
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 2

Image Segmentation and Time Series Clustering Based
on Spatial and Temporal ARMA Processes

Ronny Vallejos and Silvia Ojeda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50513

1. Introduction

During the past decades, image segmentation and edge detection have been two important
and challenging topics. The main idea is to produce a partition of an image such that each
category or region is homogeneous with respect to some measures. The processed image can
be useful for posterior image processing treatments.

Spatial autoregressive moving average (ARMA) processes have been extensively used in
several applications in image/signal processing. In particular, these models have been used
for image segmentation, edge detection and image filtering. Image restoration algorithms
based on robust estimation of a two-dimensional process have been developed (Kashyap &
Eom 1988). Also the two-dimensional autoregressive model has been used to perform unsu‐
pervised texture segmentation (Cariou & Chehdi, 2008). Generalizations of the previous al‐
gorithms using the generalized M estimators to deal with the effect caused by additive
contamination was also addressed (Allende et al., 2001). Later on, robust autocovariance
(RA) estimators for two dimensional autoregresive (AR-2D) processes were introduced (Oje‐
da, 2002). Several theoretical contributions have been suggested in the literature, including
the asymptotic properties of a nearly unstable sequence of stationary spatial autoregressive
processes (Baran et al., 2004). Other contributions and applications of spatial ARMA proc‐
esses have been considered in many publications (Basu & Reinsel, 1993, Bustos 2009a, Fran‐
cos & Friendlaner1998, Guyon 1982, Ho 2011, Illig & Truong-Van 2006, Martin1996, Vallejos
& Mardesic 2004).

A new approach to perform image segmentation based on the estimation of AR-2D process‐
es has been recently suggested (Ojeda 2010). First an image is locally modeled using a spatial
autoregressive model  for  the image intensity.  Then the residual  autoregressive image is
computed. This resulting image possesses interesting texture features. The borders and edges
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are highlighted, suggesting that the algorithm can be used for border detection. Experimen‐
tal results with real images clarify how the algorithm works in practice. A robust version of
the algorithm was also proposed, to be used when the original image is contaminated with
additive outliers. Applications in the context of image inpainting were also offered.

Another concern that has been pointed out in the context of spatial statistics is the develop‐
ment of coefficients to compare two spatial processes. Coefficients that take into account the
spatial association between two processes have been proposed in the literature. (Tjostheim,
1978) suggested a nonparametric coefficient to assess the spatial association between two
spatial variables. Later on, (Clifford et al. 1989) proposed an hypothesis testing procedure to
study the spatial dependence between two spatial sequences. Rukhin & Vallejos (2008) stud‐
ied asymptotic properties of the codispersion coefficient first introduced by Matheron(1965).
The performance and impact of this coefficient to quantify the spatial association between
two images is currently under study Ojeda et al. (2012). An adaptation of this coefficient to
time series analysis was studied in Vallejos (2008).

In the context of clustering time series Chouakria & Nagabhushan (2007) proposed a dis‐
tance measure that is a function of the codispersion coefficient. This measure includes the
correlation behavior and the proximity of two time series. They proposed to combine these
distances in a multiplicative way, introducing a tuning constant controlling the weight of
each quantity in the final product. This makes the measure flexible to model sequences with
different behaviors, comparing them in terms of both correlation and dissimilarity between
the values of the series.

The structure of this chapter consist in two parts. In the first part we review some theoretical
aspects of the spatial ARMA processes. Then the algorithm suggested by Ojeda(2010), its
limitations and advantages are briefly described. In order to propose a more efficient algo‐
rithm new variants of this algorithm are suggested specially to address the problem of de‐
termining the most convenient (in terms of the quality of the segmentation) prediction
window of unilateral AR-2D processes. The computation of the distance between the filtered
images and the original one will be done by using the codispersion coefficient and other im‐
age quality measures (Wang and Bovik 2002). Examples with real images will highlight the
features of the modified algorithm. In the second part, the codispersion coefficient previous‐
ly used to measure the closeness between images is utilized in a distance measure to per‐
form cluster analysis of time series. The distance measure introduced in Chouakria &
Nagabhushan (2007) is generalized in the sense that considers an arbitrary lag h that allows
us to capture a higher serial correlation of two temporal or spatial sequences. Examples and
numerical studies are presented to explore our proposal in several different scenarios. We
explore the performance of hierarchical methods to classify correlated sequences when the
proposed proximity measure is used, employing the Monte Carlo simulation. An applica‐
tion is discussed for time series measuring the Normalized Difference Vegetation Index
(NDVI) in four locations of Argentina. The clusters formed using hierarchical classification
techniques with the proposed distance measure preserve the geographical location where
the series were obtained, providing information that is unavailable when using hierarchical
methods with conventional distance measures.
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2. Image Segmentation Through Estimation of Spatial ARMA Processes

