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1. Introduction

Acceptance sampling is a procedure used for sentencing incoming batches. Sampling plan
consist of a sample size and a decision making rule. The sample size is the number of items
to sample or the number of measurements to take. The decision making rule involves the
acceptance threshold and a description of how to use the sample result to accept or reject the
lot. Acceptance sampling plans are also practical tools for quality control applications, which
involve quality contracting on product orders between the vendor and the buyer. Those
sampling plans provide the vendor and the buyer rules for lot sentencing while meeting their
preset requirements on product quality. Scientific sampling plans are the primary tools for
quality and performance management in industry today. In an industrial plant, sampling
plans are used to decide either to accept or reject a received batch of items. With attribute
sampling plans, these accept/reject decisions are based on a count of the number of defec‐
tive items. The sample size is assumed constant in traditional sampling plans.

In this section, several new decision making policies for the acceptance sampling problem are
introduced. The objective of these models is to find constant control thresholds for lot sentenc‐
ing problem.

The single stage acceptance sampling plan based on the control threshold policy is present‐
ed in section 2, the acceptance sampling policy based on number of successive conforming
items is presented in section 3, and acceptance sampling policy using the minimum angle
method is presented in sections 4. Acceptance sampling policy based on cumulative sum of
conforming Items run lengths comes in section 5 and acceptance sampling policy based on
Bayesian inference comes in section 6. Finally the chapter is concluded in section 7.

© 2012 Fallah Nezhad; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



2. Single Stage Acceptance Sampling Plan based on the Control
Threshold Policy [1]

We suppose a batch of size n is received which its proportion of the defectives items is equal
top. For a batch of sizen, random variable Y  is defined as the number of inspected items and
z  is defined as the number of items classified as 'defective' after inspection. The number of
inspected items has an upper threshold equal tom. For Y =1, 2, ..., m inspected items (m≤n)
the batch will be rejected if x ≤ zwhere x is the upper control level for batch acceptance. In the
other words, when the number of defective items in the inspected items gets more than the
control threshold x then decision making process stops and the batch is rejected.

The probability distribution function of Y  is determined by the following equations,
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In Eq. (1), Y =mindicates that all items are inspected therefore, the number of defective items
has been less than xor xth defective item has been mth  inspected item. For the casex ≤Y m, xth

defective item has been Y th  inspected item thus, the probability distribution function of Y
follows a negative binomial distribution. The expected mean of the number of inspected
items is determined as follows:

E Y x =m∑
z=0

x−1 (mz )p z(1− p)m−z + m(m−1
x −1 )p x(1− p)m−x

+∑
Y =x

m−1
Y (Y −1

x −1 )p x(1− p)Y −x =m∑
z=0

x−1 (mz )p z(1− p)m−z +

∑
Y =x

m
Y (Y −1

x −1 )p x(1− p)Y −x

(2)

Since Pr{Y }= (Y −1
x −1 )p x(1− p)Y −x x ≤Y m is a negative binomial distribution thus using the

approximation method of estimating negative binomial probabilities with Poisson distribu‐
tion [2], following is concluded,
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Pr{Y }= Poisson(λ)=
e −λλ Y −x

Γ(Y − x + 1) (3)

where λ = x
1− p

p  is the parameter of Poisson distribution. In order to improve the accuracy

of this approximation, mand xshould be sufficiently large numbers. Using the above ap‐
proximation method, following is concluded,

E Y x≃m∑
z=0

x−1 (mz )p z(1− p)m−z + ∑
Y =x

m
Y

e −λλ Y −x

Γ(Y − x + 1) (4)

Now, let Px denotes the probability of rejecting the batch. The batch is rejected if the number

of defective items is more than or equal to x thus the value of Px is determined by the fol‐

lowing equation,

Px =∑
z=x

m (mz )p z(1− p)m−z (5)

In order to calculate the total cost, including the cost of rejecting the batch, the cost of in‐
spection and the cost of defective items, assume R is the cost of rejecting the batch, cis the
inspection cost of one item and c ' is the cost of one defective item, so the total cost, Cx, is

determined by conditioning Cxon two events of rejecting or accepting the batch, thus the ob‐

jective function is written as follows:
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Thus we have,

Cx = PxR + npc '(1−Px) + mc∑
z=0

x−1 (mz )p z(1− p)m−z

+c∑
Y =x

m
Y

e −λλ Y −x

Γ(Y − x + 1) = R∑
z=x

m (mz )p z(1− p)m−z

+∑
z=0

x−1 (mz )p z(1− p)m−z(npc ' + mc) + c∑
Y =x

m
Y

e −λλ Y −x

Γ(Y − x + 1)

