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1. Introduction

In 1880 P. E. Appell ([1]) introduced and widely studied sequences of n-degree polynomials

An(x), n = 0, 1, ... (id1)

satisfying the differential relation

DAn(x) = nAn-1(x), n = 1, 2, ... (id2)

Sequences of polynomials, verifying the (▭), nowadays called Appell polynomials, have
been well studied because of their remarkable applications not only in different branches of
mathematics ([2], [3]) but also in theoretical physics and chemistry ([4], [5]). In 1936 an initial
bibliography was provided by Davis (p. 25[6]). In 1939 Sheffer ([7]) introduced a new class
of polynomials which extends the class of Appell polynomials; he called these polynomials
of type zero, but nowadays they are called Sheffer polynomials. Sheffer also noticed the sim‐
ilarities between Appell polynomials and the umbral calculus, introduced in the second half
of the 19th century with the work of such mathematicians as Sylvester, Cayley and Blissard
(for examples, see [8]). The Sheffer theory is mainly based on formal power series. In 1941
Steffensen ([9]) published a theory on Sheffer polynomials based on formal power series too.
However, these theories were not suitable as they did not provide sufficient computational
tools. Afterwards Mullin, Roman and Rota ([10], [11], [12]), using operators method, gave a
beautiful theory of umbral calculus, including Sheffer polynomials. Recently, Di Bucchianico
and Loeb ([13]) summarized and documented more than five hundred old and new findings
related to Appell polynomial sequences. In last years attention has centered on finding a
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novel representation of Appell polynomials. For instance, Lehemer ([14]) illustrated six dif‐
ferent approaches to representing the sequence of Bernoulli polynomials, which is a special
case of Appell polynomial sequences. Costabile ([15], [16]) also gave a new form of Bernoulli
polynomials, called determinantal form, and later these ideas have been extended to Appell
polynomial sequences. In fact, in 2010, Costabile and Longo ([17]) proposed an algebraic and
elementary approach to Appell polynomial sequences. At the same time, Yang and Youn
([18]) also gave an algebraic approach, but with different methods. The approach to Appell
polynomial sequences via linear algebra is an easily comprehensible mathematical tool, spe‐
cially for non-specialists; that is very good because many polynomials arise in physics,
chemistry and engineering. The present work concerns with these topics and it is organized
as follows: in Section ▭ we mention the Appell method ([1]); in Section ▭ we provide the
determinantal approach ([17]) and prove the equivalence with other definitions; in Section ▭
classical and non-classical examples are given; in Section ▭, by using elementary tools of lin‐
ear algebra, general properties of Appell polynomials are provided; in Section ▭ we men‐
tion Appell polynomials of second kind ([19], [20]) and, in Section ▭ two classical examples
are given; in Section ▭ we provide an application to general linear interpolation prob‐
lem([21]), giving, in Section ▭, some examples; in Section ▭ the Yang and Youn approach
([18]) is sketched; finally, in Section ▭ conclusions close the work.

2. The Appell approach

Let {An(x)}n be a sequence of n-degree polynomials satisfying the differential relation (▭).
Then we have

Remark 1 There is a one-to-one correspondence of the set of such sequences {An(x)}n and the
set of numerical sequences {αn}n, α0 ≠ 0 given by the explicit representation

An(x) = αn + ( n1 )αn-1x + ( n2 )αn-2x
2 + ⋯ + α0x

n, n = 0, 1, ... (id4)

Equation (▭), in particular, shows explicitly that for each n ≥ 1 the polynomial An(x) is com‐
pletely determined by An-1(x) and by the choice of the constant of integration αn.

Remark 2 Given the formal power series

a(h ) = α0 +
h
1! α1 +

h 2

2! α2 + ⋯ +
h n
n ! αn + ⋯ , α0 ≠ 0, (id6)

with αi i = 0, 1, ... real coefficients, the sequence of polynomials, An(x), determined by the

power series expansion of the product a(h )e hx, i.e.

Linear Algebra2



a(h )e hx = A0(x) +
h
1! A1(x) +

h 2

2! A2(x) + ⋯ +
h n
n ! An(x) + ⋯ , (id7)

satisfies (▭).

The function a(h ) is said, by Appell, 'generating function' of the sequence {An(x)}n.

Appell also noticed various examples of sequences of polynomials verifying (▭).

He also considered ([1]) an application of these polynomial sequences to linear differential
equations, which is out of this context.

3. The determinantal approach

Let be βi ∈ ℝ, i = 0, 1, ...,  with β0 ≠ 0.

We give the following

Definition 1 The polynomial sequence defined by

{A0(x) =
1
β0

,

An(x) =
( - 1)n

(β0)n+1 | 1 x x 2 ⋯ ⋯ x n-1 x n

β0 β1 β2 ⋯ ⋯ βn-1 βn

0 β0 ( 2
1 )β1 ⋯ ⋯ ( n - 1

1 )βn-2 ( n1 )βn-1

0 0 β0 ⋯ ⋯ ( n - 1
2 )βn-3 ( n2 )βn-2

⋮ ⋱ ⋮ ⋮
⋮ ⋱ ⋮ ⋮

0 ⋯ ⋯ ⋯ 0 β0 ( n
n - 1 )β1

|, n = 1, 2, ...
(id9)

is called Appell polynomial sequence for βi.

Then we have

Theorem 1 If An(x) is the Appell polynomial sequence for βi the differential relation (▭)
holds.

Using the properties of linearity we can differentiate the determinant (▭), expand the result‐
ing determinant with respect to the first column and recognize the factor An-1(x) after multi‐

plication of the i-th row by i - 1, i = 2, ..., n and j-th column by 1
j , j = 1, ..., n.       
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Theorem 2 If An(x) is the Appell polynomial sequence for βi we have the equality (▭) with

α0 =
1
β0

,

αi =
( - 1)i

(β0)i+1 | β1 β2 ⋯ ⋯ βi-1 βi

β0 ( 2
1 )β1 ⋯ ⋯ ( i - 1

1 )βi-2 ( i1 )βi-1
0 β0 ⋯ ⋯ ( i - 1

2 )βi-3 ( i2 )βi-2
⋮ ⋱ ⋮ ⋮
⋮ ⋱ ⋮ ⋮

0 ⋯ ⋯ 0 β0 ( i
i - 1 )β1

| =

= -
1
β0
∑
k=0

i-1 ( ik )βi-kαk , i = 1, 2, ..., n.

