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1. Introduction

Environment mapping is considered an essential skill for a mobile robot in order to actually
reach autonomy [1]. The robotic mapping can be defined as the process of acquiring a
spatial model of the environment through sensory information. The environment map
allows mobile robots to interact coherently with objects and people in this environment. The
robot can safely navigate, identify surrounding objects and have flexibility to dealing with
unexpected situations. Without a map some important operations could be complex as the
determination of objects position in the surroundings of the robot and the definition of the
path to be followed. These issues involve the importance of the mapping task be performed
correctly, since the acquisition of inaccurate maps can lead to errors in the inference of
correct positioning of the robot, resulting in an imperfect implementation of these operations.
Therefore there is a mutual dependence between inferring the exact localization of the robot
and building an accurate map.

There are several researches done in robotics mapping proposing ways to represent a mapped
environment, all of them concerned in dealing with high dimensional mapped environment.
The work of Agelopoulu et al. [3] provides a good overview on articles published at the
very early period of research about mapping and it reports the several different ways of
representing the environment, focusing on the main features of each approach. Thrun [1]
proposes a classification of the ways of representing an environment mapped into two main
categories: metric and topological representations. The metric representations store geometric
properties of the environment, whereas the topological representations describe connectivity
between different places. Within the metric representations, the occupancy grid stands out by
providing a relatively accurate reproduction of the mapped environment.

Robots can be used to map internal or external environments depending on the task type
supported by them. Lee et. al. [4], for example, uses a mobile robot equipped with
sonar to build a features-based map. The robot finds points, lines and circles in the
environment through processing of the information provided by sonar. Dealing with external
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environments, Guivant et. al. [5] has implemented a mobile vehicle to map an environment
typical of a farm. The map built by the vehicle was composed of typical objects of the
environment, as trees and stakes. However, the majority of the works dealing with the robotics
mapping theme do not discuss a generalist alternative to provide the mapping of both internal
and external environments. The difficulty is in the detection of characteristics inherent in
all kind of environments. It is well known that internal environments are more structured,
so that the vast majority of them have common cues, for example, lines, nooks and corners.
External terrain mapping depends on the objects that can be highlighted in them (transit cards,
buildings, trees, and rocks, among others).

Several types of sensors can be used for carrying out the mapping. The most common are
sonar, lasers and cameras. The sonar is attractive because of its low cost. Besides being
relatively inexpensive they can be easily found in a commercial market. However, sonar
presents significant inaccuracies in the measurements acquired. Lasers are highly accurate
and provide the acquisition of detailed maps but they are not attractive because of its high
cost. Cameras are sensors that, at each day, are getting cheaper and they make possible
the acquisition of a large amount of information surrounding the robot. For these reasons,
cameras are playing an important role among the sensors used for robotic mapping.

This chapter proposes the mapping of internal and/or external environments through a
system of stereo cameras of low-cost with metric representation of the environmental in a
probabilistic occupancy grid. With the stereo vision system the robot can collect information
from different places with different types of obstacle, and it does not dependent on the type of
environment in which it is located or the type of features inside this place. The mapping
algorithm considers a probabilistic modeling for the vision system used by the robot, as
well as to its performed movements. With this, the 3D Probabilistic Occupancy Grid to
Robotic Mapping with Stereo Vision generates results (maps) consistent with the information
obtained by the robot. To attest to the feasibility proposed by that research will be presented
preliminary experiments performed.

The article is structured as follows: section 2 presents the problem of environment mapping
with robots. The section introduce the occupancy grid mapping. Section 3 contextualizes
the same problem with the use of visual sensors (cameras). In section 4 will be presented
the proposed mapping with stereo vision and occupation grid representation. Section 5
expose the preliminary results achieved with the mapping algorithm. Finally, the section 6
brings the concluding remarks, directing to the next steps that will be given toward the full
implementation of the system.