(7)
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In Eq. (7), cE Y xis the total cost of inspection and npc ' is the total cost of defective items.
The optimal value of xis determined by minimizing the value of objective functionCx. Using
the optimization methods, it is concluded that,
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To evaluate above equation, following equality is considered,

∑
Y =x

m
Y

e −λλ Y −x

Γ(Y − x + 1) − ∑
Y =x−1

m
Y

e −λλ Y −(x−1)

Γ(Y − (x −1) + 1) =

∑
Y =x

m e −λλ Y −x

Γ(Y − x + 1) −m
e −λλ m−(x−1)

Γ(m− (x −1) + 1)

(9)

Since m is a sufficiently large number thus the value of m
e −λλ m−(x−1)

Γ(m− (x −1) + 1)  is approximately

equal to zero therefore it is concluded that,

ΔCx = −R(mx −1)p x−1(1− p)m−(x−1)

+(mc + npc ')(mx −1)p x−1(1− p)m−(x−1) + c∑
Y =x

m e −λλ Y −x

Γ(Y − x + 1) =

(mc + npc '−R)(mx −1)p x−1(1− p)m−(x−1) + c∑
Y =x

m e −λλ Y −x

Γ(Y − x + 1)

(10)

To ensure that x minimizes the objective function (7), it is necessary to find the value of x
that satisfies following inequalities:

ΔCx+1 =Cx+1−Cx >0, ΔCx =Cx −Cx−1 <0 (11)

Hence,
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ΔCx+1 =(mc + npc '−R)(mx )p x(1− p)m−x + c ∑
Y =x+1

m e −λλ Y −(x+1)

Γ(Y − (x + 1) + 1) >0

ΔCx =(mc + npc '−R)(mx −1)p x−1(1− p)m−(x−1) + c∑
Y =x

m e −λλ Y −x

Γ(Y − x + 1) <0
(12)

Now Ifmc + npc ' < R, then,

( ) ( ) ( )
( )( )

( )
( )( ) ( )

11

1

1
1

1 '

1
1

'

Y xm

m x Y xx

Y xm

m xY x x

ec
m Y x

p p
x R mc npc

ec
mY x

p p
xR mc npc

l

l

l

l

- -

- - =-

- -

-= +

G - +æ ö
- > >ç ÷- - +è ø

G - + æ ö
> -ç ÷- + è ø

å

å
(13)

Since with increasing the value of x the value of binomial distribution with parameters m and
p  decreases thus according to the properties of binomial distribution, it is concluded that
x >(m + 1)p therefore, the optimal value of xis determined using the following formula,
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Also The objective function, Cx, should be minimized regarding two constraints on Type-I

and Type-II errors associated with the acceptance sampling plans. Type-I error is the proba‐
bility of rejecting the batch when the nonconformity proportion of the batch is acceptable.
Type-II error is the probability of accepting the batch when the nonconforming proportion
of the batch is not acceptable. Then, in one hand, ifp =δ1, the probability of rejecting the

batch should be less thanα. On the other hand, in case wherep =δ2, the probability of accept‐

ing the batch should be less thanβ where δ1 is the AQL (Accepted Quality Level ) and δ2is

the LQL (Limiting Quality Level) andα is the probability of Type-I error and β is the proba‐
bility of Type-II error in making a decision, therefore, the optimal value of xis determined
using the following formula,
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Whenmc + npc ' > R, It is concluded that Eq. (16) is positive for all values of xsox =0. In this
case, if one defective item is found in an inspected sample then the batch would be rejected.
In this case, the rejection cost R is less than the total cost of inspecting m items and the cost
of defective items, hence rejecting the batch would be the optimal decision. However, in
practice the rejection cost R is usually big enough so that, we overlooked that case.

ΔCx =(mc + npc '−R)(mx −1)p x−1(1− p)m−(x−1) + c∑
Y =x

m e −λλ Y −x

Γ(Y − x + 1) (16)

3. Acceptance Sampling Policy Based on Number of Successive
Conforming Items [3]

In a typical acceptance-sampling plan, when the number of conforming items between suc‐
cessive nonconforming items is more than an upper control threshold, the batch is accepted,
and when it is less than a lower control threshold, the batch is rejected otherwise, the inspec‐
tion process continues. This initiates the idea of employing a Markovian approach to model
the acceptance-sampling problem. As a result, in this method, a new acceptance-sampling
policy using Markovian models is proposed, in which determining the control thresholds
are aimed. The notations required to model the problem at hand are given as:

N : The number of items in the batch

p: The proportion of nonconforming items in the batch

I : The cost of inspecting one item

c: The cost of one nonconforming item

R: The cost of rejecting the batch
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E (TC): The expected total cost of the system

E (AC): The expected total cost of accepting the batch

E (RP): The expected total cost of rejecting the batch

E (I ): The expected total cost of inspecting the items of the batch

U : The upper control threshold

L : The lower control threshold

Consider an incoming batch of N items with a proportion of nonconformitiesp, of which
items are randomly selected for inspection and based on the number of conforming items
between two successive nonconforming items, the batch is accepted, rejected, or the inspec‐
tion continues. The expected total cost associated with this inspection policy can be ex‐
pressed using Eq. (17).