2.1. The Spatial ARMA Processes

Spatial ARMA processes have been studied in the context of random fields indexed overℤd ,
d ≥2, where ℤd is endowed with the usual partial order. That is, fors =(s1, s2, …, sd ),

u =(u1, u2, …, ud )inℤd ,s ≤u if fori =1, 2, .…, d ,si ≤ui For a, b∈ℤd , such that a≤band a≠b,  we

define S a, b = {x∈ℤd |a≤ x ≤b}and S a, b =S a, b \ {a}.

A random field (X s)s∈ℤd  is said to be a spatial ARMA(p, q)with parameters p, q∈ℤd if it is

weakly stationary and satisfies the equation

X s −∑ j∈S 0, p
ϕj X s− j =εt +∑

k∈S 0,q
θjεs− j, (1)

where (ϕj) j∈S 0, p
and(εj)k∈S 0,q

, respectively, denote the autoregressive and moving aver‐

age parameters with ϕ0 =θ0 =1,  and (εs)s∈ℤd denotes a sequence of independent and identi‐

cally distributed centered random variables with varianceσ 2. Notice that if p =0, the sum
over S 0, p  is supposed to be zero, and the process is called a spatial moving average MA
(q) random field. Similarly, ifq =0, the process is called a spatial autoregressive AR(p)ran‐
dom field. The ARMA random field is labeled as causal if it has the following unilateral rep‐
resentation.
X s = ∑

j∈S 0,∞

ψjεs− j

with∑
j

| ϕj | <∞. Similar to the time series case, there are conditions on the (AR or MA)

polynomials that ensure stationarity and invertibility, respectively. Let
Φ(z)=1−∑

j∈S 0, p
ϕjz

jand Θ(z)=1−∑
j∈S 0,q

θjz
j, where z =(z1, z2, …, zd )and

z j = z1
j1z2

j2 … zd
jd . A sufficient condition for the random field to be causal is that the AR poly‐

nomial Φ(z) has no zeros in the closure of the open discD d inℂd . For example, if d =2,  the
process is causal if Φ(z1, z2)is not zero for any z1and z2that simultaneously satisfy | z1 | <1
and | z2 | <1 (Jain et al., 1999).

Applications of spatial ARMA processes have been developed, including analysis of yield
trials in the context of incomplete block designs (Cullis & Glesson 1991, Grondona et al.
1996) and the study of spatial unilateral first-order ARMA model (Basu & Reinsel, 1993).
Other theoretical extensions of time series and spatial ARMA models can be found in (Baran
et al., 2004, Bustos et al., 2009b, Gaetan & Guyon 2010, Choi 2000, Genton & Koul 2008, Guo
1998, Vallejos and Garccía-Donato 2006).
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2.2. An Image Segmentation Algorithm

In this section, we describe an image segmentation algorithm that is based on a previous fit‐
ting of spatial autoregressive models to an image. This fitted image is constructed by divid‐
ing the original image into squared sub-images (e.g.,8×8) and then fitting a spatial
autoregressive model to each sub-image (i.e., block). Then, we generate a sub-image from
each local fitted model, preserving intensities on the boundary to smooth the edges between
blocks. The final fitted image is yielded by putting together all generated sub-images.

LetZ =Zm,n,0≤m≤M −1 ,0≤n ≤N −1 , be the original image, and letX=Xm,n,
0≤m≤M −1, 0≤n ≤N −1,  where for all0≤m≤M −1,0≤n ≤N −1 ,Xm,n =Zm,n − Z̄ ,  and Z̄ is the
mean ofZ. Let 4≤k ≤min(M , N )and consider the rearrange images
Z=Zm,n,  
X=Xm,n,

where0≤m≤M ′−1,0≤n ≤N ′−1 , M ′ = M − 1
k − 1 (k −1) + 1,N ′ = N − 1

k − 1 (k −1) + 1. For all

ib =1, ⋯ , M − 1
k − 1 and for all jb =1, ⋯ , N − 1

k − 1 the (k −1)× (k −1)block (ib, jb)of the image X is de‐
fined as
BX (ib, jb)= X r ,s,

where (k −1)(ib−1) + 1≤ r ≤ (k −1)iband(k −1)( jb−1) + 1≤ s ≤ (k −1) jb. Then, the approximated im‐
age X̂ of X is provided by Algorithm 1.

