real numbers with λ1 ≥ λ2 ≥ ⋯ ≥ λn and,
for some t ≤ n,  let ω1, ..., ωt  be real numbers satisfying 0 ≤ ωk ≤ λ1,  k = 1, ..., t . Suppose
there exists:

i) a partition Λ = Λ1 ∪ ⋯ ∪ Λt  with

Λk = {λk 1, λk 2, ...λk pk
}, λ11 = λ1, λk 1 ≥ 0, λk 1 ≥ λk 2 ≥ ⋯ ≥ λk pk

, ()

such that for each k = 1, ..., t ,  the list Γk = {ωk , λk 2, ..., λk pk
} is realizable by a symmetric non‐

negative matrix Ak  of order pk ,  and

ii) a t × t  symmetric nonnegative matrix B with eigenvalues λ11, λ21, ..., λt1} and with diago‐
nal entries ω1, ω2, ..., ωt .

Then Λ is realizable by a symmetric nonnegative matrix.

Since Ak  is a pk × pk  symmetric nonnegative matrix realizing Γk ,  then
A = diag{A1, A2, ..., At} is symmetric nonnegative with spectrum Γ1 ∪ Γ2 ∪ ⋯ ∪ Γt . Let

Nonnegative Inverse Eigenvalue Problem
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{��1, ..., ��t} be an orthonormal set of eigenvectors of A associated with ω1, ..., ωt ,  respectively.

Then the n × t  matrix X  with i - th  column ��i satisfies AX = XΩ for Ω = dig{ω1, ..., ωt}.
Moreover, X  is entrywise nonnegative, since each ��i contains the Perron eigenvector of Ai

and zeros. Now, if we set C = B - Ω,  the matrix C  is symmetric nonnegative and Ω + C  has
eigenvalues λ1, ..., λt . Therefore, by Theorem ▭ the symmetric matrix A + XC X T  has spec‐
trum Λ. Besides, it is nonnegative since all the entries of A, X ,  and C  are nonnegative.

Theorem ▭ not only ensures the existence of a realizing matrix, but it also allows to con‐
struct the realizing matrix. Of course, the key is to know under which conditions does there
exists a t × t  symmetrix nonnegative matrix B with eigenvalues λ1, ..., λt  and diagonal en‐
tries ω1, ..., ωt .

The following conditions for the existence of a real symmetric matrix, not necessarily non‐
negative, with prescribed eigenvalues and diagonal entries are due to Horn [35]: There exists
a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ ⋯ ≥ λt  and diagonal entries ω1 ≥ ω2 ≥ ⋯ ≥ ωt

if and only if

i=1
k λi≥i=1

k ωi, k = 1, ..., t - 1

i=1
t λi=i=1

t ωi
} (id17)

For t = 2,  the conditions (▭) become

λ1 ≥ ω1, λ1 + λ2 = ω1 + ω2, ()

and they are also sufficient for the existence of a 2 × 2 symmetric nonnegative matrix B with
eigenvalues λ1 ≥ λ2 and diagonal entries ω1 ≥ ω2 ≥ 0,  namely,

B =
ω1 (λ1 - ω1)(λ1 - ω2)

(λ1 - ω1)(λ1 - ω2) ω2
. ()

For t = 3,  we have the following conditions:

Lemma 1 [18] The conditions

λ1 ≥ ω1

λ1 + λ2 ≥ ω1 + ω2

λ1 + λ2 + λ3 = ω1 + ω2 + ω3

ω1 ≥ λ2

} (id19)

Linear Algebra10



are necessary and sufficient for the existence of a 3 × 3 symmetric nonnegative matrix B with
eigenvalues λ1 ≥ λ2 ≥ λ3 and diagonal entries ω1 ≥ ω2 ≥ ω3 ≥ 0.

In [22], the following symmetric nonnegative matrix B,  satisfying conditions (▭), it was
constructed:

B =

ω1
μ - ω3

2μ - ω2 - ω3
s

μ - ω2
2μ - ω2 - ω3

s

μ - ω3
2μ - ω2 - ω3

s ω2 (μ - ω2)(μ - ω3)

μ - ω2
2μ - ω2 - ω3

s (μ - ω2)(μ - ω3) ω3

, (id20)

where μ = λ1 + λ2 - ω1; s = (λ1 - μ)(λ1 - ω1).