E (TC)= E(AC) + E (RP) + E (I ) (17)

Let Y ibe the number of conforming items between the successive (i −1)th and i th noncon‐
forming items, U the upper and L  the lower control thresholds. Then, if Y i ≥U the batch is
accepted, if Y i ≤ L the batch is rejected. Otherwise, if L <Y i <U  the process of inspecting
items continues. The states involved in this process can be defined as follows.

State 1: Y ifalls within two control thresholds L, i.e.,L <Y i <U  ,  thus the inspection proc‐
ess continues.

State 2: Y iis more than or equal the upper control threshold, i.e.,Y i ≥U  , hence the batch is
accepted.

State 3: Y iis less than or equal the lower control threshold, i.e.,Y i ≤ L  , hence the batch is
rejected.

The transition probabilities among the states can be obtained as follows.

Probability of inspecting more items=p11 =Pr{L <Y i <U }

Probability of accepting the batch=p12 =Pr{Y i ≥U }

Probability of rejecting the batch=p13 =Pr{Y i ≤ L }

where the probabilities can be obtained based on the fact that the number of conforming
items between the successive (i −1)th and i th nonconforming items, Y i, follows a geometric

distribution with parameterp, i.e., Pr(Y i = r)=(1− p)r p; r =0, 1, 2, ...Then, the transition proba‐
bility matrix is expressed as follows:
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1         2          3

1 11 12 13

2

3

0 1 0
0 0 1

p p p
=

é ù
ê ú
ê ú
ê úë û

P (18)

As it can be seen, the matrix P  is an absorbing Markov chain with states 2 and 3 being ab‐
sorbing and state 1 being transient.

To analyze the above absorbing Markov chain, the transition probability matrix should be
rearranged in the following form:

A O
R Q

(19)

Rearranging the P  matrix yields the following matrix:

   2         3         1  
2

3

1
12 13 11

1 0 0
0 1 0
p p p

é ù
ê ú
ê ú
ê úë û

(20)

Then, the fundamental matrix M can be obtained as follows [4],

M =m11 =(I -Q)−1 = 1
1 − p11

= 1
1 −Pr{L < Y i < U } (21)

Where I  is the identity matrix and m11 denotes the expected long-run number of times the
transient state 1 is occupied before absorption occurs (i.e., accepted or rejected), given that the
initial state is 1. The long-run absorption probability matrix, F , is calculated as follows [4],

F =M ×R =1
p12

1− p11

p13
1− p11

2 3

(22)

The elements of the F  matrix, f 12, f 13, denote the probabilities of the batch being accepted or
rejected, respectively.

The expected cost can be obtained using Eq. (17) containing the batch acceptance, rejection,
and inspection costs. The expected acceptance cost is the cost of nonconforming items (Npc)
multiplied by the probability of the batch being accepted (i.e., f 12). The expected rejection cost
is the rejection cost (R) multiplied by the probability of the batch being rejected (i.e., f 13).
Moreover, m11is the expected long-run number of times the transient state 1 is occupied before
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absorption occurs. Knowing that in each visit to transient state, the average number of inspec‐

tions is 1
p  (the mean of the geometric distribution), the expected inspection cost is given by

E (I )= I
p m11 (23)

Therefore, the expected cost for acceptance-sampling policy can be expressed as a function
of f 12, f 13 and m11as follows:

E (TC)= cNp f 12 + R f 13 + I
p m11 (24)

Substituting for f 12 andm11, the expected cost equation can be rewritten as:

E (TC)= Npc
p12

1 − p11
+ R(1− p12

1 − p11
) + I

p ( 1
1 − p11

) (25)

Eq. (25) can be solved numerically using search algorithms to find L  and U that minimize the
expected total cost. The objective function, E (TC), should be minimized regarding two con‐
straints on Type-I and Type-II errors associated with the acceptance sampling plans. Type-I
error is the probability of rejecting the batch when the nonconformity proportion of the batch
is acceptable. Type-II error is the probability of accepting the batch when the nonconform‐
ing proportion of the batch is not acceptable. Then, in one hand, ifp = AQL , the probability
of rejecting the batch should be less thanα. On the other hand, in case wherep = LQL , the
probability of accepting the batch should be less thanβ where α and βare the probabilities of
Type-I and Type-II errors, hence,

p = AQL →
Pr{Y i ≥U }

1−Pr{L <Y i <U } ≥1−α

p = LQL → 1−
Pr{Y i ≥U i}

1−Pr{L <Y i <U } ≥1−β
(26)

The optimum values of L  and U among a set of alternative values are determined solving the
model given in (25), numerically, where the probabilities are obtained using the geometric
distribution.