2. Robotic mapping

To better formalize the problem of robotic mapping, we need to establish some basic
assumptions (or restrictions). The first hypothesis is that the robot has proprioceptive and
exteroceptive sensors that allow collect data about yourself (position and orientation) and
about the environment. The second is that perception system must always provide the exact
knowledge of the position and orientation of the robot relative to any coordinate system or
frame of global fixed reference adopted.

With these assumptions, we can define the robotic mapping as the problem of building a space
model of the environment by the robotic computational system, based on data provided by
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the perception system. The Figure 1 illustrates the evolution of the process of building a map.
In this illustration, x represents the robot pose (position and orientation), z represents the
sensory measurements collected over time, and m represents the map being built iteratively
at each time interval.
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Figure 1. Mapping process.

The hypothesis that the perception system has the exact knowledge of the robot position
and robot orientation relative to some global reference adopted is not always true. And in
most cases to get the exact position and orientation of the robot inside of your environment
is necessary to have a map. Here a conflict arises: to get a consistent map is required exact
knowledge of the robot position and orientation, and for this, it is necessary an environment
map. Note that there is a dependency between location (inferring the position and orientation
of the robot in the environment) and mapping. To resolve this conflict some researchers
extend the mapping problem to a simultaneous localization and mapping problem or simply
SLAM [2].

From this point, we assume as true the hypothesis that the robot position and orientation are
known somehow. Then specifically we approach the mapping problem with known position
and known orientation, as proposed by Thrun [6]. It should be noted that even assuming
this assumption, the following challenges need to be overcome [1]: sensory inaccuracies,
dimensionality of environment, data matching, dynamism of the environment and operating
strategy. Then each of these challenges will be detailed.

2.1. Sensory uncertainties

The sensors used for robotic mapping are influenced by several sources of noise that cause
errors in his measurements. An important issue in the mapping environments is how to
deal with the uncertainties and inaccuracies found in the data provided by these sensors.
Inaccuracies can be caused due to many factors intrinsic to the type of device used. In
addition, there are also the errors inherent in the robot movements within its environment,
which can be caused by systemic factors, such as the uncertainties present in parameters
that are part kinematic modeling of the robot (for example, differences in the size of the
wheels, erroneous measurement axes) and/or by non systematic factors as uncertainties from
unexpected situations (for example, collision with unexpected objects, wheel slip) [7].

The challenge occurs depending on the type of the noise in measurements, in the other words,
to model the robotic mapping problem would be relatively easy if the noise in different
measurements was statistically independent. However, there is a statistical dependency that

1833D Probabilistic Occupancy Grid to Robotic Mapping with Stereo Vision



4 Will-be-set-by-IN-TECH

occurs because the errors inherent in the robot movements accumulate over time, and affect
how the sensory measurements are interpreted. To overcome this challenge, generally the
error sources are modeled or approximated by stochastic functions, allowing the sensory data
are handled properly during the mapping process. When these factors are disregarded, we
are likely to witness the construction of inconsistent and inaccurate maps.

2.2. Dimensionality

Another challenge that arises in the mapping problem refers to the dimensionality of the
environment to be mapped. Imagine an environment typically simple, such as a house with
rooms, corridors and kitchen. If it is considered just a topological description of compartments
will require a few variables to describe this environment. However, when the goal is to get rich
maps in detail with two (2D) or three (3D) dimensions, the complexity to estimate this map is
larger and, in addition, it is necessary to increase the space for storing its representation in the
computer memory.

Furthermore, cannot forget the larger and more complex the environment, higher is the
probability of some kind of error in the robot movements, which can prejudice the quality
of built map.

2.3. Matching

During the mapping, normally a same object or obstacle in the environment is perceived
several times by the robot, in different moments. Therefore is desirable that this object should
be identified as mapped and must be distinguished from those not yet mapped. This problem
is known as matching or data association.

The lack of data association in the mapping can generate inconsistencies and differences
in maps. An effective scheme of matching must make distinctions between spurious
measurements, new measurements and lost measurements together with a basic function to
associate the available map with the new measurements. A study of the techniques more
used to solve the matching problem can be found in the work of Wijesoma et al. [8], where are
presented the general idea of solutions and their respective original references.