(id12)

From (▭), by expanding the determinant An(x) with respect to the first row, we obtain the
(▭) with αi given by (▭) and the determinantal form in (▭); this is a determinant of an upper

Hessenberg matrix of order i ([16]), then setting ᾱ i = ( - 1)i(β0)i+1αi for i = 1, 2, ..., n,  we have

ᾱ i = ∑
k=0

i-1
( - 1)i-k -1h k+1,iqk (i)ᾱk , (id13)

where:

h l ,m = {βm for l = 1,

( ml - 1 )βm-l+1 for 1 < l ≤ m + 1,

0 for l > m + 1,

l , m = 1, 2, ..., i, (id14)

qk (i) = ∏
j=k+2

i
h j , j-1 = (β0)i-k -1, k = 0, 1, ..., i - 2,

qi-1(i) = 1.
(id15)

By virtue of the previous setting, (▭) implies

ᾱ i = ∑
k=0

i-2
( - 1)i-k -1( ik )βi-k (β0)i-k -1ᾱk + ( i

i - 1 )β1ᾱ i-1 =

= ( - 1)i(β0)i+1( -
1
β0
∑
k=0

i-1 ( ik )βi-kαk ),
()

Linear Algebra4



and the proof is concluded.

Remark 3 We note that (▭) and (▭) are equivalent to

∑
k=0

i ( ik )βi-kαk = {1 i = 0
0 i > 0

(id17)

and that for each sequence of Appell polynomials there exist two sequences of numbers αi
and βi related by (▭).

Corollary 1 If An(x) is the Appell polynomial sequence for βi we have

An(x) = ∑
j=0

n ( nj )An- j(0)x j, n = 0, 1, ... (id19)

Follows from Theorem ▭ being

Ai(0) = αi, i = 0, 1, ..., n. (id20)

Remark 4 For computation we can observe that αn is a n-order determinant of a particular

upper Hessenberg form and it's known that the algorithm of Gaussian elimination without
pivoting for computing the determinant of an upper Hessenberg matrix is stable (p. 27[22]).

Theorem 3 If a(h ) is the function defined in (▭) and An(x) is the polynomial sequence de‐

fined by (▭), setting

{β0 =
1
α0

,

βn = -
1
α0

(∑
k=1

n ( nk )αkβn-k ), n = 1, 2, ...,
(id23)

we have that An(x) satisfies the (▭), i.e. An(x) is the Appell polynomial sequence for βi.

Let be

b(h ) = β0 +
h
1! β1 +

h 2

2! β2 + ⋯ +
h n
n ! βn + ⋯ (id24)

with βn as in (▭). Then we have a(h )b(h ) = 1, where the product is intended in the Cauchy

sense, i.e.:
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a(h )b(h ) = ∑
n=0

∞
∑
k=0

n ( nk )αkβn-k
h n
n ! . ()

Let us multiply both hand sides of equation

a(h )e hx = ∑
n=0

∞
An(x) h

n

n ! (id25)

for 
1
a(h )  and, in the same equation, replace functions e hx and 

1
a(h )  by their Taylor series ex‐

pansion at the origin; then (▭) becomes

∑
n=0

∞ x nh n
n ! = ∑

n=0

∞
An(x) h

n

n ! ∑n=0

∞ h n
n ! βn. (id26)

By multiplying the series on the left hand side of (▭) according to the Cauchy-product rules,

previous equality leads to the following system of infinite equations in the unknown

An(x), n = 0, 1, ...

{A0(x)β0 = 1,
A0(x)β1 + A1(x)β0 = x,

A0(x)β2 + ( 2
1 )A1(x)β1 + A2(x)β0 = x 2,

⋮

A0(x)βn + ( n1 )A1(x)βn-1 + ... + An(x)β0 = x n,

⋮

(id27)

From the first one of (▭) we obtain the first one of (▭). Moreover, the special form of the

previous system (lower triangular) allows us to work out the unknown An(x) operating with

the first n + 1 equations, only by applying the Cramer rule:

Linear Algebra6



An(x) = 1
(β0)n+1 | β0 0 0 ⋯ 0 1

β1 β0 0 ⋯ 0 x

β2 ( 2
1 )β1

β0 ⋯ 0 x 2

⋮ ⋱ ⋮

βn-1 ( n - 1
1 )βn-2 ⋯ ⋯ β0 x n-1

βn ( n1 )βn-1 ⋯ ⋯ ( n
n - 1 )β1 x n

|. ()

By transposition of the previous, we have

An(x) =
1

(β0)n+1 | β0 β1 β2 ⋯ βn-1 βn

0 β0 ( 2
1 )β1 ⋯ ( n - 1

1 )βn-2 ( n1 )βn-1

0 0 β0 ⋮
⋮ ⋱ ⋮

0 0 0 ⋯ β0 ( n
n - 1 )β1

1 x x 2 ⋯ x n-1 x n

|, n = 1, 2, ..., (id28)

that is exactly the second one of (▭) after n circular row exchanges: more precisely, the i-th

row moves to the (i + 1)-th position for i = 1, ..., n - 1, the n-th row goes to the first position.

Definition 2 The function a(h )e hx, as in (▭) and (▭), is said 'generating function' of the Ap‐

pell polynomial sequence An(x) for βi.

Theorems ▭, ▭, ▭ concur to assert the validity of following

Theorem 4 (Circular) If An(x) is the Appell polynomial sequence for βi we have

() ⇒ () ⇒ () ⇒ () ⇒ (). ()

(▭)⇒ (▭):(▭)⇒ (▭):(▭ )⇒ (▭):(▭)⇒ (▭):

•

• Follows from Theorem ▭.

• Follows from Theorem ▭, or more simply by direct integration of the differential equation

(▭).
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• Follows ordering the Cauchy product of the developments a(h ) and e hx with respect to
the powers of h  and recognizing polynomials An(x), expressed in form (▭), as coefficients

of h
n

n ! .

• Follows from Theorem ▭.