4. Acceptance Sampling Policy Using the Minimum Angle Method based
on Number of Successive Conforming Items [5]

The practical performance of any sampling plan is determined through its operating charac‐
teristic curve. When producer and consumer are negotiating for designing sampling plans, it
is important especially to minimize the consumer risk. In order to minimize the consumer’s
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risk, the ideal OC curve could be made to pass as closely through AQL , 1−α , AQL , β .
One approach to minimize the consumers risks for ideal condition is proposed with minimi‐
zation of angle ϕ between the lines joining the points AQL , 1−α , AQL , β and
AQL , 1−α , LQL , β . Therefore in this case, the value of performance criteria in minimum

angle method will be [6],

Tan(ϕ)= ( LQL - AQL
Pra(AQL )−Pra(LQL ) ) (27)

where Pra(LQL ), Pra(AQL )is the probability of accepting the batch when the proportion of
defective items in the batch is respectivelyLQL , AQL . Assume A is the point AQL , 1−α ,
Bis  the point AQL , β and C  is  the point LQL , β thus the smaller value ofTan(ϕ),  the
angle ϕ  approaching zero, and the chord AC  approachingAB, the ideal condition.

The values of Pra(LQL ), Pra(AQL ) are determined as follows,

p = AQL →Pra(AQL )= f 12(AQL )=
Pr{U ≤Y i}

1−Pr{U >Y i > L }

p = LQL →1−Pra(LQL )=1− f 12(LQL )=1−
Pr{U ≤Y i}

1−Pr{U >Y i > L }

(28)

Since the values of LQL , AQL are constant andLQL AQL  therefore the objective function
is determined as follows,

V =Min
L ,U

{Pra(LQL )−Pra(AQL )} (29)

Another  performance  measure  of  acceptance  sampling plans  is  the  expected number  of
inspected items. Since sampling and inspecting usually has cost, therefore designs that min‐
imizes this measure and satisfy the first and second type error inequalities are considered to
be optimal sampling plans. Since the proportion of defective items is not known in the start
of process, in order to consider this property in designing the acceptance sampling plans, we
try to minimize the expected number of inspected items for acceptable and not acceptable
lots simultaneously. Therefore the optimal acceptance sampling plan should have three prop‐
erties, first it should have a minimized value in the objective function of the minimum angle
method that is resulted from the ideal OC curve and also it should minimize the expected
number of inspected items either in the decisions of rejecting or accepting the lot. Therefore
the second objective function is defined as the expected number of items inspected. The value
of this objective function is determined based on the value ofm11(p)where m11(p) is the expect‐
ed number of times in the long run that the transient state 1 is occupied before absorption
occurs, since in each visit to transient state, the average number of inspections is 1

p , conse‐

quently the expected number of  items inspected is  given by 1
p m11(p).  Now the objective
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functions W andZare defined as the expected number of items inspected respectively in the
acceptable condition(p = AQL ) and not acceptable condition(p = LQL ).

( )

( )

11,

11,

1

1

L U

L U

W Min m AQL
AQL

Z Min m LQL
LQL

ì ü
= í ý

î þ
ì ü

= í ý
î þ

(30)

Now one approach to optimize the objective functions simultaneously is to define control
thresholds for objective functions Z , W  and then trying to minimize the value of objective
functionV . For example if parameters Z1, W1 are defined as the upper control thresholds for
Z , W  then the optimization problem can be defined as follows,

{ }
,

1 1

. .
,

L U
Min V

S t
Z Z W W< <

(31)

Optimal values of L , U can be determined by solving above nonlinear optimization prob‐
lem using search procedures or other optimization tools.

5. Acceptance Sampling Policy Based on Cumulative Sum of Conforming
Items Run Lengths [7]

In an acceptance-sampling plan, assume Y iis the number of conforming items between the
successive (i −1)th and i th defective items. Decision making is based on the value of Si  that is
defined as,

Si =Y i + Y i−1 (32)

The proposed acceptance sampling policy is defined as follows,

If Si ≥U  then the batch is accepted

If Si ≤ L the batch is rejected

If L <Si <U  the process of inspecting the items continues

where U is the upper control threshold and L is the lower control threshold.