Algorithm 1.

For each block BX (ib, jb)

1. Compute estimatorsϕ̂1(ib, jb), ϕ̂2(ib, jb)of ϕ1 and ϕ2corresponding to the block BX (ib, jb)ex‐
tended to:
BX

′ (ib, jb)= X r ,s,

where(k −1)(ib−1)≤ r ≤ (k −1)ib,(k −1)( jb−1)≤ s ≤ (k −1) jb.

2. Let X̂  be defined on the block BX (ib, jb)by
X̂ r ,s = ϕ̂1(ib, jb)X r−1,s + ϕ̂2(ib, jb)X r ,s−1

where (k −1)(ib−1) + 1≤ r ≤ (k −1)iband (k −1)( jb−1) + 1≤ s ≤ (k −1) jb.

Then the approximated image Ẑof the original image Z is:
Ẑ m,n = X̂ m,n + Z̄ , 0≤m≤M ′−1, 0≤n ≤N ′−1.

The image segmentation algorithm we describe below is supported by a widely known no‐
tion in regression analysis. If a fitted image very well represents the patterns on the original
image, then the residual image (i.e., the fitted image minus the observed image) will not
contain useful information about the original patterns because the model already explains
the features that are present in the original image. On the contrary, if the model does not
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well represent the patterns that are present in the original image, then the residual image
will contain useful information that has not been explained by the model. Thus, to imple‐
ment an algorithm based on these notions, we must characterize which patterns are present
in the residual image when the fitted image is not a good representation of the original one,
and we must develop a technique to produce a fitting that is satisfactory in terms of segmen‐
tation but not a very good estimation in that the residual image still contains valuable infor‐
mation. (Ojeda et al. 2010) investigated these concerns and, based on several numerical
experiments with images, determined that the residual image associated with a good local
fitting is in fact poor in terms of structure (i.e., it is very similar to a white noise). However,
when the fitted image is poor in terms of estimation, the residual image is useful for high‐
lighting the boundaries and edges of the original image. Moreover, a bad fitting is related to
the size of the block (or window) used in Algorithm 1. The best performance is attained for
the maximum block size, which would be the size of the original image. The image segmen‐
tation algorithm introduced by (Ojeda et al. 2010) can be summarized as follows.

Algorithm 2.

1. Use Algorithm 1 to generate an approximated image Ẑof Z .

2. Compute the residual autoregressive image given by Z − Ẑ

Example 1. We present examples with real images to illustrate the performance of Algo‐
rithms 1 and 2. These images were taken from the database http://sipi.usc.edu/database. Fig‐
ure 1(a) shows an original image of size512×512 (aerial), and Figure 1(b) shows the image
generated by Algorithm 1 when a moving window of size 512×512is used to define an
AR-2D process on the plane. It is not possible to visualize the differences between the origi‐
nal and fitted images. However, the residual image (Fig 1(c)) shows patterns that the model
is not able to capture. Basically, the AR-2D model does not capture the changes in the tex‐
ture produced by lines, borders and object boundaries. These features are contained in the
residual image produced by Algorithm 2 such that the good performance of Algorithm 2 is
associated with a moderate fitting of the AR-2D model. Another image (peepers) was proc‐
essed by Algorithm 2 to show the effect of the size of the moving window. Figure 2(b)
shows the segmentation produced by Algorithm 2 using a moving window of size 128×128.
Another segmentation with a moving of size 512×512is shown in Figure 2. In both cases, the
segmentations highlight the borders and boundaries present in the original image.

2.3. Improving the Segmentation Algorithm

In all experiments carried out in (Ojeda et al., 2010) and (Quintana et al., 2011), Algorithm 1
was implemented using the same prediction window for the AR-2D process, which contains
only two elements belonging to a strongly causal region on the plane. Here, we consider other
prediction windows to observe the effect on the performance of Algorithm 2. A description
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Figure 1. Images generated by Algorithms 1 and 2.

Figure 2. (b)-(c) Images generated by Algorithm 2 with prediction windows of 128 × 128and 512 × 512respectively.

of the most commonly used prediction windows in statistical image processing is in Bustos
et al., (2009a). A brief description of the strongly causal prediction windows is given below.