For t ≥ 4 we have only a sufficient condition:

Theorem 8 Fiedler [18] If λ1 ≥ ⋯ ≥ λt  and ω1 ≥ ⋯ ≥ ωt  satisfy

i)
i=1
s λi≥i=1

s ωi, s = 1, ..., t - 1

ii)
i=1
t λi=i=1

t ωi

iii) ωk -1 ≥ λk , k = 2, ..., t - 1
}, (id22)

then there exists a t × t  symmetric nonnegative matrix with eigenvalues λ1, ..., λt  and diago‐
nal entries ω1, ..., ωt .

Observe that

B =

5 2 1
2

1
2

2 5 1
2

1
2

1
2

1
2 5 2

1
2

1
2 2 5

()

has eigenvalues 8, 6, 3, 3,  but λ2 = 6 > 5 = ω1.

Example 3 Let us consider the list Λ = {7, 5, 1, - 3, - 4, - 6} with the partition

Nonnegative Inverse Eigenvalue Problem
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Λ1 = {7, - 6}, Λ2 = {5, - 4}, Λ3 = {1, - 3} with
Γ1 = {6, - 6}, Γ2 = {4, - 4}, Γ3 = {3, - 3}.

()

We look for a symmetric nonnegative matrix B with eigenvalues 7, 5, 1 and diagonal entries
6, 4, 3. Then conditions (▭) are satisfied and from (▭) we compute

B =

6 3
5

2
5

3
5

4 6

2
5 6 3

and C = B - Ω, ()

where Ω = diag{6, 4, 3}. The symmetric matrices

A1 =
0 6
6 0 , A2 =

0 4
4 0 , A3 =

0 3
3 0

()

realize Γ1, Γ2, Γ3. Then

A =

A1

A2

A3

+ XC X T , where X =

2
2

0 0

2
2

0 0

0 2
2

0

0 2
2

0

0 0 2
2

0 0 2
2

, ()

is symmetric nonnegative with spectrum Λ.

In the same way as Theorem ▭ was extended to Theorem ▭ (in the real case), Theorem ▭
was also extended to the following result:

Theorem 9 [33] Let Λ = {λ1, λ2, ..., λn} be a list of real numbers and let the partition
Λ = Λ1 ∪ ⋯ ∪ Λp1+1 be such that

Linear Algebra12



Λk = {λk 1, λk 2, ...λk pk
}, λ11 = λ1, λk 1 ≥ λk 2 ≥ ⋯ ≥ λk pk

, ()

k = 1, ..., p1 + 1,  where Λ1 is symmetrically realizable, p1 is the number of elements of Λ1

and some lists Λk  can be empty. Let ω2, ..., ωp1+1 be real numbers satisfying 0 ≤ ωk ≤ λ1,
k = 2, ..., p1 + 1. Suppose that the following conditions hold:

i) For each k = 2, ..., p1 + 1,  there exists a symmetric nonnegative matrix Ak  with spectrum
Γk = {ωk , λk 1, ..., λk pk

},

ii) There exists a p1 × p1 symmetric nonnegative matrix B with spectrum Λ1 and with diago‐
nal entries ω2, ..., ωp1+1.

Then Λ is symmetrically realizable.

Example 4 Now, from Theorem ▭, we can see that there exists a symmetric nonnegative ma‐
trix with spectrum Λ = {5, 4, 0, - 3, - 3, - 3}, which can not be seen from Theorem ▭. More‐
over, we can compute a realizing matrix. In fact, let the partition

Λ1 = {5, 4, 0, - 3}, Λ2 = { - 3}, Λ3 = { - 3} with
Γ2 = {3, - 3}, Γ3 = {3, - 3}, Γ4 = Γ5 = {0}.