In each stage of the data gathering process, the index of different states of the Markov mod‐
el, j , is defined as:
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j =1 represents the state of rejecting the batch. In this state Si ≤ L  thus the batch is rejected.

j =Y i + 2  where Y i =0, 1, 2..., U −1 represents the state of continuing data gathering. In this
state, L <Si =Y i + Y i−1 <U thus the inspecting process continues.

j =U + 2 represents the state of accepting the batch. In this state Si ≥U  hence the batch is
accepted.

In other word, the acceptance-sampling plan can be expressed by a Markov model, in which
the transition probability matrix among the states of the batch can be expressed as:

( )1

1                                      1
0                                        1, 1
Pr - 2            2 1, 2, 1
0                                        2 1, 2, 1
0     

i

jk

j k
j k

Y L j U j L j k
U j L j k
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(33)

where, p jk is probability of going from state jto state k in a single step and Y i+1denotes the
number  of  conforming  items  between  the  successive  defective  items  and
Pr(Y i+1 = r)=(1− p)r p r =0, 1, 2, ... where pdenotes the proportion of defective items in the
batch.

The values of p jk  are determined based on the relations among the states, for example where
U + 2> j >1, L ≥ j −2, k =1 then according to the definition of j, it is concluded that j =Y i + 2 
and transition probability of going form state jto state k =1is equal to the probability of rejecting
the batch that is evaluated as follows,

p j1 =Pr(L ≥Si+1 =Y i+1 + Y i)=Pr(L ≥Y i+1 + j −2)=Pr(Y i+1≤ L − j + 2) (34)

In the other case where, U + 2> j >1, U + 2>k >1, U > j + k −4> L , based on the definition of
j, we have j =Y i + 2 thus it is concluded that

p jk =Pr(L <Si+1 =Y i+1 + Y i <U , Y i+1 =k −2)=
Pr(L < j −2 + Y i+1 <U , Y i+1 =k −2)=
Pr(L < j −2 + k −2<U , Y i+1 =k −2)=Pr(L < j + k −4<U , Y i+1 =k −2)

(35)
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In the other case where, U + 2> j >1, k =U + 2, then according to the definition of j, we have
j =Y i + 2 thus it is concluded that,

p jU +2 =Pr(Si+1 =Y i+1 + Y i ≥U )=Pr(Y i+1 + j −2≥U )=Pr(Y i+1≥U − j + 2) (36)

In the other case where, U + 2> j >1, U + 2>k >1, j + k −4≥U  , then according to the defini‐
tion of j, we have j =Y i + 2 thus it is concluded that,

p jk =Pr(L <Si+1 =Y i+1 + Y i <U , Y i+1 =k −2, j + k −4≥U  )
=Pr(L < j −2 + Y i+1 <U , Y i+1 =k −2, j + k −4≥U )
=Pr(L < j + k −4<U , j + k −4≥U )=0

(37)

As a result, when L =1and U =3 for example, the transition probability matrix among the
states of the system can be expressed as:

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1                          2                               3                             4                           5
1

2

3

4

5

1 0 0 0 0
Pr 1 0 0 Pr 2 Pr 3
Pr 0 0 Pr 1 0 Pr 2

0 Pr 0 0 0 Pr 1
0 0 0 0 1

Y Y Y
Y Y Y

Y Y
=

é ù
ê ú£ = ³ê ú
ê ú£ = ³
ê ú= ³ê ú
ê úë û

P (38)

And it can be seen the matrix P  is an absorbing Markov chain with states 1 and 5 being ab‐
sorbing and states 2, 3, and 4 being transient.

Analyzing the above absorbing Markov chain requires to rearrange the single-step probabil‐
ity matrix in the following form:

P =
A O
R Q

(39)

whereAis the identity matrix representing the probability of staying in a state that is defined
as follows

A=
1 0
0 1

(40)

Ois the probability matrix of escaping an absorbing state (always zero) that is defined as
follows
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  2        3         4
1

5

0 0 0
0 0 0

O =
é ù
ê ú
ë û

(41)

Qis a square matrix containing the transition probabilities of going from a non-absorbing
state to another non-absorbing state that is defined as follows

( )
( )

( )

  2                            3                              4
2

3

4

0 0 Pr 2
Q 0 Pr 1 0

Pr 0 0 0

Y
Y

Y
=

é ù=
ê ú=ê ú
ê ú=ë û

(42)