Remark 5 In virtue of the Theorem ▭, any of the relations (▭), (▭), (▭), (▭) can be assumed
as definition of Appell polynomial sequences.

4. Examples of Appell polynomial sequences

The following are classical examples of Appell polynomial sequences.

a)b)c)d)

• Bernoulli polynomials ([23], [17]):

βi =
1
i + 1 , i = 0, 1, ..., (id38)

a(h ) =
h

e h - 1
; (id39)

• Euler polynomials ([23], [17]):

β0 = 1, βi =
1
2 , i = 1, 2, ..., (id41)

a(h ) =
2

e h + 1
; (id42)

• Normalized Hermite polynomials ([24], [17]):

βi =
1
π
∫-∞+∞e -x 2

x idx = { 0 for i odd
(i - 1)(i - 3) · ⋯ · 3 · 1

2
i
2

for i even, i = 0, 1, ..., (id44)

a(h ) = e -
h 2

4 ; (id45)

• Laguerre polynomials ([24], [17]):

βi = ∫0+∞e -xx idx = Γ(i + 1) = i ! , i = 0, 1, ..., (id47)

Linear Algebra8



a(h ) = 1 - h ; (id48)

The following are non-classical examples of Appell polynomial sequences.

e)f)g)h)i)

• Generalized Bernoulli polynomials

◦ with Jacobi weight ([17]):

βi = ∫01(1 - x)αx βx idx =
Γ(α + 1)Γ(β + i + 1)
Γ(α + β + i + 2) , α, β > - 1, i = 0, 1, ..., (id51)

a(h ) =
1

∫01(1 - x)αx βe hxdx
; (id52)

◦ of order k  ([11]):

βi = ( 1
i + 1 )k , k integer, i = 0, 1, ..., (id54)

a(h ) = ( h
e h - 1 )k ; (id55)

• Central Bernoulli polynomials ([25]):

β2i = 1
i + 1 ,

β2i+1 = 0, i = 0, 1, ...,

a(h ) = h
sinh (h ) ;

(id57)

• Generalized Euler polynomials ([17]):

β0 = 1,

βi =
w1

w1 + w2
, w1, w2 > 0, i = 1, 2, ...,

a(h ) =
w1 + w2

w1e
h + w2

;

(id59)

• Generalized Hermite polynomials ([17]):

Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem
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βi =
1
π
∫-∞+∞e -|x|αx idx

= { 0 for i odd
2

α π
Γ( i + 1

α ) for i even,
i = 0, 1, ...,
α > 0,

a(h ) =
π

∫-∞∞e -|x|αe hxdx
;

(id61)

• Generalized Laguerre polynomials ([17]):

βi = ∫0+∞e -αxx idx

=
Γ(i + 1)
α i+1 =

i !
α i+1 , α > 0, i = 0, 1, ...,

a(h ) = α - h .

(id63)

5. General properties of Appell polynomials

By elementary tools of linear algebra we can prove the general properties of Appell polyno‐
mials.

Let An(x), n = 0, 1, ...,  be a polynomial sequence and βi ∈ ℝ, i = 0, 1, ...,  with β0 ≠ 0.

Theorem 5 (Recurrence) An(x) is the Appell polynomial sequence for βi if and only if

An(x) =
1
β0

(x n -∑
k=0

n-1 ( nk )βn-kAk (x)), n = 1, 2, ... (id65)

Follows observing that the following holds:

An(x) =
( - 1)n

(β0)n+1 | 1 x x 2 ⋯ ⋯ x n-1 x n

β0 β1 β2 ⋯ ⋯ βn-1 βn

0 β0 ( 2
1 )β1 ⋯ ⋯ ( n - 1

1 )βn-2 ( n1 )βn-1

0 0 β0 ⋯ ⋯ ( n - 1
2 )βn-3 ( n2 )βn-2

⋮ ⋱ ⋮ ⋮
⋮ ⋱ ⋮ ⋮

0 ⋯ ⋯ ⋯ 0 β0 ( n
n - 1 )β1

| = (id66)

Linear Algebra10



=
1
β0

(x n -∑
k=0

n-1 ( nk )βn-kAk (x)), n = 1, 2, ... (id67)

In fact, if An(x) is the Appell polynomial sequence for βi, from (▭), we can observe that An(x)
is a determinant of an upper Hessenberg matrix of order n + 1 ([16]) and, proceeding as in
Theorem ▭, we can obtain the (▭).

Corollary 2 If An(x) is the Appell polynomial sequence for βi then

x n =∑
k=0

n ( nk )βn-kAk (x), n = 0, 1, ... (id69)

Follows from (▭).

Corollary 3 Let ��n be the space of polynomials of degree ≤ n and {An(x)}n be an Appell poly‐

nomial sequence, then {An(x)}n is a basis for ��n.

If we have

Pn(x) =∑
k=0

n
an,kx

k , an,k ∈ ℝ, (id71)

then, by Corollary ▭, we get

Pn(x) =∑
k=0

n
an,k∑

j=0

k ( kj )βk - jAj(x) =∑
k=0

n
cn,kAk (x), ()

where

cn,k =∑
j=0

n-k ( k + j
k )ak+ jβj. (id72)

Remark 6 An alternative recurrence relation can be determined from (▭) after differentia‐
tion with respect to h  ([18], [26]).

Let be βi, γi ∈ ℝ, i = 0, 1, ...,  with β0, γ0 ≠ 0.

Let us consider the Appell polynomial sequences An(x) and Bn(x), n = 0, 1, ...,  for βi and γi,
respectively, and indicate with (AB)n(x) the polynomial that is obtained replacing in An(x)

the powers x 0, x 1, ..., x n, respectively, with the polynomials B0(x), B1(x), ..., Bn(x). Then we
have

Theorem 6 The sequences

Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem
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i) ii)

• λAn(x) + μBn(x), λ, μ ∈ ℝ,

• (AB)n(x)

are sequences of Appell polynomials again.

i) ii)

• Follows from the property of linearity of determinant.