()

The symmetric nonnegative matrix

B =

3 0 6 0

0 3 0 6

6 0 0 2

0 6 2 0

()

has spectrum Λ1 and diagonal entries 3, 3, 0, 0. Let Ω = diag{3, 3, 0, 0} and

X =

2
2

0 0 0

2
2

0 0 0

0 2
2

0 0

0 2
2

0 0

0 0 1 0
0 0 0 1

, A2 = A3 =
0 3
3 0 , C = B - Ω. ()
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Then, from Theorem ▭ we obtain

A =

A2

A3

0
0

+ XC X T , ()

which is symmetric nonnegative with spectrum Λ.

The following result, although is not written in the fashion of a sufficient condition, is in‐
deed a very general and efficient sufficient condition for the SNIEP.

Theorem 10 [36] Let A be an n × n irreducible symmetric nonnegative matrix with spectrum
Λ = {λ1, λ2, ..., λn},  Perron eigenvalue λ1 and a diagonal element c. Let B be an m × m sym‐
metric nonnegative matrix with spectrum Γ = {μ1, μ2, ..., μm} and Perron eigenvalue μ1.

i) If μ1 ≤ c,  then there exists a symmetric nonnegative matrix C ,  of order (n + m - 1),  with
spectrum {λ1, ..., λn, μ2, ..., μm}.

ii) If μ1 ≥ c,  then there exists a symmetric nonnegative matrix C ,  of order (n + m - 1),  with
spectrum {λ1 + μ1 - c, λ2, ..., λn, μ2, ..., μm}.

Example 5 The following example, given in [36], shows that

{7, 5, 0, - 4, - 4, - 4} with the partition

Λ = {7, 5, 0, - 4}, Γ = {4, - 4}, ()

satisfies conditions of Theorem ▭, where

A =

4 0 b 0
0 4 0 d
b 0 0 6
0 d 6 0

with b 2 + d 2 = 23, bd = 4 6, ()

is symmetric nonnegative with spectrum Λ. Then there exists a symmetric nonnegative ma‐
trix C  with spectrum {7, 5, 0, - 4, - 4} and a diagonal element 4. By applying again Theorem
▭ to the lists {7, 5, 0, - 4, - 4} and {4, - 4},  we obtain the desired symmetric nonnegative
matrix.

It is not hard to show that both results, Theorem ▭ and Theorem ▭, are equivalent (see [37]).
Thus, the list in the Example ▭ is also realizable from Theorem ▭, while the list in the exam‐
ple ▭ is also realizable from Theorem ▭.
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5. List of complex numbers

In this section we consider lists of complex nonreal numbers. We start with a complex gen‐
eralization of a well known result of Suleimanova, usually considered as one of the impor‐
tant results in the RNIEP (see [11]): The list λ1 > 0 > λ2 ≥ ⋯ ≥ λn is the spectrum of a

nonnegative matrix if and only if λ1 + λ2 + ⋯ + λn ≥ 0.

Theorem 11 [28] Let Λ = {λ0, λ1, ..., λn} be a list of complex numbers closed under complex

conjugation, with

Λ ' = {λ1, ..., λn} ⊂ {z ∈ ℂ : Rez ≤ 0; |Rez| ≥ |Imz|}. ()

Then Λ is realizable if and only if 
i=0
n λi ≥ 0.

Suppose that the elements of Λ ' are ordered in such a way that λ2 p+1, ..., λn are real and

λ1, ..., λ2 p are complex nonreal, with

xk = Reλ2k -1 = Reλ2k and yk = Imλ2k -1 = Imλ2k ()

for k = 1, ..., p. Consider the matrix

B =

0 0 0 .
-x1 + y1 x1 - y1 .
-x1 - y1 y1 x1 .
⋮ ⋮ ⋮ ⋱

-xp + yp 0 0 . xp - yp

-xp - yp 0 0 . yp xp

-λ2 p+1 0 0 . λ2 p+1

⋮ ⋮ ⋮ . ⋱
-λn 0 . λn

. ()

It is clear that B ∈ ����0 with spectrum {0, λ1, ..., λn} and all the entries on its first column are

nonnegative. Define ��= (q0, q1, ..., qn)T  with q0 = λ0+i=1
n λi and

qk = - Reλk for k = 1, ..., 2p and qk = - λk for k = 2p + 1, ..., n. ()

Then, from the Brauer Theorem ▭ A = B + ����T  is nonnegative with spectrum Λ.
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In the case when all numbers in the given list, except one (the Perron eigenvalue), have real
parts smaller than or equal to zero, remarkably simple necessary and sufficient conditions
were obtained in [38].