And Ris the Matrix containing all probabilities of going from a non-absorbing state to an
absorbing state (i.e., accepted or rejected batch) that is defined as follows

( ) ( )
( ) ( )

( )

1                               5

2

3

4

Pr 1 Pr 3
Pr 0 Pr 2

0 Pr 1

Y Y
Y Y

Y
=

é ù£ ³
ê ú£ ³ê ú
ê ú³ë û

R (43)

Rearranging the P  matrix in the latter form yields the following:

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1                            5                            2                            3                              4
1

5

2

3

4

1 0 0 0 0
0 1 0 0 0

Pr 1 Pr 3 0 0 Pr 2
Pr 0 Pr 2 0 Pr 1 0

0 Pr 1 Pr 0 0 0

Y Y Y
Y Y Y

Y Y

=

é ù
ê ú
ê ú
ê ú£ ³ =
ê ú£ ³ =ê ú
ê ú³ =ë û

P (44)

Bowling et. al. [4] proposed an absorbing Markov chain model for determining the optimal
process means. According to their method, matrix M that is the fundamental matrix contain‐
ing the expected number of transitions from a non-absorbing state to another non-absorbing
state before absorption occurs can be obtained by the following equation,

M = (I -Q)-1 (45)

For the above numerical example, i.e., when L =1andU =3, the fundamental matrix M  can
be obtained as:
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( )
( )

( )
( )

12                               3                              4

2 1 0 Pr 2
3 0 1 Pr 1 0
4 Pr 0 0 1

Y
Y

Y

-

é ù- =
ê ú= - =ê ú
ê ú- =ë û

-1M = I -Q (46)

where I is the identity matrix.

Since m jjrepresents the expected number of the times in the long-run the transient state jis
occupied before absorption occurs (i.e., before accepted or rejected), and matrix F  is the ab‐
sorption probability matrix containing the long run probabilities of the transition from a
non-absorbing state to an absorbing state. The long-run absorption probability matrix, F ,
can be calculated as follows:

F =M ×R (47)

Again when L =1andU =3, the elements of F  ( f jk ; j =2, 3, 4 ; k =1, 5) represent the
probabilities of the batch being accepted and rejected, respectively, given that the initial
state is j =2, 3, 4. In this case, the probability of accepting the batch is obtained as:

Probability of accepting the batch=

∑
j=2

∞
Pr(Accepting the batch|the initial state is j)×Pr(the initial state is j)

=∑
j=2

4
f j5Pr(Y = j −2) + Pr(Y ≥3)

(48)

Also the expected number of inspected items will be determined as follows,

Expected number of inspected items =

∑
j=2

U +1 ((the number of inspected items in state j)
(the number of visits to state j) )=∑

j=2

U +1
( j −2)m jj

(49)

This new acceptance-sampling plan should satisfy two constraints of the first and the sec‐
ond types of errors. The probability of Type-I error shows the probability of rejecting the
batch when the defective proportion of the batch is acceptable. The probability of Type-II
error is the probability of accepting the batch when the defective proportion of the batch is
not acceptable. Then on the one hand ifp = AQL , the probability of rejecting the batch will
be less than α  and on the other hand, in case wherep = LQL , the probability of accepting
the batch will be less thanβ  where α  and βare the probabilities of Type-I and Type-II er‐
rors. Hence,
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p = AQL →Probability of accepting the batch≥1−α

p = LQL →Probability of accepting the batch≤β
(50)

From the inequalities in (50), the proper values of the thresholds L  and U  are determined
and among the feasible ones, we select one that has the least value for expected number of
inspected items that is obtained using Eq. (49).

6. A New Acceptance Sampling Design Using Bayesian Modelling and
Backwards Induction [8]

In this research, a new selection approach on the choices between accepting and rejecting a
batch based on Bayesian modelling and backwards induction is proposed. The Bayesian
modelling is utilized to model the uncertainty involved in the probability distribution of the
nonconforming proportion of the items and the backwards induction method is employed
to determine the sample size. Moreover, when the decision on accepting or rejecting a batch
cannot be made, we assume additional observations can be gathered with a cost to update
the probability distribution of the nonconforming proportion of the batch. In other words, a
mathematical model is developed in this research to design optimal single sampling plans.
This model finds the optimum sampling design whereas its optimality is resulted by using
the decision tree approach. As a result, the main contribution of the method is to model the
acceptance-sampling problem as a cost optimization model so that the optimal solution can
be achieved via using the decision tree approach. In this approach, the required probabilities
of decision tree are determined employing the Bayesian Inference. To do this, the probability
distribution function of nonconforming proportion of items is first determined by Bayesian
inference using a non-informative prior distribution. Then, the required probabilities are de‐
termined by applying Bayesian inference in the backward induction method of the decision
tree approach. Since this model is completely designed based on the Bayesian inference and
no approximation is needed, it can be viewed as a new tool to be used by practitioners in
real case problems to design an economically optimal acceptance-sampling plan. However,
the main limitation of the proposed methodology is that it can only be applied to items not
requiring very low fractions of nonconformities.