• Expanding the determinant (AB)n(x) with respect to the first row we obtain

(AB)n(x) =
( - 1)n

(β0)n+1 ∑
j=0

n
( - 1) j(β0) j( nj )ᾱn- jBj(x) =

= ∑
j=0

n ( - 1)n- j

(β0)n- j+1 ( nj )ᾱn- jBj(x),
(id79)

where

ᾱ0 = 1,

ᾱ i = | β1 β2 ⋯ ⋯ βi-1 βi

β0 ( 2
1 )β1 ⋯ ⋯ ( i - 1

1 )βi-2 ( i1 )βi-1
0 β0 ⋯ ⋯ ( i-1

2 )βi-3 ( i2 )βi-2
⋮ ⋱ ⋮ ⋮
⋮ ⋱ ⋮ ⋮

0 ⋯ ⋯ 0 β0 ( i
i - 1 )β1

|, i = 1, 2, ..., n.
()

We observe that

Ai(0) =
( - 1)i

(β0)i+1 ᾱ i, i = 1, 2, ..., n ()

and hence (▭) becomes

(AB)n(x) = ∑
j=0

n ( nj )An- j(0)Bj(x). (id80)

Differentiating both hand sides of (▭) and since Bj(x) is a sequence of Appell polyno‐
mials, we deduce

Linear Algebra12



((AB)n(x))' = n(AB)n-1(x). (id81)

Let us, now, introduce the Appell vector.

Definition 3 If An(x) is the Appell polynomial sequence for βi the vector of functions
Ān(x) = A0(x), ..., An(x) T  is called Appell vector for βi.

Then we have

Theorem 7 (Matrix form) Let Ān(x) be a vector of polynomial functions. Then Ān(x) is the
Appell vector for βi if and only if, putting

(M )i , j = {( ij )βi- j i ≥ j

0 otherwise
, i, j = 0, ..., n, (id84)

and X (x) = 1, x, ..., x n T  the following relation holds

X (x) = M Ān(x) (id85)

or, equivalently,

Ān(x) = (M -1)X (x), (id86)

being M -1 the inverse matrix of M .

If Ān(x) is the Appell vector for βi the result easily follows from Corollary ▭.

Vice versa, observing that the matrix M  defined by (▭) is invertible, setting

(M -1)i , j = {( ij )αi- j i ≥ j

0 otherwise
, i, j = 0, ..., n, (id87)

we have the (▭) and therefore the (▭) and, being the coefficients αk  and βk  related by (▭), we
have that An(x) is the Appell polynomial sequence for βi.

Theorem 8 (Connection constants) Let Ān(x) and B̄n(x) be the Appell vectors for βi and γi,
respectively. Then

Ān(x) = CB̄n(x), (id89)

where

Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem
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(C)i , j = {( ij )ci- j i ≥ j

0 otherwise
, i, j = 0, ..., n. (id90)

with

cn =∑
k=0

n ( nk )αn-kγk . (id91)

From Theorem ▭ we have

X (x) = M Ān(x) ()

with M  as in (▭) or, equivalently,

Ān(x) = (M -1)X (x), ()

with M -1 as in (▭).

Always from Theorem ▭ we get

X (x) = N B̄n(x) ()

with

(N )i , j = {( ij )γi- j i ≥ j

0 otherwise
, i, j = 0, ..., n. (id92)

Then

Ān(x) = M -1N B̄n(x), ()

from which, setting C = M -1N , we have the thesis.

Theorem 9 (Inverse relations) Let An(x) be the Appell polynomial sequence for βi then the

following are inverse relations:

Linear Algebra14



{yn =∑
k=0

n ( nk )βn-k xk

xn =∑
k=0

n ( nk )An-k (0)yk .
(id94)

Let us remember that

Ak (0) = αk , ()

where the coefficients αk  and βk  are related by (▭).

Moreover, setting ȳn = y0, ..., yn T  and x̄n = x0, ..., xn T , from (▭) we have

{ ȳn = M1x̄n
x̄n = M2 ȳn

()

with

(M1)i , j = {( ij )βi- j i ≥ j

0 otherwise
, i, j = 0, ..., n, (id95)

(M2)i , j = {( ij )αi- j i ≥ j

0 otherwise
, i, j = 0, ..., n, (id96)

and, from (▭) we get

M1M2 = In+1, ()

i.e. (▭) are inverse relations.

Theorem 10 (Inverse relation between two Appell polynomial sequences) Let Ān(x) and
B̄n(x) be the Appell vectors for βi and γi, respectively. Then the following are inverse rela‐
tions:

{Ān(x) = CB̄n(x)

B̄n(x) = C̃ Ān(x) (id98)

with
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(C)i , j = {( ij )ci- j i ≥ j

0 otherwise
, (C̃)i , j = {( ij )c̃ i- j i ≥ j

0 otherwise
, i, j = 0, ..., n, (id99)

cn =∑
k=0

n ( nk )An-k (0)γk , c̃n =∑
k=0

n ( nk )Bn-k (0)βk . (id100)

Follows from Theorem ▭, after observing that

∑
k=0

n ( nk )cn-k c̃k = {1 n = 0
0 n > 0

(id101)

and therefore

CC̃ = In+1. ()

Theorem 11 (Binomial identity) If An(x) is the Appell polynomial sequence for βi we have

An(x + y) =∑
i=0

n ( ni )Ai(x)y n-i, n = 0, 1, ... (id103)

Starting by the Definition ▭ and using the identity

(x + y)i =∑
k=0

i ( ik )y k x i-k , (id104)

we infer

An(x + y) =
( - 1)n

(β0)n+1 | 1 (x + y)1 ⋯ (x + y)n-1 (x + y)n

β0 β1 ⋯ βn-1 βn
0 ⋱ ⋮
⋮ ⋱ ⋮

0 ⋯ ⋯ β0 β1( n
n - 1 )

| = ()
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= ∑
i=0

n
y i

( - 1)n-i

(β0)n-i+1 |( ii ) ( i + 1
i )x 1 ( i + 2

i )x 2 ⋯ ( n - 1
i )x n-i-1 ( ni )x n-i

β0 β1( i + 1
i ) β2( i + 2

i ) ⋯ βn-i-1( n - 1
i ) βn-i( ni )

0 β0 β1( i + 2
i + 1 ) ⋯ βn-i-2( n - 1

i + 1 ) βn-i-1( n
i + 1 )

⋮ β0 ⋮
⋮ ⋱ ⋮

0 ⋯ ⋯ 0 β0 β1( n
n - 1 )

|. ()