For all (m, n)∈ℤ2,  a strongly causal region at (m, n) is defined as

S (m, n)= {(k , l)∈ℤ2 :k ≤m, l ≤n)}− {(m, n)} (2)

For a given M ∈ℕ,  a strongly causal prediction window is

W ={(k , l)∈ s(m, n) :m−M ≤k ≤m, n −M ≤ l ≤n}. (3)

In particular, ifM =1, then a strongly causal prediction window containing three elements is

W1 = {(k , l)∈ s(m, n) :m−1≤k ≤m, n −1≤ l ≤n} (4)

The set W1 is shown in Figure 3 (b). Similarly, strongly causal prediction windows can be

defined by considering not only the top left quadrant on the plane ℤ2.The definition of such
sets generates the prediction windows W2, W3, andW4, as shown in Figure3(b). Algorithms
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1 and 2 were implemented using the prediction windows W1, W2, W3,  and W4, with two
elements each (Figure 3(a)).

Figure 3. Strongly causal prediction windows.

Visually, the best segmentation for the aerial image is yielded by the prediction window W2.
The lines and edges are better highlighted in this segmentation (Figure 4(b)) than in the oth‐
er segmentations. The dark regions are also stressed, which provides a more intense and
brighter partition of the original features.

To gain insight on image quality measures, the fitted images produced by Algorithm 1 asso‐
ciated with the images shown in Figure 4(a) -(d) were compared aerially with the original
image using three coefficients described in (Ojeda et al., 2012). These coefficients are briefly
described below.

Consider two weakly stationary processes, (X s)s∈D and (Y s)s∈D, D⊂ℤd .For a given h ∈D,
the codispersion coefficient is defined as

ρ(h )=
γ(h )

VX (h )VY (h )
, (5)

where s, s + h ∈D, γ(h )=E X (s + h )−X (s) Y (s + h )−Y (s) , VX (h )=E X (s + h )−X (s) 2(and
similarly forVY (h )).

For d =2, the sample codispersion coefficient is defined by

ρ̂(h )=
∑s ,s+h ∈D ' asbs

V̂ X (h )V̂ Y (h )
(6)

withs =(s1, s2), h =(h 1, h 2), D ′⊆D, # (D ′)<∞, as =X(s1 + h 1, s2 + h 2) −X (s1, s2),
bs =Y(s1 + h 1, s2 + h 2) −Y (s1, s2),  V̂ X (h )=∑s ,s+h ∈D ′ as

2,  and V̂ Y (h )=∑s ,s+h ∈D ′ bs
2.
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Figure 4. a)-(d) Images generated by Algorithm 2 with prediction windows W1−W4respectively.

The index Q (Wang and Bovik, 2002) is

Q =
4SXY X̄ Ȳ

(SX
2 + SY

2) X̄ 2 + Ȳ 2 =
SXY

SX SY
·

2X̄ Ȳ
X̄ 2 + Ȳ 2 ·

2SX SY

SX
2 + SY

2 =C · M · V , (7)

where X̄  is the mean of(X s)s∈D, SX is the standard deviation of (X s)s∈D,  and SXY  is the co‐

variance between (X s)s∈Dand (Y s)s∈D(and similarly for Ȳ andSY ). The quantity

C =SXY / SX SY models the linear correlation between (X s)s∈D and(Y s)s∈D,

M =2X̄ Ȳ / (X̄ 2 + Ȳ 2)measures the similarity between the sample means (luminance) of
(X s)s∈Dand(Y s)s∈D, and V =2SX SY / (SX

2 + SY
2)measures the similarity related to the contrast

between the images. Coefficient Q is defined as a function of the correlation coefficient;
hence, it is able to capture only the linear association between (X s)s∈Dand(Y s)s∈D It is un‐

able to account for other types of relationships between these sequences, including the spa‐
tial association in a specific direction h . Ojeda et al. (2012) suggested by the CQindex, which
is defined as:
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CQ(h )= ρ̂(h ) · M · V , (8)

where M and V are defined as in (7).

The correlation coefficient and the coefficients defined in (6), (7) and (8) were computed to
compare the fitted images, which were generated with a prediction window with two ele‐
ments and associated with the images shown in Figure 4(a) -(f), and the original images. The
results are shown in Table 1. In all cases, the highest values of the image quality measures
are attained for the image fitted using the prediction window W2.This means that the resid‐
ual image shown in Figure 4 (b) is the best segmentation yielded by Algorithm 2. The same

Table 1. Image quality measures between the fitted and original (aerial) images related to the residual images shown
in Figure 4.

experiment was carried out for the image shown in Figure 2(a). Table 2 summarizes the values
of the image quality coefficients for the fitted images generated by Algorithm 2 with predic‐
tion windows W1, W2, W3, and W4. In this case, the best performance is for the fitted image

Table 2. Image quality measures between the fitted and original (peppers) images.

generated with prediction window W4.In general, the performance of Algorithm 2 depends
on the choice of the prediction window. One way to choose the prediction window that yields
the best segmentation is to maximize the association between the fitted and original im‐
ages. Indeed, if we denote the original image by Zand the fitted image generated by Algo‐
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rithm 1 with the prediction window W i  by Ẑ W i
, then the prediction window that produces

the best segmentation can be obtained by finding the maximum value of one of the quality
measures (6), (7) or (8) between ZandẐ W i

.  This criterion is summarized in the following
algorithm.