6.1. Notations

The following notations are used throughout the paper.

Set of decisions: A= {a1, a2}is defined the set of possible decisions where a1 and a2 refer to ac‐
cepting and rejecting the batch, respectively.

State space: P = {pl ; l =1, 2, ...; 0< pl <1}is defined the state of the process where plrepresents

nonconforming proportion items of the batch in l th  state of the process. The decision maker
believes the consequences of selecting decisiona1 or a2 depend on P  that cannot be deter‐
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mined with certainty. However, the probability distribution function of the random variable
p can be obtained using Bayesian inference.

Set of experiments: E = {ei; i =1, 2, ...}is the set of experiments to gather more information on
pand consequently to update the probability distribution ofp. Further, eiis defined an ex‐
periment in which iitems of the batch are inspected.

Sample space: Z = {zj; j =0, 1, 2, ..., i}denotes the outcomes of experiment ei where zjshows
the number of nonconforming items inei.

Cost function: The function u(e, z, a, p) on E ×Z × A× P  denotes the cost associated with per‐
forming experimente, observingz, making decisiona, and findingp.

N : The total number of items in a batch

R: The cost of rejecting a batch

C : The cost of one nonconforming item

S : The cost of inspecting one item

n: An upper bound on the number of inspected item

6.2. Problem Definition

Consider a batch of size N  with an unknown percentage of nonconforming p and assume m
items are randomly selected for inspection. Based on the outcome of the inspection process
in terms of the observed number of nonconforming items, the decision-maker desires to ac‐
cept the batch, reject it, or to perform more inspections by taking more samples. As Raiffa &
Schlaifer [9] stated "the problem is how the decision maker chose eand then, having ob‐
servedz, choose esuch that u(e, z, a, p) is minimized. Although the decision maker has full
control over his choice of eanda, he has neither control over the choices of znorp. However,
we can assume he is able to assign probability distribution function over these choices."
They formulated this problem in the framework of the decision tree approach, the one that
is partially adapted in this research as well.

6.3. Bayesian Modelling

For a nonconforming proportionp, referring to Jeffrey’s prior (Nair et al. [10]), we first take a
Beta prior distribution with parameters v0 =0.5 and u0 =0.5 to model the absolute uncertainty.
Then, the posterior probability density function of p using a sample of v + u inspected items
is

f (p)= Beta(v + 0.5, u + 0.5)=
Γ(v + u + 1)

Γ(v + 0.5)Γ(u + 0.5) p v−0.5(1− p)u−0.5 (51)
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where vis the number of nonconforming items and u is the number of conforming items in
the sample. Moreover, to allow more flexibility in representing prior uncertainty it is con‐
venient to define a discrete distribution by discretization of the Beta density (Mazzuchi, &
Soyer [11]). In other words, we define the prior distribution for plas

Pr{p = pl}= ∫
p1−

δ
2

p1+δ
2

f (p)dp (52)

where p1 = ( 2l − 1
2 )δ and δ= 1

m for l =1, 2, ..., m

Now, define ( j, i); i =1, 2, ..., nand j =0, 1, 2, ..., i the experiment in which j nonconforming
items are found when iitems are inspected. Then, the sample space Z  becomes
Z ={( j, i) : 0≤ j ≤ i ≤n}, resulting in the cost function representation of u ei, ( j, i), ak , p1 ;k =1, 2

that is associated with taking a sample of iitems, observing jnonconforming and adopting
a1or a2when the defective proportion ispl . Using the notations defined, the cost function is

determined by the following equations:

1) for accepted batch
u(ei, ( j, i), a1, p1)=CN p1 + Sei

2) for rejected batch
 u(ei, ( j, i), a2, p1)= R + Sei

(53)

Moreover, the probability of finding j nonconforming items in a sample of i inspected
items, i.e., Pr{( j, i)| p = p1}, can be obtained using a binomial distribution with parameters

(i, p = pl) as:

Pr{( j, i)| p = p1}=Cj
i p1

j(1− p1)i− j (54)