We divide, now, each j - th column, j = 2, ..., n - i + 1, for ( i + j - 1
i ) and multiply each h - th

row, h = 3, ..., n - i + 1, for ( i + h - 2
i ). Thus we finally obtain

An(x + y) =

= ∑
i=0

n ( i + 1
i ) ⋯ ( ni )

( i + 1
i ) ⋯ ( n - 1

i ) y
i ( - 1)n-i

(β0)n-i+1

| 1 x 1 x 2 ⋯ x n-i-1 x n-i

β0 β1 β2 ⋯ βn-i-1 βn-i

0 β0 β1( 2
1 ) ⋯ βn-i-2( n - i - 1

1 ) βn-i-1( n - i
1 )

⋮ β0 ⋮
⋮ ⋱ ⋮

0 ... ... 0 β0 β1( n - i
n - i - 1 )

| =

= ∑
i=0

n ( ni )An-i(x)y i = ∑
i=0

n ( ni )Ai(x)y n-i.

()

      

Theorem 12 (Generalized Appell identity) Let An(x) and Bn(x) be the Appell polynomial
sequences for βi and γi,  respectively. Then, if Cn(x) is the Appell polynomial sequence for δi
with

{δ0 =
1

C0(0) ,

δi = -
1

C0(0) ∑
k=1

i ( ik )δi-kCk (0), i = 1, ...,
(id106)
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and

Ci(0) = ∑
j=0

i ( ij )Bi- j(0)Aj(0), (id107)

where Ai(0) and Bi(0) are related to βi and γi, respectively, by relations similar to (▭), we

have

Cn(y + z) = ∑
k=0

n ( nk )Ak (y)Bn-k (z). (id108)

Starting from (▭) we have

Cn(y + z) = ∑
k=0

n ( nk )Cn-k (0)(y + z)k . (id109)

Then, applying (▭) and the well-known classical binomial identity, after some calculation,
we obtain the thesis.

Theorem 13 (Combinatorial identities) Let An(x) and Bn(x) be the Appell polynomial se‐

quences for βi and γi,  respectively. Then the following relations holds:

∑
k=0

n ( nk )Ak (x)Bn-k ( - x) =∑
k=0

n ( nk )Ak (0)Bn-k (0), (id111)

∑
k=0

n ( nk )Ak (x)Bn-k (z) =∑
k=0

n ( nk )Ak (x + z)Bn-k (0). (id112)

If Cn(x) is the Appell polynomial sequence for δi defined as in (▭), from the generalized Ap‐

pell identity, we have

∑
k=0

n ( nk )Ak (x)Bn-k ( - x) = Cn(0) =∑
k=0

n ( nk )Ak (0)Bn-k (0) ()

and

∑
k=0

n ( nk )Ak (x)Bn-k (z) = Cn(x + z) =∑
k=0

n ( nk )Ak (x + z)Bn-k (0). ()

Theorem 14 (Forward difference) If An(x) is the Appell polynomial sequence for βi we have
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ΔAn(x) ≡ An(x + 1) - An(x) =∑
i=0

n-1 ( ni )Ai(x), n = 0, 1, ... (id114)

The desired result follows from (▭) with y = 1.

Theorem 15 (Multiplication Theorem) Let Ān(x) be the Appell vector for βi.

The following identities hold:

Ān(mx) = B(x)Ān(x) n = 0, 1, ..., m = 1, 2, ..., (id116)

Ān(mx) = M -1DX (x) n = 0, 1, ..., m = 1, 2, ..., (id117)

where

(B(x))i , j = {( ij )(m - 1)i- jx i- j i ≥ j

0 otherwise
, i, j = 0, ..., n, (id118)

D = diag 1, m, ..., m n  and M -1 defined as in (▭).

The (▭) follows from (▭) setting y = x(m - 1). In fact we get

An(mx) =∑
i=0

n ( ni )Ai(x)(m - 1)n-ix n-i. (id119)

The (▭) follows from Theorem ▭. In fact we get

Ān(mx) = M -1X (mx) = M -1DX (x), (id120)

and

An(mx) =∑
i=0

n ( ni )αn-im
ix i. (id121)

Theorem 16 (Differential equation) If An(x) is the Appell polynomial sequence for βi then
An(x) satisfies the linear differential equation:

βn
n ! y

(n)(x) +
βn-1

(n - 1) ! y
(n-1)(x) + ... +

β2
2! y

(2)(x) + β1y
(1)(x) + β0y(x) = x n (id123)

From Theorem ▭ we have
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An+1(x) =
1
β0

(x n+1 - ∑
k=0

n ( n + 1
k + 1 )βk+1An-k (x)). (id124)

From Theorem ▭ we find that

An+1
' (x) = (n + 1)An(x), and An-k (x) =

An
(k )(x)

n(n - 1)...(n - k + 1) , (id125)

and replacing An-k (x) in the (▭) we obtain

An+1(x) =
1
β0

(x n+1 - (n + 1)∑
k=0

n
βk+1

An
(k )(x)

(k + 1) !
). (id126)

Differentiating both hand sides of the last one and replacing An+1
' (x) with (n + 1)An(x), after

some calculation we obtain the thesis.

Remark 7 An alternative differential equation for Appell polynomial sequences can be de‐
termined by the recurrence relation referred to in Remark ▭ ([18], [26]).

6. Appell polynomial sequences of second kind

Let f : I ⊂ ℝ → ℝ and Δ be the finite difference operator ([23]), i.e.:

Δ f (x) = f (x + 1) - f (x), (id128)

we define the finite difference operator of order i, with i ∈ ℕ, as

Δ i f (x) = Δ(Δ i-1 f (x)) = ∑
j=0

i
( - 1)i- j( ij ) f (x + j), (id129)

meaning Δ 0 = I  and Δ 1 = Δ, where I  is the identity operator.