A method widely used in matching is the Nearest Neighbor - NN [9]. This method associates
a map point to the nearest observation inside a region of validation, based on some distance,
which is usually given by the Mahalonobis distance. This method is attractive because the
implementation is easy, however it gives poor results. Other robust methods of solving the
matching problem can be checked in the literature, for example, the Joint Probabilistic Data
Association (JPDA) [10], Joint Compatibility Branch and Bound (JCBB) [11], Multi Hypotheses
Tracking (MHT) [12] and "lazy" data association method (a variant of MHT) [13].

2.4. Dynamism of the environment

Another challenge arises when the interest is in mapping dynamic environments or not
stationary, such as offices where people travel constantly and manufactures where objects are
transported to different places. In these cases, the robotic system can consider such changes
as inconsistent measurements taken at a given time. Think about the case where, in a given
moment, a robot maps a table in your environment. Then, for some reason, this table is moved
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to another location at a later time, and this change of location, which should be changed also
on a robot map, does not occur. With this, when the robot go through the place where the
table was previously may seem that the robot is in a new location not yet mapped, because
the object that should be detected, it is not.

The vast majority of mapping algorithms considers that the process is running in static
environments, and this makes the mapping problem of dynamic environments be largely

unexplored. However, in recent years, several proposals have emerged to solve this problem.
For example, Biswas et al. [14] proposes a mapping algorithm in the occupation grid called
Robot Object Mapping Algorithm - ROMA, able to model not stationary environments. The
approach assumes that objects move slowly in the environment that can be considered static
in relation to time it takes to build a map in occupation grid. The proposed algorithm is able
to identify such moving objects, learn the model of them and determine their location at any
time. It also estimates the total number of distinct objects in the environment, making the
approach applicable to situations where not all objects not stationary are visible at all times.
The changes in the environment are detected by a simple technique of differentiation of maps.

Wolf and colleague [15] propose an approach based on differentiation of maps, however
the differentiation is made between a map of occupancy grid with static parts, and a map
of occupancy grid with dynamic parts. The algorithm proposed is able to detect dynamic
objects in the environment and represent them on a map, even when they are outside the
robot perceptual field. In a recent work, Baig and collaborators [16] propose the detection
of dynamic objects in the mapping process of external environments through the method
Detection And Tracking of Moving Objects (DATMO), from a vehicle equipped with laser
and odometry.

2.5. Exploration strategy

During the mapping, the robotic system should choose certain paths to be followed. Given
that the robot has some knowledge about the world, the central question is: where he
should move to get new information? This is done by operating strategy that determines
the displacement that the robot should perform to meet all environment. At the process end
we have a visited environment map produced from the information provided by the robot
sensors.

The choice and implementation of good operating strategy emerges as a fifth challenge for the
mapping problem. The exploration assumes that the robot position and robot orientation are
precisely known and focuses on bring the robot with efficiency throughout the environment to
build the full map [17]. For this, the exploration strategy should consider a model of partially

built environment, and from this to plan the movement action to be performed. Stachniss [17]
describes the exploration strategy as a combination between the mapping and the planning.

It is important that it be considered the exploration strategy efficiency to avoid unnecessary

spending of time and energy. In addition, it is necessary that the robot is able to deal with
unexpected situations that may arise during the operation and building of the map. A classic
technique of exploration is proposed by Yamauchi [18], which is based on the concept of
frontiers (frontier-based exploration), that are regions forming limits between free spaces
and unexplored spaces. When the robot moves toward a new frontier, it can understand
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unexplored spaces and add new information to your map. As result the mapped territory
expands, retreating the limits between known regions and unknown regions. Leaving for
successive frontiers, the robot can constantly increase your knowledge of the world. Silva
Júnior [19], presents the idea of exploitation based on boundary value problems. Stachniss [17]
presents a summary of several exploration techniques developed, comparing your proposal
based on coverage maps. In this strategy, the robot exploration actions are selected to provide
a reduction of uncertainties that affect the mapping.