Theorem 12 [38] Let λ2, λ3, ..., λn be nonzero complex numbers with real parts less than or
equal to zero and let λ1 be a positive real number. Then the list Λ = {λ1, λ2, ..., λn} is the non‐
zero spectrum of a nonnegative matrix if the following conditions are satisfied:

i) Λ̄ = Λ
ii) s1=i=1

n λi ≥ 0

iii) s2=i=1
n λi

2 ≥ 0
(id30)

The minimal number of zeros that need to be added to Λ to make it realizable is the smallest
nonnegative integer N  for which the following inequality is satisfied:

s1
2 ≤ (n + N )s2. ()

Furthermore, the list {λ1, λ2, ..., λn, 0, ..., 0} can be realized by C + αI ,  where C  is a nonneg‐
ative companion matrix with trace zero, α is a nonnegative scalar and I  is the n × n identity
matrix.

Corollary 1 [38] Let λ2, λ3, ..., λn be complex numbers with real parts less than or equal to
zero and let λ1 be a positive real number. Then the list Λ = {λ1, λ2, ..., λn} is the spectrum of
a nonnegative matrix if and only if the following conditions are satisfied:

i) Λ̄ = Λ
ii) s1=i=1

n λi ≥ 0

iii) s2=i=1
n λi

2 ≥ 0

iv) s1
2 ≤ ns2

(id32)

Example 6 The list Λ = {8, - 1 + 3i, - 1 - 3i, - 2 + 5i, - 2 - 5i} satisfies conditions (▭). Then Λ is
the spectrum of the nonnegative companion matrix

C =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2320 494 278 1 2

. ()

Observe that Theorem ▭ gives no information about the realizability of Λ.
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The list {19, - 1 + 11i, - 1 - 11i, - 3 + 8i, - 3 - 8i} was given in [38]. It does not satisfy condi‐

tions (▭): s1 = 11,  s2 = 11 and s1
2ns2. The inequality 112 ≤ (5 + N )11 is satisfied for N ≥ 6. Then

we need to add 6 zeros to the list to make it realizable.

Theorem ▭ (in section 3), can also be extended to the complex case:

Theorem 13 [8] Let Λ = {λ2, λ3, ..., λn} be a list of complex numbers such that Λ̄ = Λ,

λ1 ≥ maxi |λi|,  i = 2, ..., n,  and 
i=1
n λi ≥ 0. Suppose that:

i) there exists a partition Λ = Λ1 ∪ ⋯ ∪ Λt  with

Λk = {λk 1, λk 2, ...λk pk
}, λ11 = λ1, ()

k = 1, ..., t ,  such that Γk = {ωk , λk 2, ..., λk pk
} is realizable by a nonnegative matrix Ak ∈ ����ωk

,

and

ii) there exists a t × t  nonnegative matrix B ∈ ����λ1
,  with eigenvalues

λ1, λ21, ..., λt1 (the first elements of the lists Λk ) and with diagonal entries ω1, ω2, ..., ωt  (the

Perron eigenvalues of the lists Γk ).

Then Λ is realizable.

Example 7 Let Λ = {7, 1, - 2, - 2, - 2 + 4i, - 2 - 4i}. Consider the partition

Λ1 = {7, 1, - 2, - 2}, Λ2 = { - 2 + 4i}, Λ3 = { - 2 - 4i} with
Γ1 = {3, 1, - 2, - 2}, Γ2 = {0}, Γ3 = {0}.