Algorithm 3.

1. Use Algorithm 1 to generate the approximated images Ẑ W i
of Z ,  i =1, 2, 3, 4.

2. Compute an image quality index between Zand Ẑ W i
for all i =1, 2, 3, 4.Suppose that the

maximum value for the image quality index is attained for Ẑ W j
,  1≤ j ≤4.Then, the best fitted

image is Ẑ W j
.

3. Compute the residual autoregressive image Z − Ẑ W j
.

3. Clustering Time series

3.1. Measuring Closeness and Association Between Time Series

Let x =(x1, x2, …, xp)and y =(y1, y2, …, yq) be two time series. There are several convention‐
al distance measures between time series. For example, ifp =q =n, then the Euclidean dis‐

tance between xand yis defined as dE (x, y)= (∑
i=1

n
(xi − yi)2)1/2

.As is evident, dE ignores

information about the dependence between xand y. The Minkowski distance is a generaliza‐
tion of the Euclidean distance, which is defined as

dM (x, y)= (∑
i=1

n
(xi − yi)q)1/q

, (9)

where qis a positive integer. The Fréchet distance was introduced to measure the proxim‐
ity between continuous curves. Let m  be a natural number such that m≤min(p, q). Let M
be the set of all mappings rbetween xand ysuch that ris a sequence of mpairs preserving
the order
r =((xa1

, yb1
), (xa2

, yb2
), …, (xam

, ybm
)),

where ai∈ {1, 2, ..., p},bj∈ {1, 2, ...q} with a1 =1, b1 =1, am = p, bm =q and fori∈ {1, 2, …, m−1},
ai+1 =(ai or ai + 1)and bi+1 =(bi or bi + 1).Note that | r | =maxi=1,2,…,m | xai

− ybi
|  is the mapping

length representing the maximum span between two coupled observations. Thus, the Fré‐
chet distance between the series xandyis given by

dF (x, y)=min
r∈M

| r | =min
r∈M

(max
i=1,2,…,m

| xai
− ybi |). (10)
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Dynamic time warping (DTW) is a variant of the Fréchet distance that considers mapping
length as the sum of the spans of all coupled observations. That is,

| r | = ∑
i=1,2,…,m

| xai
− ybi | .

Dynamic time warping is then defined as

dDTW (x, y)=min
r∈M | r | =min

r∈M
∑

i=1,2,…,m
| xai

− ybi | . (11)

The distances defined above are based on the proximity of the values | xai
− ybi

| . However,
these distances disregard both the temporal dependence between the sequences xand y and
the correlation structure of each sequence.

Several distance measures that are functions of the correlation between two sequences
(Cor(x, y)) have been suggested. For example, (Golay et al.,1998) proposed

dcc(x, y)= ( 1−Cor(x, y)
1 + Cor(x, y) )β

anddcc
2(x, y)=2(1−Cor(x, y)),

where βis a parameter related to the fuzzy c-means classification algorithm (Macqueen,
1967). However, none of these measures takes into account the serial association between
the sequences because the correlation coefficient is a crude measure of association. This ap‐
proach requires the study of coefficients that are capable of capturing the spatial or serial
correlation between two sequences.

3.2. The Codispersion Coefficient for Time Series

Consider two weakly stationary processes, X = {X s : s∈D⊂ℤ}and Y = {Y s : s∈D⊂ℤ}, and let
xand ybe realizations of these processes as in Section 3.1. For d =1, the estimator (6) becomes

ρ̂(h )=
∑t∈N (h ) (xt+h − xt)(yt+h − yt)

∑
t∈N (h )

(xt+h − xt)2 ∑
t∈N (h )