2.6. Representation types

There are two main approaches to represent an environment using a mobile robot: the
representation based in topological maps and the representation using metric maps [1].
However, some authors prefer change this classification increasing another paradigm called
features maps representation [20] [21]. This category, by storing metrics information of the
notable objects (features) of the robot environment, is treated here as a metric maps subset.
The following are main peculiarities of these paradigms.

2.6.1. Topological maps

Topological maps are computationally represented by the graphs, which describes an

arrangement of nodes (or vertices) connected by edges (links or arcs). Typically the graphs
describe the free spaces for performing tasks. The nodes correspond to regions that have
homogeneous sensory information and the arcs reflect the connection between these regions.
Intuitively the use of a graph to describe an environment is a great idea because graph is
a compact structure for storage in memory of the robot computational system and can be
used to model structures or enumerate processes, such as representation of cities connected
by roads, connections of the printed circuit board, and others. The main problem of this
representation is the lack of a standard that define which structures are associated with the
vertices and which relationships are described as links.

Still, the robot location using topological maps is abstract, this means that, there is no way to
define explicitly the robot position and robot orientation. However, it is possible to affirm in
which graph node or in which environment regions it is.

The lack of standardization of which elements are considered nodes and edges of graphs is
easily seen. For example, Kuipers and colleague [22] uses map nodes to represent places,
characterized by sensory data, and the edges represent paths between places, characterized by
control strategies. Thrun [23] uses a topological map obtained from a probabilistic occupancy
grid partitioned into regions (nodes) separated by close passages (edges). In a recent work
[24], the definitions of nodes and edges are made from a topology extraction method based
on Generalized Voronoi Diagram, that make the skeletonisation of the images provided by a

laser, to produce appropriate topological information.

2.6.2. Metric maps

The metric representation or metric maps reproduce, with a certain accuracy degree, the
geometry of the environment in which the robot is inserted. Objects such as walls,
obstacles and passages are easily identified in this approach, since the map maintains a good
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topographic relationship with the real world. The metric maps are represented by occupancy
grids and features maps.

• Feature-based maps

The features maps store information of important elements founded in environment specific
locations (features). A feature can be understood as "something" easily notable inside the
environment such as corners and edges. In images, special properties of the some parts
(such as a circle, a line, or a region with particular texture) are usually identified. Lee and
colleagues [4] use a robot equipped with a sonar belt to build a features map with lines,
points and circular objects. These features are differentiated according with the sonar readings
processing.

This does not impede others objects, such as doors, lights, trees, buildings, towers etc, are also
used as notable features to be stored in a map. In the work of Guivant [5], for example, a
mobile vehicle gives the map of the typical and external environment of a farm, identifying
trees as features to be stored in a map.

This map type usually stores geometric information of the chosen features and Detected, as
for example, cartesian coordinates or polar coordinates of features relatives to some fixed
reference. Santana and Medeiros [7] use floor lines of internal environments as interesting
features to be detected. The map was built with the polar coordinates of the straight
obtained from imaging by Hough transform. A great advantage of this map type is have a
compact representation if compared to occupancy grid representations. However, it also has
disadvantages, and the main one is the dependence of a pre-defined procedure to detect and
extract environment features [17].

• Occupancy Grid

The representation using occupancy grid was initially proposed in 1987 and formalized
in 1989 by Alberto Elfes [25][26]. With this representation, the continuous spaces of the
environment are discretized, so that the environment is being represented in the configuration
of a grid or multi-dimensional matrix (2D or 3D). Each element of the matrix, also called cell,
represents a environment location that can be occupied, empty or unexplored.

The occupancy grid representation initially was proposed to map environments in a 2D
grid, however, after Elfes [25], Moravec [27] expanded this representation to a 3D discrete
configuration innovating also the sensor type used for the construction of the map. Unlike
Elfes who employed sonar in his experiments, Moravec used a stereo vision system in the
construction of a 3D map. In addition, Moravec also proposed a new approach to indicate
the possibility of cell occupancy based on evidence theory of Dempster-Shafer, also differing
from the Bayesian probabilistic approach proposed by Elfes. The 3D grid presented was called
evidence grid and each cell stores a value that indicates the evidence of occupation.