Let the sequence of falling factorial defined by

{(x)0 = 1,
(x)n = x(x - 1)(x - 2) ⋯ (x - n + 1), n = 1, 2, ...,

(id130)

we give the following

Definition 4 Let i ∈ ℝ, i = 0, 1, ...,  with 0 ≠ 0. The polynomial sequence
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{��0(x) =
1
0 ,

��n(x) =
( - 1)n

(0)n+1 | 1 (x)1 (x)2 ⋯ ⋯ (x)n-1 (x)n
0 1 2 ⋯ ⋯ n - 1 n

0 0 ( 2
1 )1 ⋯ ⋯ ( n - 1

1 )n - 2 ( n1 )n - 1

0 0 0 ⋯ ⋯ ( n - 1
2 )n - 3 ( n2 )n - 2

⋮ ⋱ ⋮ ⋮
⋮ ⋱ ⋮ ⋮

0 ⋯ ⋯ ⋯ 0 0 ( n
n - 1 )1

|, n = 1, 2, ...
(id132)

is called Appell polynomial sequence of second kind.

Then, we have

Theorem 17 For Appell polynomial sequences of second kind we get

Δ��n(x) = n��n-1(x) n = 1, 2, ... (id134)

By the well-known relation ([23])

Δ(x)n = n(x)n-1, n = 1, 2, ..., (id135)

applying the operator Δ to the definition (▭) and using the properties of linearity of Δ we

have

Δ��n(x) =
( - 1)n

(0)n+1 |Δ1 Δ(x)1 Δ(x)2 ⋯ ⋯ Δ(x)n-1 Δ(x)n
0 1 2 ⋯ ⋯ n-1 n

0 0 ( 2
1 )

1
⋯ ⋯ ( n - 1

1 )
n-2

( n1 )
n-1

0 0 0 ⋯ ⋯ ( n - 1
2 )

n-3
( n2 )

n-2

⋮ ⋱ ⋮ ⋮
⋮ ⋱ ⋮ ⋮

0 ⋯ ⋯ ⋯ 0 0 ( n
n - 1 )

1

|, n = 1, 2, ... (id136)
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We can expand the determinant in (▭) with respect to the first column and, after multiply‐

ing the i-th row by i - 1, i = 2, ..., n and the j-th column by 1
j , j = 1, ..., n,  we can recog‐

nize the factor ��n-1(x).

We can observe that the structure of the determinant in (▭) is similar to that one of the de‐

terminant in (▭). In virtue of this it is possible to obtain a dual theory of Appell polynomials

of first kind, in the sense that similar properties can be proven ([20]).

For example, the generating function is

H (x, h ) = a(h )(1 + h )x, (id137)

where a(h ) is an invertible formal series of power.

7. Examples of Appell polynomial sequences of second kind

The following are classical examples of Appell polynomial sequences of second kind.

a)b)

• Bernoulli polynomials of second kind ([23], [20]):

i
=

( - 1)i
i + 1 i ! , i = 0, 1, ..., (id139)

H (x, h ) =
h (1 + h )x
ln(1 + h ) ; (id140)

• Boole polynomials ([23], [20]):

i
= {1, i = 0

1
2 , i = 1

0, i = 2, ...

(id142)

H (x, h ) =
2(1 + h )x

2 + h . (id143)
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8. An application to general linear interpolation problem

Let X  be the linear space of real functions defined in the interval 0, 1  continuous and with
continuous derivatives of all necessary orders. Let L  be a linear functional on X  such that
L (1) ≠ 0. If in (▭) and respectively in (▭) we set

βi = L (x i),
i

= L ((x)i), i = 0, 1, ..., (id144)

An(x) and ��n(x) will be said Appell polynomial sequences of first or of second kind related to
the functional L  and denoted by AL ,n(x) and ��L ,n(x), respectively.

Remark 8 The generating function of the sequence AL ,n(x) is

G(x, h ) =
e xh

L x(e xh ) , (id146)

and for ��L ,n(x) is

H (x, h ) =
(1 + h )x

L x((1 + h )x) , (id147)

where L x means that the functional L  is applied to the argument as a function of x.

For AL ,n(x) if G(x, h ) = a(h )e xh  with 
1
a(h ) = ∑

i=0

∞
βi
h i

i !  we have

G(x, t) =
e xh

1
a(h )

=
e xh

∑
i=0

∞
βi
h i
i !

=
e xh

∑
i=0

∞
L (x i) h

i

i !

=
e xh

L (∑
i=0

∞
x i
h i
i ! ) =

e xh

L x(e xh ) . ()

For ��L ,n(x), the proof similarly follows. Then, we have

Theorem 18 Let ωi ∈ ℝ,  i = 0, ..., n,  the polynomials

Pn(x) = ∑
i=0

n ωi
i ! AL ,i(x), (id149)

Pn
*(x) = ∑

i=0

n ωi
i ! ��L ,i(x) (id150)

are the unique polynomials of degree less than or equal to n,  such that
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L (Pn(i)) = i ! ωi, i = 0, ..., n, (id151)

L (Δ iPn
*) = i ! ωi, i = 0, ..., n. (id152)

The proof follows observing that, by the hypothesis on functional L  there exists a unique
polynomial of degree ≤ n verifying (▭) and , respectively, (▭); moreover from the proper‐
ties of AL ,i(x) and ��L ,i(x), we have

L (AL ,i
( j) (x)) = i(i - 1)...(i - j + 1)L (AL ,i- j(x)) = j ! ( ij )δij, (id153)

L (Δ i��L ,i(x)) = i(i - 1)...(i - j + 1)L (��L ,i- j(x)) = j ! ( ij )δij, (id154)

where δij is the Kronecker symbol.

From (▭) and (▭) it is easy to prove that the polynomials (▭) and (▭) verify (▭) and (▭),
respectively.

Remark 9 For every linear functional L  on X , {AL ,i(x)},  {��L ,i(x)},  i = 0, ..., n,  are basis for ��n
and, ∀ Pn(x) ∈ ��n, we have

Pn(x) = ∑
i=0

n L (Pn(i))
i ! AL ,i(x), (id156)

Pn(x) = ∑
i=0

n L (Δ iPn)
i ! ��L ,i(x). (id157)

Let us consider a function f ∈ X . Then we have the following

Theorem 19 The polynomials

PL ,n f (x) = ∑
i=0

n L ( f (i))
i ! AL ,i(x), (id159)

PL ,n
* f (x) = ∑

i=0

n L (Δ i f )
i ! ��L ,i(x) (id160)

are the unique polynomial of degree ≤ n such that

L (PL ,n f
(i)) = L ( f (i)), i = 0, ..., n, ()
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L (Δ iPL ,n
* f ) = L (Δ i f ), i = 0, ..., n. ()

Setting ωi = L ( f (i ))
i ! , and respectively, ωi = L (Δ i f )

i ! , i = 0, ..., n,  the result follows from

Theorem ▭.