()

We look for a nonnegative matrix B ∈ ����7 with eigenvalues 7, - 2 + 4i, - 2 - 4i and diagonal en‐

tries 3, 0, 0,  and a nonnegative matrix A1 realizing Γ1. They are

B =

3 0 4
41
7 0 8

7
0 7 0

and A1 =

0 2 0 1
2 0 0 1
0 1 0 2
0 1 2 0

. ()

Then

Nonnegative Inverse Eigenvalue Problem
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A =
A1

0
0

+

1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 0 1

0 0 0 0 0 4
41
7 0 0 0 0 8

7
0 0 0 0 7 0

=

0 2 0 1 0 4
2 0 0 1 0 4
0 1 0 2 0 4
0 1 2 0 0 4

41
7 0 0 0 0 8

7
0 0 0 0 7 0

()

has the spectrum Λ.

6. Fiedler and Guo results

One of the most important works about the SNIEP is due to Fiedler [18]. In [18] Fiedler
showed, as it was said before, that Kellogg sufficient conditions for the RNIEP are also suffi‐
cient for the SNIEP. Three important and very useful results of Fiedler are:

Lemma 2 [18] Let A be a symmetric m × m matrix with eigenvalues α1, ..., αm,  A��= α1��,
∥��∥ = 1. Let B be a symmetric n × n matrix with eigenvalues β1, ..., βn,  B��= β1��,  ∥��∥ = 1. Then
for any ρ,  the matrix

C =
A ρ����T

ρ����T B
()

has eigenvalues α2, ..., αm, β2, ..., βn, γ1, γ2,  where γ1, γ2 are eigenvalues of the matrix

C̃ =
α1 ρ
ρ β1

. ()

Lemma 3 [18] If {α1, ..., αm} and {β1, ..., βn} are lists symmetrically realizable and α1 ≥ β1,
then for any t ≥ 0,  the list

{α1 + t , β1 - t , α2, ..., αm, β2, ..., βn} ()

is also symmetrically realizable.

Lemma 4 [18] If Λ = {λ1, λ2, ..., λn} is symmetrically realizable by a nonnegative matrix and
if t > 0,  then

Λt = {λ1 + t , λ2, ..., λn} ()
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is symmetrically realizable by a positive matrix.

Remark 1 It is not hard to see that Lemma ▭ can be obtained from Theorem ▭. In fact, it is
enough to consider

C =
A

B +
�� 0
0 ��

0 ρ
ρ 0

��T 0T

0T ��T

=
A ρ����T

ρ����T B
,

()

which is symmetric with eigenvalues γ1, γ2, α2, ..., αm, β2, ..., βn,  where γ1, γ2 are eigenval‐
ues of

B =
α1 ρ
ρ β1

. ()

Now we consider a relevant result due to Guo [39]:

Theorem 14 [39] If the list of complex numbers Λ = {λ1, λ2, ..., λn} is realizable, where λ1 is
the Perron eigenvalue and λ2 ∈ ℝ,  then for any t ≥ 0 the list Λt = {λ1 + t , λ2 ± t , λ3, ..., λn} is
also realizable.

Corollary 2 [39] If the list of real numbers Λ = {λ1, λ2, ..., λn} is realizable and t1=i=2
n |ti|

with ti ∈ ℝ,  i = 2, ..., n,  then the list Λt = {λ1 + t1, λ2 + t2, ..., λn + tn} is also realizable.

Example 8 Let Λ = {8, 6, 3, 3, - 5, - 5, - 5, - 5} be a given list. Since the lists
Λ1 = Λ2 = {7, 3, - 5, - 5} are both realizable (see [31] to apply a simple criterion, which shows
the realizability of Λ1 = Λ2), then

Λ1 ∪ Λ2 = {7, 7, 3, 3, - 5, - 5, - 5, - 5} ()

is also realizable. Now, from Theorem ▭, with t = 1,  Λ is realizable.

Guo also sets the following two questions:

Question 1: Do complex eigenvalues of nonnegative matrices have a property similar to
Theorem ▭?

Question 2: If the list Λ = {λ1, λ2, ..., λn} is symmetrically realizable, and t > 0,  is the list
Λt = {λ1 + t , λ2 ± t , λ3, ..., λn} symmetrically realizable?.