(yt+h − yt)2 (12)

where N (h )= {t : t + h ∈D},  N = | N (h )| is the cardinality of N (h ), and sequences xand y
are realizations of processes xandy, respectively. The coefficient ρ̂(h ) is called the comove‐
ment coefficient when h =1. Although ρ̂(h )is not the correlation coefficient, the codispersion
coefficient shares a number of its standard properties. For example, ρ̂(h )is translation invari‐
ant, positive homogeneous, symmetric in its arguments, positive definite for a sequence and
lagged versions of itself, and interpretable as the cosine of the angle between the vectors
formed by the first difference of the sampled series. As in the case of classic correlation, a
codispersion coefficient of +1indicates that the compared functions or processes are rescaled
or retranslated versions of one another. Similarly, a profile matched with its reflection across
the time axis yields a codispersion of−1. The value ρ̂(h )=0expresses that there is no monoto‐
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nicity between xand yand that their growth rates are stochastically linearly independent.
More details can be found in (Rukhin & Vallejos, 2008 , Vallejos, 2008).

3.3. Dissimilarity Index for Time Series

This coefficient involves a distance measure and a correlation-type measure that addresses
both the correlation behavior and the proximity of two time series. The dissimilarity index
depends on similarity behaviors, which should be specified in advance. The suggested dis‐
similarity index D(x, y, h )for the realizations xand yand d =1is given by

D(x, y, h )= f (ρ̂(h )) · d (x, y), (13)

where f  is an adaptive tuning function, and d (x, y)is one of the conventional distances de‐
scribed in Section 3.1 that summarizes the closeness of sequences xandy. There are many
possible ways to choose a function f . Here, we follow the guidelines given in (Chouakria &
Nagabhushan, 2007), according to which f is considered an exponential adaptive tuning
function given by

f k (t)=
2

1 + exp(kt) , (14)

where k ≥0modulates the contributions of the proximity with respect to values and behav‐
ior. For example, when | ρ̂(1)| is large and k =2, the proximity with respect to behavior con‐
tributes 76.2% toD. The flexibility of Dallows us to choose ksuch that for highly dependent
sequences, the correlation structure can have a large weight in (13).

Note that (13) is a generalization of the dissimilarity index introduced in Chouakria & Na‐
gabhushan, (2007). The dissimilarity index (13) can capture high-order serial correlations be‐
tween the sequences because the distance lag h is arbitrary, while Chouakria's index only
captures the first-order correlation.

The dependence of (13) on h is crucial, and in some specific cases, h can be chosen using an
optimal criterion. For example, for two AR(1) processes with parameters ϕ1andϕ2,  respec‐
tively, and a correlation structure between the errors (Rukhin & Vallejos,2008 ), it is possible
to find ϕ1, ϕ2such that Var(ρ̂(1))Var(ρ̂(2)).In other words, for those processes in which the
asymptotic variance of the codispersion coefficient is known, we suggest setting the value of
ĥ to produce the minimum variance. That is,

ĥ =argmin
h

Var(ρ̂(h )) . (15)

When the variance of the codispersion coefficient is difficult to compute, resampling meth‐
ods can be use to estimate the variance of the sample codispersion coefficient (Politis & Ro‐
mano, 1994, Vallejos, 2008).
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In the next section, we present two simulation examples to illustrate the capabilities of the

hierarchical methods using the distance measure (13) under the tuning function given by

(14). All else being constant, the clusters produced using traditional distances are usually

different from those yielded using the distance measure (13).

3.4. Simulations

In this example, we simulate observations from six first-order autoregressive models to il‐

lustrate the clustering produced by hierarchical methods when the sequences exhibit serial

correlation. To generate the series, we consider the following models.

X t
i =ϕi X t−1

i + εt
i, i =1, 2, ...6,

where ∀ i =1, 2, ..., 6, X i = {X t
i}t∈ℤdefine the i −model, and the sequence ε i = {εt

i}t∈ℤis zero-

mean white noise. Note that the sequences ε 1and ε 2have the covariance structure

Cov(εt
1, εs

2)= {ρστ,  s = t ,
0, otherwise,

with σ 2 =τ 2 =1, andρ =0.9. The same covariance structure is assumed for εt
1and εt

3, with

σ 2 =τ 2 =1and ρ =0.7. ε i, i =4, 5, 6, are assumed to be white noise processes with variance 1

and are uncorrelated with all other error sequences. Ifi, j ≤3, the correlation structure be‐

tween processes X iandX j, i ≠ j, is not null due to the correlation structure between ε iand

ε j. Instead, ifi, j ≥4, i ≠ j, the correlation structure between processes X iand X jvanishes.