Another approach of grid representation was presented in the work of Oriolo et al. [28].
In this work, the authors show that it is possible formulate and solve perception problems
and planning problems dealing with uncertainties using the set theory (fuzzy logic). The
built map by this technique is defined as a fuzzy set, in which each point is associated to
a real number that quantifies the possibility of the map pertain to an obstacle. The main
advantage is the possibility of using several types of fuzzy operators to model uncertainty
and aggregate information from multiple sources. Ribo and Pinz [29] present a comparative
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study between the three approaches mentioned, showing their models to the range sensors
and checking the treatment of the uncertainties presents in the measurements. However, the
cited work is restricted to experiments with robots equipped with sonar inserted in typical
office environments.

Other variations of these approaches can be seen in the literature. For example, Konolige [30]
proposes a method that is a mathematical refinement of the mapping method presented by
Elfes [25], named MUltiple Representation Independent Evidence Log - MURIEL, aiming
to control the intrinsic problems of the sonar, such as reflection multiples and redundant
readings. Borenstein and Koren [31] presents a method based on histograms. In this method,
the main goal is to reduce the computational cost intrinsic to representation based occupancy
grids. Another variation can be checked on work Yguel et al. [32]. This work reports the issues
of representation and data storage by large maps and, for this, proposes a form of occupancy
grid representation based on wavelets: Wavelet Occupancy Grids.

Some changes of the default algorithm presented by Elfes [25] are proposals aiming to improve
the quality of built maps, considering computational cost of processing and storage [13],
uncertainty treatment [33] and sensors modeling [34]. There are several recent examples in
the literature that attest the utility of the representation by occupancy grid in SLAM [36] [38],
with applications like surveillance [30] [37], exploration [39], rescue [40], and others tasks.

3. Occupancy grid mapping

The models based on occupancy grid proposed by Elfes [26] is one of the most used metric
approaches. The environment is represented as a regular grid of cells, where the value of each
cell encodes its state that can be free, occupied, or not mapped (undefined). The occupancy
value of a cell is determined using a probabilistic approach that has as input estimated
distances to objects calculated from data given by the sensors. Through a bayesian approach,
it is possible to update the cell values at every time that a measure is performed. Note that
a subset of the whole grid is updated each time. The resulting model can be used directly
as a map of the environment in navigation tasks as path planning, obstacle avoidance, and
pose estimation. Figure 2 ilustrates the representation of a depth sensor measure in a 2D
occupancy grid. Grey cells have unknown occupancy values, white cells are free and black
cells are occupied. The main advantages of this method are: it is easy to construct and it can
be as accurate as necessary.

Figure 2. Occupancy grid representation in 2D. All cells of the grid are initialized with gray color
meaning that the occupancy value is not known at start. From the readings inside the field of view of the
sonar, white cells (free) and black cells (occupied) can be determined.

The construction of a map based on occupancy grid involves the determination of the
occupancy probability of each cell. Let us assume that the occupancy probabilities of
neighboring cells are decoupled, that is, the probability that a cell is occupied does not affect
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the estimation of probability occupancy values for its neighboring cells. Besides this is not an
ideal assumption specifically in the case of cells representing the same object it turns easier the
implementation of the mapping algorithm without a substantial increasing in the measured
error. With this assumption, the probability of occupation of a map M can be factored into the
product of the occupancy probability of each cell mn individually according to Equation 1.