Definition 5 The polynomials (▭) and (▭) are called Appell interpolation polynomial for f
of first and of second kind, respectively.

Now it is interesting to consider the estimation of the remainders

RL ,n f (x) = f (x) - PL ,n f (x), ∀ x ∈ 0, 1 , (id162)

RL ,n
* f (x) = f (x) - PL ,n

* f (x), ∀ x ∈ 0, 1 . (id163)

Remark 10 For any f ∈ ��n

RL ,n f (x) = 0, RL ,n x
n+1 ≠ 0, ∀ x ∈ 0, 1 , (id165)

RL ,n
* f (x) = 0, RL ,n

* (x)n+1 ≠ 0, ∀ x ∈ 0, 1 , (id166)

i. e. the polynomial operators (▭) and (▭) are exact on ��n.

For a fixed x we may consider the remainder RL ,n f (x) and RL ,n
* f (x) as linear function‐

als which act on f  and annihilate all elements of ��n. From Peano's Theorem (p. 69[27]) if a
linear functional has this property, then it must also have a simple representation in terms of

f (n+1). Therefore we have

Theorem 20 Let f ∈ C n+1 a, b ,  the following relations hold

RL ,n( f , x) =
1
n ! ∫0

1Kn(x, t) f (n+1)(t)dt , ∀ x ∈ 0, 1 , (id168)

RL ,n
* ( f , x) =

1
n ! ∫0

1Kn
*(x, t) f (n+1)(t)dt , ∀ x ∈ 0, 1 , (id169)

where

Kn(x, t) = RL ,n (x - t)+
n = (x - t)+

n - ∑
i=0

n ( ni )L ((x - t)+
n-i) AL ,i(x), (id170)

Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem
http://dx.doi.org/10.5772/46482

25



Kn
*(x, t) = RL ,n

* (x - t)+
n = (x - t)+

n - ∑
i=0

n L (Δ i(x - t)+
n)

i ! ��L ,i(x). (id171)

After some calculation, the results follow by Remark ▭ and Peano's Theorem.

Remark 11 (Bounds) If f (n+1) ∈ ℒ p 0, 1  and Kn(x, t), Kn
*(x, t) ∈ ℒq 0, 1  with 1

p + 1
q = 1

then we apply the Hölder's inequality so that

|RL ,n f (x)| ≤ 1
n ! (∫01|Kn(x, t)|qdt)

1
q (∫01| f (n+1)(t)| pdt)

1
p , ()

|RL ,n
* f (x)| ≤ 1

n ! (∫01|Kn*(x, t)|qdt)
1
q (∫01| f (n+1)(t)| pdt)

1
p . ()

The two most important cases are p = q = 2 and q = 1,  p = ∞ :

i)ii)

• for p = q = 2 we have the estimates

|RL ,n f (x)| ≤ σn||| f |||, |RL ,n
* f (x)| ≤ σn*||| f |||, (id174)

where

(σn)2 = ( 1
n ! )2

∫01(Kn(x, t))2dt , (σn*)2 = ( 1
n ! )2

∫01(Kn*(x, t))2dt , (id175)

and

||| f |||2 = ∫01( f (n+1)(t))2dt ; (id176)

• for q = 1,  p = ∞ we have that

|RL ,n f (x)| ≤ 1
n !Mn+1∫01|Kn(x, t)|dt , |RL ,n

* f (x)| ≤ 1
n !Mn+1∫01|Kn*(x, t)|dt , (id178)

where

Mn+1 = supa≤x≤b | f (n+1)(x)|. (id179)

A further polynomial operator can be determined as follows:

for any fixed z ∈ 0, 1  we consider the polynomial

Linear Algebra26



P̄ L ,n f (x) ≡ f (z) + PL ,n f (x) - PL ,n f (z) = f (z) + ∑
i=1

n L ( f (i))
i ! (AL ,i(x) - AL ,i(z)), (id180)

and, respectively,

P̄ L ,n
* f (x) ≡ f (z) + PL ,n

* f (x) - PL ,n
* f (z) = f (z) + ∑

i=1

n L (Δ i f )
i ! (��L ,i(x) - ��L ,i(z)). (id181)

Then we have the following

Theorem 21 The polynomials P̄ L ,n f (x), P̄ L ,n
* f (x) are approximating polynomials of de‐

gree n for f (x), i.e.:

∀ x ∈ 0, 1 , f (x) = P̄ L ,n f (x) + R̄ L ,n f (x), (id183)

f (x) = P̄ L ,n
* f (x) + R̄ L ,n

* f (x), (id184)

where

R̄ L ,n f (x) = RL ,n f (x) - RL ,n f (z), (id185)

R̄ L ,n
* f (x) = RL ,n

* f (x) - RL ,n
* f (z), (id186)

with

R̄ L ,n x
i = 0, i = 0, .., n, R̄ L ,n x

n+1 ≠ 0, (id187)

R̄ L ,n
* (x)i = 0, i = 0, .., n, R̄ L ,n

* (x)n+1 ≠ 0. (id188)

∀ x ∈ 0, 1  and for any fixed z ∈ 0, 1 , from (▭), we have

f (x) - f (z) = PL ,n f (x) - PL ,n f (z) + RL ,n f (x) - RL ,n f (z), ()

from which we get (▭) and (▭). The exactness of the polynomial P̄ L ,n f (x) follows from

the exactness of the polynomial PL ,n f (x).

Proceeding in the same manner we can prove the result for the polynomial P̄ L ,n
* f (x).