It was shown in [40] and also in [41] that Question 1 has an affirmative answer.
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Theorem 15 [40] Let Λ = {λ1, a + bi, a - bi, λ4, ..., λn} be a realizable list of complex numbers.
Then for all t ≥ 0,  the perturbed list

Λt = {λ1 + 2t , a - t + bi, a - t - bi, λ4, ..., λn} ()

is also realizable.

Question 2, however, remains open. An affirmative answer to Question 2, in the case that
the symmetric realizing matrix is a nonnegative circulant matrix or it is a nonnegative left
circulant matrix, it was given in [42]. The use of circulant matrices has been shown to be
very useful for the NIEP [27], [32]. In [32] it was given a necessary and sufficient condition
for a list of5 real numbers, which corresponds to a even-conjugate vector, to be the spectrum
of 5 × 5 symmetric nonnegative circulant matrix:

Lemma 5 [32] Let λ = (λ1, λ2, λ3, λ3, λ2)T  be a vector of real numbers (even-conjugate) such
that

λ1 ≥ |λj|, j = 2, 3
λ1 ≥ λ2 ≥ λ3

λ1 + 2λ2 + 2λ3 ≥ 0
(id45)

A necessary and sufficient condition for {λ1, λ2, λ3, λ3, λ2} to be the spectrum of a symmetric
nonnegative circulant matrix is

λ1 + (λ3 - λ2)
5 - 1
2 - λ2 ≥ 0. (id46)

Example 9 From Lemma ▭ we may know, for instance, that the list

{6, 1, 1, - 4, - 4} is the spectrum of a symmetric nonnegative circulant matrix.

7. Some open questions

We finish this chapter by setting two open questions:

Question 1: If the list of real numbers Λ = {λ1, λ2, ..., λn} is symmetrically realizable, and t > 0,  is
the list Λt = {λ1 + t , λ2 ± t , λ3, ..., λn} also symmetrically realizable?

Some progress has been done about this question. In [42], it was given an affirmative answer
to Question 1, in the case that the realizing matrix is symmetric nonnegative circulant matrix
or it is nonnegative left circulant matrix. In [43] it was shown that if 1 > λ2 ≥ ⋯ ≥ λn ≥ 0,
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then Theorem ▭ holds for positive stochastic, positive doubly stochastic and positive sym‐
metric matrices.

Question 2: How adding one or more zeros to a list can lead to its symmetric realizability by differ‐
ent symmetric patterned matrices?

The famous Boyle-Handelman Theorem [44] gives a nonconstructive proof of the fact that if
sk = λ1

k + λ2
k + ⋯ + λn

k > 0,  for k = 1, 2, ...,  then there exists a nonnegative number N  for
which the list {λ1, ..., λn, 0, ..., 0},  with N  zeros added, is realizable. In [38] Laffey and Šmi‐
goc completely solve the NIEP for lists of complex numbers Λ = {λ1, ..., λn},  closed under
conjugation, with λ2, ..., λn having real parts smaller than or equal to zero. They show the
existence of N ≥ 0 for which Λ with N  zeros added is realizable and show how to compute
the least such N . The situation for symmetrically realizable spectra is different and even less
is known.

8. Conclusion

The nonnegative inverse eigenvalue problem is an open and difficult problem. A full solution
is unlikely in the near future. A number of partial results are known in the literature about
the problem, most of them in terms of sufficient conditions. Some matrix results, like Brauer
Theorem (Theorem ▭), Rado Theorem (Theorem ▭), and its symmetric version (Theorem ▭)
have been shown to be very useful to derive good sufficient conditions. This way, however,
seems to be quite narrow and may be other techniques should be explored and applied.

Author details

Ricardo L. Soto1

1 Department of Mathematics, Universidad Católica del Norte, Casilla 1280, Antofagasta,,
Chile

References

[1] A. Berman, R. J. Plemmons (1994) Nonnegative Matrices in the Mathematical Scien‐
ces. In: Classics in Applied Mathematics 9, Society for Industrial and Applied Mathe‐
matics (SIAM), Philadelphia, PA.

[2] M. T. Chu, G. H. Golub (2005) Inverse eigenvalue problems: theory, algorithms and
applications, Oxford University Press, New York.