P(M|x1:t, z1:t) = ∏
n

p(mn|x1:t, z1:t) (1)

The construction of the map M depends on the history of robot localizations x1:t and on
the sensors readings z1:t performed in each localization. Updating the map is a process
of repeating these readings, which can be performed from other locations with other
orientations. In practice, only cells currently inside the field of view of the sensors are to
be updated. The occupancy value of a cell mn is calculated by Equation 2.

p(mn |x1:t, z1:t) = 1 −
1

1 − elt,n
(2)

with

lt,n = lt−1,n + log
p(mn|xt, zt)

1 − p(mn)
− log

1 − p(mn |xt, zt)

p(mn)
(3)

p(mn) is the occupancy value of the cell mn previously to any measurement that can be
attributed according to the obstacles density in the environment. The probability p(mn|xt, zt)
specifies the occupancy probability of cell mn conditioned to the sensor reading zt in the time
t and depends on the sensor used, and is named inverse sensor model. More details of the
standard algorithm for occupancy grid can be found in the work of Thrun [34].

4. Mapping with stereo vision

4.1. Stereo vision

The term stereo vision is generally used in the literature to designate problems where it
is necessary to recover real measures of points in a 3D scene from measures performed in
their corresponding pixels in two or more images taken from different viewpoints. The
determination of the 3D structure of a scene using stereo vision is a well known problem [41].
Formally, a stereo algorithm should solve two problems: the matching (pixel correspondence)
and the consequent 3D geometry reconstruction.

The matching problem involves the determination of pairs of pixels, one pixel from each
image in each stereo pair, corresponding to the points in the scene that have been projected
to the pixels. That is, given a pixel x in the first image, the matching problem is solved by
determining its corresponding pixel x� in the second image, for all pixels in the first one. In
principle, a search strategy has to be adopted to find the correspondences. Several solutions
are proposed generally using restrictions to facilitate the matching. The epipolar geometry is
one of these, that makes narrower the search space [41].

By using this restriction, given a pixel in the one image, the search for the corresponding pixel
in the other image can be performed in a line thus substantially decreasing the search space
(from 2D to 1D). In general, the result of the matching phase is a disparity map that has, for
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all corresponding pixels determined, the displacement in images coordinates of each matched
pixel in the second image.

The reconstruction of 3D geometry relates to the determination of the scene 3D structures.
The 3D position of a point P in space can be calculated by knowing the disparity between
positions (in image coordinate system) of the corresponding pair of pixels x and x� given
by the disparity map and by knowing the geometry of the stereo vision system. The last
is specified in two matrices: M (named external) and M� (internal), which are previously
determined. The positions of pixels are used in the matching phase to calculated the disparity
map, which is then used directly in the process.

In order to better understand the stereo reconstruction problem, let us assume the system
geometry shown in Figure 3. The system has two cameras with projection centers O and O�,
respectively. The optical axes are perfectly parallel to each other and the two camera images
are in the same plane (coplanar). The focal distance f is the distance from each projection
center to each image plane, assumed to be the same for both cameras. The baseline b is the
distance between the projection centers. The values of b and f are known a priori by using
some camera calibration procedure [41].
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Figure 3. Stereo geometry of a coplanar camera system.

In Figure 3, (x�o, y�o) and (xo , yo) are the coordinates of the pixels in each image center, that is,
in the intersection of the optical axes and the image planes. A point P in the scene is projected
in the pixels (x�, y�) (left) and (x, y) (right) in the images. The distance zc of the camera system
to the point P can be calculated by Equation 4, in camera frame reference:

zc = f .
b

d
(4)

where b is the baseline as said above and d is the disparity between the corresponding pixels,
given by d = x� − x. Note that there is no disparity in y coordinate because the axes are
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parallel. From Equation 3, we can observe that zc is inversely proportional to d. In practical
situations, d is limited considering a maximum and minimum distance of the system to the
scene. These distances are empirically defined considering the scene. The other coordinates
of point Pc = (xc, yc, zc) in relation to the stereo system can be calculated by using Equations 5
and 6.

xc = zc.
(x − x0)

f
(5)

yc = zc.
(y − y0)

f
(6)

The coordinates of a point in the camera coordinate system Pc can be transformed to world
frame. To do that, one just has to know the rotation matrix and translation vector that map
the camera to world frame, and use Equation 7.