Two  hundred  observations  were  generated  from  each  model  for  ϕ1 = −0.5,  ϕ2 = −0.3,

ϕ3 = −0.7,  ϕ4 =0.1,  ϕ5 = −0.9, and  ϕ6 = −0.2.The  goal  was  to  perform  time  series  cluster‐

ing  with  the  Euclidean  distance  and  (13).  Hierarchical  methods  with  complete  linkage

using  both  measures  were  implemented  to  evaluate  whether  the  methods  are  capable

of  capturing the  correlation structure  between the  sequences  described above.  We used

the  distance  measure  (13)  under  the  tuning function (14)  for  h =1, andk =3.  That  is,  the

correlation structure contributes  90.5% to D, whereas  the proximity with respect  to  val‐

ues  contributes  9.5%.
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Figure 5. a) Time series clustering using the Euclidean distance, (b) Time series clustering usingD.

In Figure 5, we see that the dendrogram obtained using hierarchical methods with the Eucli‐

dean distance does not recognize the correlation structure between X 1and X 3.In this case,

sequences X 1, X 2, X 4, and X 5are pulled together before sequence X 3.However, hierarchi‐

cal methods using (13) yield the expected results, combining sequences X 1, X 2, and X 3be‐
fore the rest of the series.

To obtain better insight into the classification process using the proposed distance measure
(13), we carried out a second simulation study that involves clustering measures based on
other distances (but using the same setup). Observations from models 1-6 were generated
using Gaussian white noise sequences for the errors, thereby preserving the same correla‐
tion structure used in the first study. The goal was to explore the ability of the distance measure
(13) to group strongly correlated series first. A total of 1000 runs were considered for this

Table 3. Percentage of correct clustering of the correlated series 1,2 and 3.

experiment, and 200 observations were generated in each run. We used measure (13) under
the tuning function (14) for h =1, 2and k =1, 2, 3, 4.We counted the number of times that the
hierarchical algorithm with complete linkage was able to pull together series 1, 2 and 3 be‐
fore connecting them with other sequences. The traditional distances described in Section 2
were also implemented. After the 1000 simulation runs were finished, the percentage of
times that the algorithm was able to recognize the correlated series was recorded. The re‐
sults of the experiment are summarized in Table 3 and 4.
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Table 4. Percentage of correct clustering of the correlated series (1,2, and 3).  DDTW (h , k )is distance measure (13)

with  the DTW distance.  DM (h , k )and DF (h , k )denote distance measure  (10)  with  Minkowski  and Frechet  distan‐

ces respectively.

Note from Table 3 that the traditional distance measures failed to group the correlated sequen‐
ces, with the exception of the Minkowski distance, which correctly grouped the correlated
series 99% of the time. The hierarchical algorithm that uses the distance measure (13) has a
higher percentage of well-clustered correlated sequences than the same algorithm using the
traditional distance measures described in Section 2 (see Table 4). The percentage of correct
clusters increased in all cases with the distance measure (13), suggesting that hierarchical
algorithms can be improved by including coefficients of association that consider high-or‐
der cross-correlation.

3.5. The NDVI Data Set

In this section, we consider time series from four different locations in Argentina. The data
set consists of 15 monthly NDVI series measured during a period of 19 years (i.e., January
1982-December 2000). The observed values correspond to a transformation to the interval
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0, 255 of the original NDVI series, which commonly resides in the interval −1, 1 .The data
were collected by a NOAA sensor at 1 km resolution and provided by the Comisión Nacio‐
nal de Actividades Espaciales (CONAE) in Córdoba, Argentina.  Fifteen time series were
collected from the following: the Amazon region in the northeast of Argentina (1, 2, 3), the
Patagonia region in the south of Argentina (4, 5, 6, 7), the Pampean region in the center of
Argentina (8, 9, 10, 11) and the Pre-Andean zone of Argentina (12, 13, 14, 15). The time series
are shown in Figure 6.

Figure 6. Fifteen NDVI series collected from four different regions in South America.

We can observe a variety of different patterns in Figure 6. In particular, the data collect‐
ed during the period 1994-1995 show irregular  behavior.  Additionally,  the original  data
lack some information (less than one percent) for all series over the period 1999-2000. An
imputation technique based on moving averages,  which takes into account past  and fu‐
ture values of the series, was used to replace missing values. The series were grouped by
geographical region and then plotted (Figure 7). Similar patterns are observed for the ser‐
ies across each group.

An exploratory data analysis was carried out for each of the 15 series. There exists signifi‐
cant autocorrelation of order of at least one in all series. Seasonal components are present in
most of partial autocorrelations. Because there is no large departure from the weakly station‐
ary assumptions (i.e., constant means and variances), all series can be modeled using the Box-
Jenkins approach. Specifically, seasonal ARIMA models can be fitted to each single series with
a small number of parameters (i.e., p ≤5,  q ≤5andd ≤2).
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Figure 7. The fifteen NDVI series grouped by area.