[3] H. Minc (1988) Nonnegative Matrices, John Wiley & Sons, New York.

Nonnegative Inverse Eigenvalue Problem
http://dx.doi.org/10.5772/48279

21



[4] R. Loewy, D. London (1978) A note on an inverse problem for nonnegative matrices.
In: Linear and Multilinear Algebra 6 83-90.

[5] M.E. Meehan (1998) Some results on matrix spectra, Ph. D. Thesis, National Universi‐
ty of Ireland, Dublin.

[6] J. Torre-Mayo, M.R. Abril-Raymundo, E. Alarcia-Estévez, C. Marijuán, M. Pisonero
(2007) The nonnegative inverse eigenvalue problem from the coefficients of the char‐
acteristic polynomial. EBL digraphs In: Linear Algebra Appl. 426 729-773.

[7] T. J. Laffey, E. Meehan (1999) A characterization of trace zero nonnegative 5x5 matri‐
ces. In: Linear Algebra Appl. 302-303 295-302.

[8] N. Radwan (1996) An inverse eigenvalue problem for symmetric and normal matri‐
ces. In: Linear Algebra Appl. 248 101-109.

[9] O. Rojo, R. L. Soto (2003) Existence and construction of nonnegative matrices with
complex spectrum. In: Linear Algebra Appl. 368 53-69

[10] A. Borobia, J. Moro, R. L. Soto (2004) Negativity compensation in the nonnegative in‐
verse eigenvalue problem. In: Linear Algebra Appl. 393 73-89.

[11] T. J. Laffey, H. Šmigoc (2006) Nonnegative realization of spectra having negative real
parts. In: Linear Algebra Appl. 416 148-159.

[12] T. J. Laffey (2005) Perturbing non-real eigenvalues of nonnegative real matrices. In:
Electronic Journal of Linear Algebra 12 73-76.

[13] R.L. Soto, M. Salas, C. Manzaneda (2010) Nonnegative realization of complex spectra.
In: Electronic Journal of Linear Algebra 20 595-609.

[14] W. Guo (1996) An inverse eigenvalue problem for nonnegative matrices. In: Linear
Algebra Appl. 249 67-78.

[15] C. R. Johnson, T. J. Laffey, R. Loewy (1996) The real and the symmetric nonnegative
inverse eigenvalue problems are different. In: Proc. AMS 124 3647-3651.

[16] H. R. Suleimanova (1949) Stochastic matrices with real characteristic values. In: Dokl.
Akad. Nauk SSSR 66 343-345.

[17] H. Perfect (1953) Methods of constructing certain stochastic matrices. In: Duke Math.
J. 20 395-404.

[18] H. Perfect (1955) Methods of constructing certain stochastic matrices II. In: Duke
Math. J. 22 305-311.

[19] R. Kellogg (1971) Matrices similar to a positive or essentially positive matrix. In: Lin‐
ear Algebra Appl. 4 191-204.

[20] F. Salzmann (1972) A note on eigenvalues of nonnegative matrices. In: Linear Alge‐
bra Appl. 5.329-338.

Linear Algebra22



[21] A. Borobia (1995) On the Nonnegative Eigenvalue Problem. In: Linear Algebra Appl.
223-224 131-140.

[22] R. L. Soto (2003) Existence and construction of nonnegative matrices with prescribed
spectrum. In: Linear Algebra Appl. 369 169-184.

[23] H. Šmigoc (2005) Construction of nonnegative matrices and the inverse eigenvalue
problem. In: Linear and Multilinear Algebra 53 88-96.

[24] R. L. Soto, O. Rojo (2006) Applications of a Brauer Theorem in the nonnegative in‐
verse eigenvalue problem. In: Linear Algebra Appl. 416 (2-3) (2006) 844-856.

[25] A. Borobia, J. Moro, R. L. Soto (2008) A unified view on compensation criteria the re‐
al nonnegative inverse eigenvalue problem. In: Linear Algebra Appl. 428 2574-2584.

[26] R.L. Soto (2011) A family of realizability criteria for the real and symmetric nonnega‐
tive inverse eigenvalue problem. In: Numerical Linear Algebra with Appl. (2011).
DOI: 10.1002/nla.835.