Pw = RT.Pc + T (7)

Parameters b, f , (x�o , y�o) e (xo , yo) are determined through a previous calibration of the stereo
system. we remark that even if the system does not follow the restrictions depicted in Figure
3, it is possible to derive a general mathematical model for the problem. In this case, it would
be more complex to recover the 3D geometry. Besides, in the calibration process it is also
possible to diminish or eliminate errors caused by lens distortions and illumination.

Stereo matching The stereo matching should determine, for all pixels in one image, the pixels
that are their homologous in the other image. That is, to determine all pairs of pixels, one pixel
from each image, that correspond to the projections of points in the scene. Once determined
the matching, disparity d can be calculated as the difference between the coordinates of the
corresponding pixels in each image and the depth for all points in the scene can be calculated
by using triangle similarity. So determination of matching for all pixels is a fundamental step.
In fact, due to occlusions and image errors, we get not completely dense matchings.

Between the several methods used for matching and disparity map calculation, in this work
we performed experiments with the two suggested in the work of Scharstein and Szeliski [42]:
the block-matching and the graph-cuts. The block-matching determines the correspondence
for pairs of pixels with characteristics that are well discernible. Basically, this method
gives as result a disparity map in four main steps. The first is a previous filtering of the
images to normalize brightness and texture enhancement. The second step is the search for
correspondences using the epipolar constraint. This step performs the summation of absolute
differences between windows of the same size of both images to find the matching. As the
third step, a posterior filtering is performed in order to eliminate false matchings. In the
fourth step, the disparity map is calculated for the trustable pixels. This method is considered
fast, in fact, its computational complexity depends only on the image size.

The graph-cuts algorithm treats the best matching problem as a problem of energy
minimization, including two energy terms. The smoothness energy (SE) measures the
smoothness of disparity between neighboring pixels, which should be as smooth as possible.
The second term is data energy (ED) that measures how divergent are corresponding pixels
with basis on assumed disparity. A weighted graph is constructed with vertices representing
the image pixels. The labels (or terminals) are all the possible disparities (or all discrete values
in the interval of disparity variation). The edge weights correspond to the energy terms above
defined. The graph cuts technique is used to approximate the optimal solution, that computes
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corresponding disparity values (each edge of the graph) to each pixel (vertex of the graph)
[43].

4.2. Modeling probabilistic mapping with stereo disparity

The acquisition and manipulation of images produces a uncertainty ∆d for the error in the
coordinates of a pixel. This causes an error factor ∆zc in the estimation of the coordinate zc

calculated from the disparity map, named depth resolution, which is given by Equation 8.

∆zc =
z2

c

b. f
.∆d (8)

In order to construct the environment model using occupancy grid, it is necessary to model
the used sensor generally named the inverse measurement model. We adopt a modeling that
is similar to the one depicted by Andert [44], however we propose to incorporate the errors
inherent to robot motion in the calculation of the probability of occupation of a cell. With
this modification, we get a map that is more coherent with the sensory data provided by the
robot. We can guarantee a limit for the maximum error found in the map. This is extremely
important in the treatment of uncertainties encountered in the scene.

The inverse model transform the data provided by the sensors in the information contained in
the map. In our case, a distance measured from a specific point in the environment indicates
the probability that part of the grid is occupied or free. Distance is calculated directly from
disparity. In this way, it is possible to map each point of the space seen by the robot vision
system with a valid disparity value into the possible values of elements of the occupancy grid.