Remark 12 The polynomials P̄ L ,n f (x), P̄ L ,n
* f (x) satisfy the interpolation conditions
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P̄ L ,n f (z) = f (z), L (P̄ L ,n
(i) f ) = L ( f (i)), i = 1, ..., n, (id190)

P̄ L ,n
* f (z) = f (z), L (Δ iP̄ L ,n

* f ) = L (Δ i f ), i = 1, ..., n. (id191)

9. Examples of Appell interpolation polynomials

a)b)c)

• Taylor interpolation and classical interpolation on equidistant points:

Assuming

L ( f ) = f (x0), x0 ∈ 0, 1 , (id193)

the polynomials PL ,n f (x) and PL ,n
* f (x) are, respectively, the Taylor interpolation pol‐

ynomial and the classical interpolation polynomial on equidistant points;

• Bernoulli interpolation of first and of second kind:

◦ Bernoulli interpolation of first kind ([21], [15]):

Assuming

L ( f ) = ∫01 f (x)dx, (id196)

the interpolation polynomials PL ,n f (x) and P̄ L ,n f (x) become

PL ,n f (x) = ∫01 f (x)dx + ∑
i=1

n f (i-1)(1) - f (i-1)(0)
i ! Bi(x), (id197)

P̄ L ,n f (x) = f (0) + ∑
i=1

n f (i-1)(1) - f (i-1)(0)
i ! (Bi(x) - Bi(0)), (id198)

where Bi(x) are the classical Bernoulli polynomials ([17], [23]);

◦ Bernoulli interpolation of second kind ([20]):

Assuming

L ( f ) = DΔ -1 f x=0, (id200)
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where Δ -1 denote the indefinite summation operator and is defined as the linear opera‐

tor inverse of the finite difference operator Δ, the interpolation polynomials PL ,n
* f (x)

and P̄ L ,n
* f (x) become

PL ,n
* f (x) = Δ -1Df x=0 + ∑

i=0

n-1
f '(i)ℬn,i

II (x), (id201)

P̄ L ,n
* f (x) = f (0) + ∑

i=0

n-1
f '(i)(ℬn,i

II (x) - ℬn,i
II (0)), (id202)

where

ℬn,i
II (x) = ∑

j=i

n-1 ( ji ) ( - 1) j-i
( j + 1) ! B j+1

II (x), (id203)

and Bj
II (x) are the Bernoulli polynomials of second kind ([20]);

• Euler and Boole interpolation:

◦ Euler interpolation ([21]):

Assuming

L ( f ) =
f (0) + f (1)

2 , (id206)

the interpolation polynomials PL ,n f (x) and P̄ L ,n f (x) become

PL ,n f (x) =
f (0) + f (1)

2 + ∑
i=1

n f (i)(0) + f (i)(1)
2i ! Ei(x), (id207)

P̄ L ,n f (x) = f (0) + ∑
i=1

n f (i)(0) + f (i)(1)
2i ! (Ei(x) - Ei(0)); (id208)

◦ Boole interpolation ([20]):

Assuming

L ( f ) = Mf x=0, (id210)

where Mf  is defined by
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Mf (x) =
f (x) + f (x + 1)

2 , (id211)

the interpolation polynomials PL ,n
* f (x) and P̄ L ,n

* f (x) become

PL ,n
* f (x) =

f (0) + f (1)
2 ℰn,0

II (x) + ∑
i=1

n f (i) + f (i + 1)
2 ℰn,i

II (x), (id212)

P̄ L ,n
* f (x) = f (0) + ∑

i=1

n f (i) + f (i + 1)
2 (ℰn,i

II (x) - ℰn,i
II (0)), (id213)

where

ℰn,i
II (x) = ∑

j=i

n ( ji ) ( - 1) j-i
j ! Ej

II (x), (id214)

and Ej
II (x) are the Boole polynomials ([20]).

10. The algebraic approach of Yang and Youn

Yang and Youn ([18]) also proposed an algebraic approach to Appell polynomial sequences
but with different methods. In fact, they referred the Appell sequence, sn(x), to an invertible
analytic function g(t):

sn(x) =
d n
dt ( 1

g(t) e
xt)

t=0
, (id215)

and called Appell vector for g(t) the vector

S̄ n(x) = s0(x), ..., sn(x) T . (id216)

Then, they proved that

S̄ n(x) = Pn
1
g(t) t=0

Wn e
xt

t=0 = Wn
1
g(t) e

xt
t=0

, (id217)

being Wn f (t) = f (t), f '(t), ..., f (n)(t) T  and Pn f (t)  the generalized Pascal functional ma‐
trix of f (t) ([28]) defined by
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(Pn f (t) )i , j = {( ij ) f (i- j)(t) i ≥ j

0 otherwise
, i, j = 0, ..., n. (id218)

Expressing the (▭) in matrix form we have

S̄ n(x) = SX (x), (id219)

with

S =

s00 0 0 ⋯ 0
s10 s11 0 ⋯ 0
s20 s21 s22 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
sn0 sn1 sn2 ⋯ snn

, X (x) = 1, x, ..., x n T , (id220)

where

si , j = ( ij ) ( 1
g(t) )(i- j)

t=0
, i = 0, ..., n, j = 0, ..., i. (id221)

It is easy to see that the matrix S  coincides with the matrix M -1 introduced in Section ▭,
Theorem ▭.

11. Conclusions

We have presented an elementary algebraic approach to the theory of Appell polynomials.
Given a sequence of real numbers βi, i = 0, 1, ..., β0 ≠ 0, a polynomial sequence on determi‐
nantal form, called of Appell, has been built. The equivalence of this approach with others
existing was proven and, almost always using elementary tools of linear algebra, most im‐
portant properties od Appell polynomials were proven too. A dual theory referred to the fi‐
nite difference operator Δ has been proposed. This theory has provided a class of
polynomials called Appell polynomials of second kind. Finally, given a linear functional L ,
with L (1) ≠ 0, and defined

L (x i) = βi, (L ((x)i)=i ), (id222)

the linear interpolation problem

Algebraic Theory of Appell Polynomials with Application to General Linear Interpolation Problem
http://dx.doi.org/10.5772/46482

31



L (Pn(i)) = i ! ωi, (L (Δ iPn) = i ! ωi), Pn ∈ ��n, ωi ∈ ℝ, (id223)

has been considered and its solution has been expressed by the basis of Appell polynomials
related to the functional L  by (▭). This problem can be extended to appropriate real func‐
tions, providing a new approximating polynomial, the remainder of which can be estimated
too. This theory is susceptible of extension to the more general class of Sheffer polynomials
and to the bi-dimensional case.
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