[27] P. Egleston, T. Lenker, S. Narayan (2004) The nonnegative inverse eigenvalue prob‐
lem. In: Linear Algebra Appl. 379 475-490.

[28] C. Marijuán, M. Pisonero, R. L. Soto (2007) A map of sufficient conditions for the real
nonnegative inverse eigenvalue problem. In: Linear Algebra Appl. 426 (2007)
690-705.

[29] M. Fiedler (1974) Eigenvalues of nonnegative symmetric matrices. In: Linear Algebra
Appl. 9 119-142.

[30] G. Soules (1983) Constructing symmetric nonnegative matrices. In: Linear and Multi‐
linear Algebra 13 241-251.

[31] R. Reams (2002) Constructions of trace zero symmetric stochastic matrices for the in‐
verse eigenvalue problem. In: Electronic Journal of Linear Algebra 9 270-275.

[32] R. Loewy, J. J. McDonald (2004) The symmetric nonnegative inverse eigenvalue
problem for 5×5 matrices. In: Linear Algebra Appl. 393 275-298.

[33] R. L. Soto (2006) Realizability criterion for the symmetric nonnegative inverse eigen‐
value problem. In: Linear Algebra Appl. 416 (2-3) 783-794.

[34] R. L. Soto, O. Rojo, J. Moro, A. Borobia (2007) Symmetric nonnegative realization of
spectra. In: Electronic Journal of Linear Algebra 16 1-18.

[35] T. J. Laffey, H. Šmigoc (2007) Construction of nonnegative symmetric matrices with
given spectrum. In: Linear Algebra Appl. 421 97-109.

[36] R.L. Soto, O. Rojo, C.B. Manzaneda (2011) On nonnegative realization of partitioned
spectra. In: Electronic Journal of Linear Algebra 22 557-572.

[37] O. Spector (2011) A characterization of trace zero symmetric nonnegative 5×5 matri‐
ces. In: Linear Algebra Appl. 434 1000-1017.

Nonnegative Inverse Eigenvalue Problem
http://dx.doi.org/10.5772/48279

23



[38] T. J. Laffey, E. Meehan (1998) A refinament of an inequality of Johnson, Loewy and

London on nonnegative matrices and some applications. In: Electronic Journal of

Linear Algebra 3 119-128.

[39] O. Holtz (2004) M-matrices satisfy Newton's inequalities. In: Proceedings of the AMS

133 (3) (2004) 711-717.

[40] C. R. Johnson (1981) Row stochastic matrices similar to doubly stochastic matrices.

In: Linear and Multilinear Algebra 10 113-130.

[41] A. Brauer (1952) Limits for the characteristic roots of a matrix. IV: Aplications to sto‐

chastic matrices. In: Duke Math. J., 19 75-91.

[42] R. Reams (1996) An inequality for nonnegative matrices and the inverse eigenvalue

problem. In: Linear and Multilinear Algebra 41 367-375.

[43] R. A. Horn, C. R. Johnson (1991) Matrix Analysis, Cambridge University Press, Cam‐

bridge.

[44] R.L. Soto, A.I. Julio (2011) A note on the symmetric nonnegative inverse eigenvalue

problem. In: International Mathematical Forum 6 N � 50, 2447-2460.

[45] W. Guo (1997) Eigenvalues of nonnegative matrices. In: Linear Algebra Appl. 266

261-270.

[46] S. Guo, W. Guo (2007) Perturbing non-real eigenvalues of nonnegative real matrices.

In: Linear Algebra Appl. 426 199-203.

[47] O. Rojo, R. L. Soto (2009) Guo perturbations for symmetric nonnegative circulant ma‐

trices. In: Linear Algebra Appl. 431 594-607.

[48] J. Ccapa, R.L. Soto (2009) On spectra perturbation and elementary divisors of positive

matrices. In: Electron. J. of Linear Algebra 18 462-481.

[49] M. Boyle and D. Handelman, The spectra of nonnegative matrices via symbolic dy‐

namics, Ann.of Math. 133: 249-316 (1991).

Linear Algebra24