In the measurement model, each point of the disparity map can act as a distance sensor
measured along the ray defined by the world coordinates of the pixel (in the image plane)
and the projection center of the camera. The point in the image plane is given in camera
coordinates by Pc = (xc, yc, zc) and the distance of the camera to Pc is calculated by Equation 9
with a sensorial uncertainty given by Equation 10.

lp =
√

x2
c + y2

c + z2
c (9)

∆lp = ∆zc
lp

zc
(10)

Each cell pertaining to this ray defined by the projection center and point Pw also in world
coordinates must have a probability of occupation updated according to the function of
density of probability given by Equation 11:

P(mn|x1:t, z1:t) = Pocc(l) +

(

k

∆lp

√
2π

+ 0.5 − Pocc(l)

)

e
− 1

2 (
l−lp
∆lp

)2

(11)

where

Pocc(l) =

{

pmin, if 0 < l ≤ lp

0.5, if l > lp
(12)

Our proposal is just to incorporate the uncertainty that we have with respect to the robot
motion in the calculation of the occupancy probability. With this, the occupancy grid map
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gets more coherency with the sensory data acquired by the robot perceptual system. In this
way, Equation 8 can be modified resulting in Equation 13:

∆zc =
z2

c

b. f
.∆d + ε (13)

where ε is a function that describe the errors of the linear movements of the robot (systematic
errors) that are modeled from repetitive experiments performed previously. This function ε

represents the degradation that the motion errors of the robot produce in the certainty that
a cell is occupied or not, like in a previous work [45]. So we consider the existence of real
uncertainties in the robotic systems.

5. Preliminary experiments

We have performed experiments in order to evaluate and decide the better stereo matching
algorithm to be used for the disparity map generation. In these experiments, we use the
Minoru 3D stereo vision system mounted on the top of a Pioneer 3-AT robot, as seen in Figure
4. The implementation is done using the Computer Vision OpenCV library.

Figure 4. Pioneer 3-AT robot with stereo cameras Minoru.

The next set of experiments is done in order to evaluate the use of stereo disparity as input to
the probabilistic approach in the occupancy grid construction (our main proposal). The stereo
setup used is the same mounted on the Pioneer 3-AT equipped with the Minoru 3D. The
OpenCV library is used for software developments. As said, the disparity map is estimated
using the graph-cuts algorithm. The experiments were conducted in a building of Federal
University of Rio Grande do Norte, which mixes scenes of outdoor and indoor environments.
Figure 5 shows one of the images captured from an scene of a typical corridor and the Figure
6 illustrates a scene with the appearance of the external environment.

Figure 7 shows the result of this experiment. It is shown only one of the slices of the cells of
the occupancy grid, the one that has the plane in the center of projection of the camera system
parallel to the ground. We remark that the robot could perform stops to better determining
some regions with more details.

From these preliminary results of the 2D mapping, the first steps were made to perform
3D mapping. In this experiment, the figure was swept in both coordinate axes so that the
3D information could be inferred. The figures below illustrate a basic experiment of this
construction.

In this figure, the red polygon represents the camera and the blue cubes represent the obstacle
verified by stereo image processing.

1933D Probabilistic Occupancy Grid to Robotic Mapping with Stereo Vision
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Figure 5. Scene of a corridor.

Figure 6. Scene of outdoor space.

Figure 7. Resulting map.

Figure 8. Captured scene to 3D mapping.
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Figure 9. 3D map from stereo vision.

6. Conclusions and future works

We propose a new approach to 3D mapping of environments by a mobile robots with
representation based on a probabilistic occupancy grid. Our approach considers using the
errors inherent to the robot. Visual information provided by a stereo vision system is included
in the modeling. This has resulted in a more robust technique where the error can be well
defined and limited, what is very relevant in robotics applications. With our proposal, we
have the mapping of environments actually coherent with sensory data provided by the
robotic perceptual system. This is one of the main contributions of our work, besides the
manner of using stereo vision for 3D mapping using occupancy grid. A 3D representation is
much more reliable than a 2D one provided by using only sonar, like in our previous work
[45].

As future work, we will go perform experimentation in more complex environments in order
to test the coherent construction of 3D occupancy grids. A strategy based on stop points
and feature detection (mainly using gradient of disparity) is also being developed in order to
determine regions in which a more detailed map is necessary. Further, a more robust modeling
of the errors present in the robot movements and on the image processing will be performed
in order for this proposal to upgrade to a SLAM application (Simultaneous Localization and
Mapping).
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