Hence, the probability Pr{p = p1, z = zj | e = ei} can be calculated as follows

Pr{p = p1, z = zj | e = ei}=Pr{z = zj | p = p1, e = ei}Pr{p = p1}

=Cj
i p1

j(1− p1)i− j ∫
p1−

δ
2

p1+δ
2

f (p)dp
(55)

Thus,

Practical Concepts of Quality Control72



Pr{z = zj | e = ei}=∑
l=1

m
Pr{p = p1, z = zj | e = ei}Pr{p = pl}

=∑
l=1

m (Cj
i p1

j(1− p1)i− j ∫
p1−

δ
2

p1+δ
2

f (p)dp) (56)

In other words, applying the Bayesian rule, the probability Pr{p = pl | z = zj, e = ei} can be ob‐
tained by

Pr{p = p1 | z = zj, e = ei}=
Pr{p = p1, z = zj | e = ei}

Pr{z = zj | e = ei}

=

Cj
i p1

j(1− p1)i− j ∫
pl−

δ
2

pl+
δ

2

f (p)dp

∑
k=1

m
Cj

i pk
j(1− pk )i− j ∫

pk−
δ

2

pk+δ
2

f (p)dp

 
(57)

In the next Section, a backward induction approach is taken to determine the optimal sam‐
ple size.

6.4. Backward Induction

The analysis continues by working backwards from the terminal decisions of the decision
tree to the base of the tree, instead of starting by asking which experiment ethe decision
maker should select when he does not know the outcomes of the random events. This meth‐
od of working back from the outermost branches of the decision tree to the initial starting
point is often called "backwards induction" [9]. As a result, the steps involved in the solution
algorithm of the problem at hand using the backwards induction becomes

1. Probabilities Pr{p = pl}  and Pr{( j, i)| p = pl}  are determined using Eq. (52) and Eq. (54),
respectively.

2. The conditional probability Pr{p = pl | z = zj, e = ei} is determined using Eq. (57).

3. With a known history(e, z), since pis a random variable, the costs of various possible ter‐
minal decisions are uncertain. Therefore the cost of any decision a for the given (e, z) is set
as a random variableu(e, z, a, p). Applying the conditional expectation, E p|z, which takes
the expected value of u(e, z, a, p) with respect to the conditional probability Pp|z(Eq. 57), the
conditional expected value of the cost function on state variable p1 is determined by the fol‐
lowing equation.
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u *  (ei, zj, ak )=∑
l=1

m
(u *  (ei, zj, ak , p1)Pr{p = p1 | z = zj, e = ei}) (58)

4. Since the objective is to minimize the expected cost, the cost of having history (e, z) and
the choice of decision (accepting or rejecting) can be determined by

u *  (ei, zj)=minak
u *  (ei, zj, ak ) (59)

5. The conditional probability Pr{z = zj | e = ei} is determined using Eq. (56).

6.  The costs of various possible experiments are random because the outcome zis a ran‐
dom variable. Defining a probability distribution function over the results of experiments
and taking expected values, we can determine the expected cost of each experiment. The
conditional expected value of function u *  (ei, zj)  on the variable zj  is  determined by the
following equation.

u * (ei)=∑
j=0

i
{u *  (ei, zj)Pr{z = zj | e = ei}} (60)

7. Now the minimum of the values u * (ei) would be the optimal decision, which leads to an
optimal sample size.

u *  =mine u *  (ei)=  mine Ez|e mina E p|zu(ei, zj, ak , p1) (61)

7. Conclusion

Acceptance sampling plans have been widely used in industry to determine whether a spe‐
cific batch of manufactured or purchased items satisfy a pre-specified quality. In this chap‐
ter, new models for determining optimal acceptance sampling plans have been presented.
The relationship between the cost model and a decision theory model with probabilistic util‐
ities has been investigated. However, the acceptance sampling plan, which are derived from
the optimization of these models, may differ substantially from the plans that other econom‐
ic approaches suggest but optimization of these models are simple and efficient, with negli‐
gible computational requirements. In next sections, a new methodology based on Markov
chain was developed to design proper lot acceptance sampling plans. In the proposed proce‐
dure, the sum of two successive numbers of nonconforming items was monitored using two
lower and upper thresholds, where the proper values of these thresholds could be deter‐
mined numerically using a Markovian approach based on the two points on OC curve. In
last section, based on the Bayesian modelling and the backwards induction method of the
decision-tree approach, a sampling plan is developed to deal with the lot-sentencing prob‐
lem; aiming to determine an optimal sample size to provide desired levels of protection for
customers as well as manufacturers. A logical analysis of the choices between accepting and
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rejecting a batch is made when the distribution function of nonconforming proportion could
be updated by taking additional observations and using Bayesian modelling.
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