3.6. Clustering

Using the NVDI data set described in Section 3.5, the distance measure Din (13) was comput‐
ed for all possible pairs. Then, dendrogram plots were constructed using a hierarchical pro‐
cedure (i.e., complete linkage) to compare the mergers and clusters produced using Dwith
those produced using the conventional distances described in Section 2.2 and (13). In Figure
8, we observe the agglomeration produced by using the Euclidean distance (top left); the other
five plots show the results produced by distance (13) for different values of kand h .The
agglomeration algorithm using the Euclidean distance merges series 5 together with series
12-15 and thus does not preserve location when grouping series. However, with k =1and h =1
in (13), the location dependence of the 15 series is captured. Higher values of kand h  do not
modify the original clusters formed usingD. In Figure 9, we see the clusters and merges yielded
by using the Minkowski distance in (13). Note that series 4 is classified together with series 8,
9, 10 and 11 in the top left plot, but with k =1and h =1,  the algorithm handles the series
differently (shown in the top right plot) by merging together those series that are in the same
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location. The effects of higher values of kand h .are again negligible. The Fréchet distance
produced unsatisfactory results. In this case, the hierarchical algorithm does not take into
account the geographical location when using both the conventional distances measures and
(13). For example, series 1, 2 and 3 were merged in different stages. Nevertheless, when kand
h are increased, the algorithm using (13) still clusters the series by geographical location. Indeed,
if our goal is to produce four clusters as before, the hierarchical algorithm with h =2and k =3
produces a geographically consistent agglomeration (dendrograms not shown here). The same
analysis was performed using the hierarchical algorithm with the dynamic time warping
distance measure. In this case, this distance measure produced an agglomeration by geograph‐
ical location and thus did not need to be modified to capture serial correlation. The result
yielded with (13) produced the same outcome for all values of kand h .

Figure 8. Clusters produced by using a hierarchical method with the Minkowski distance and (13).
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Figure 9. Clusters produced by using a hierarchical method with the Fréchet distance and (13)

4. Concluding Remarks and Future Work

This chapter described two problems. The first problem involved image segmentation, while
the second problem involved clustering time series. For the first problem, a new algorithm
was proposed that enhances the segmentation yielded by a previous algorithm (Ojeda et al.,
2010). Identifying the best prediction window improves segmentation based on the estima‐
tion of AR-2D processes and generalizes the previous algorithm to different prediction win‐
dows associated with unilateral processes on the plane. An analysis of the association
between the original and fitted images relies on the selection of a suitable image quality
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measure. Using three image quality coefficients that are commonly used in image segmenta‐
tion, we carried out experiments that support our algorithm. Specifically, a set of images be‐
longing to the image database (http://sipi.usc.edu/database/) were processed and provided
satisfactory results (not shown here) in terms of image segmentation.

This chapter also proposed an extension of the dissimilarity measure first introduced in
(Chouakria & Nagabhushan,2007). The simulation experiments performed and the data
analysis carried out for relevant ecological series show that the distance lag h plays an im‐
portant role in capturing the higher-order correlation of each series. Cluster analysis per‐
formed using the proposed distance measure produced different merges and dendrograms.
Furthermore, the percentage of times that the hierarchical algorithms correctly classified the
highly correlated sequences increased in all cases in which the distance measure (13) was
used. For the NDVI series discussed in Section 3.5, the distance measure Dimproved the
performance of the Euclidean, Fréchet and Minkowski distances in the presence of high-or‐
der autocorrelation in the series. The dynamic time warping distance measure showed the
best performance in capturing the serial correlation between the NDVI series, and thus, it
was not necessary to introduce modified distance measures such as (13) to ensure agglomer‐
ation by geographical location.

Now, further research for the topics presented in this chapter is outlined.

Following the notation used in the Algorithm 3, consider the following residual image.
RW i

=Z − Ẑ W i
.

One interesting open problem involves the characterization of the types of images and dis‐
tributions associated with the segmentation produced by Algorithms 2 and 3. In addition,
the definition and study of linear combinations of residual images produced by distinct pre‐
diction windows is also of interests. For example,

I =∑
j=1

4
ajRW i

,

where ajis a weight associated with the residual image RW i
.

Regarding the clustering technique problem, the distribution of Dcan be studied from a
parametric point of view. This is an open problem that we expect to address in future research.
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