
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 12 

 

 

 
 

© 2012 Wang, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Mutual Regulation of  

Receptor-Mediated Cell Signalling and  

Endocytosis: EGF Receptor System as an Example 

Zhixiang Wang 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/47435 

1. Introduction 

Epidermal growth factor (EGF) receptor (EGFR), also known as HER1 or ErbB1, is the 

prototypal member of the superfamily of receptors with intrinsic tyrosine kinase activity 

and is widely expressed in many cell types including epithelial and mesenchymal lineages 

[1, 2]. The other three members of the ErbB receptor family include Her2/ErbB2/neu [3, 4], 

Her3/ErbB3 [5] and Her4/ErbB4 [6] (Fig. 1A). EGFR is a 170 kDa membrane glycoprotein 

composed of three domains. The heavily glycosylated 622-amino acid extracellular domain 

containing two cysteine rich regions is responsible for ligand binding. The transmembrane 

domain is a single 23-amino acid α-helical transmembrane peptide. The 542-residue 

intracellular cytoplasmic domain contains a 250-amino acid conserved protein tyrosine 

kinase core followed by a 229-amino acid C-terminal tail with regulatory tyrosine residues 

(Fig. 1B) [7]. Eleven ligands have been identified for ErbB receptors. These ligands can be 

classified into three groups based on their ability to bind to different ErbB receptors. The 

first group of ligands includes EGF, transforming growth factor-α, amphiregulin and epgen, 

which specifically binds to EGFR. The second group of ligands includes betacellulin, 

heparin-binding EGF and epiregulin, which binds to both EGFR and ErbB4. The third group 

of ligands includes neuregulin/heregulin, which binds to ErbB3 and ErbB4 [8, 9] (Fig. 1A). 

The EGFR family of receptor tyrosine kinases lies at the head of a complex signal 

transduction cascade that modulates cell proliferation, survival, adhesion, migration and 

differentiation [1, 2, 10]. While growth factor-induced EGFR signalling is essential for many 

normal morphogenic processes and is involved in numerous additional cellular responses, 

the aberrant activity of the members of this receptor family has been shown to play a key 

role in the development and growth of tumour cells [10-12]. The ErbB receptors were first 

implicated in cancer when the avian erythroblastosis tumor virus was found to encode an 
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aberrant form of EGFR. Now, EGFR has been implicated in many cancers including 

squamous cell head and neck cancer, colorectal cancer, non-small cell lung cancer, gastric 

cancer, pancreatic cancer, breast cancer, ovarian cancer, renal cancer, glimas prostatic cancer 

and cervical cancer [13]. The dysregulation of ErbB receptor signalling in cancer can occur 

by various mechanisms, including overexpression due to gene amplification, autocrine 

ligand production, heterodimerization, deficiency in endocytosis, and gene mutations that 

increase receptor transcription, translation, protein stability and kinase activity[14, 15].  

 

Figure 1. ErbB receptor family. (A) ErbB receptors and their ligands. ErbB family receptors are 

composed of four members: EGFR/ErbB1/Her1, ErbB2/Her2/neu, ErbB3/Her3 and ErbB4/Her4. Eleven 

ligands are identified for ErbB family receptors. (B) Linear structure of EGFR.  
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The binding of EGF at the cell surface induces dimerization of EGFR, which results in the 

activation of EGFR tyrosine kinase and receptor trans-autophosphorylation [16, 17]. EGFR 

activation stimulates various signaling pathways, leading to cell mitogenesis and survival [9, 

10]. EGFR is overexpressed or hyper activated in many epithelial tumors and plays important 

roles in cancer development and progression [12]. The activated receptors are rapidly 

internalized into endosomes and eventually degraded in lysosomes [18]. Initially, the 

endocytosis of ligand-activated receptors was considered a mechanism to attenuate signaling. 

Recently, more evidence suggests that the internalized receptors may maintain their ability to 

generate cell signaling in endosomes [19-23]. Thus, the alteration of EGFR endocytosis may 

result in abnormal cell signaling, leading to cancer. On the other hand, EGFR endocytosis is 

firmly regulated by signal recognition and various signaling proteins at every step. 

2. EGFR-mediated cell signaling 

EGFR plays important roles in initiating cell signaling to produce specific effects on cell 

growth and development [9, 10]. EGFR is activated through the homodimerization or 

heterodimerization with other ErbBs such as ErbB2 and ErbB3 in response to ligand 

stimulation (Fig. 2)[2]. The dimerization of EGFR at the plasma membrane induces the 

activation of the EGFR tyrosine kinase and trans-autophosphorylation. The sites of tyrosine 

phosphorylation in the activated EGFR form signaling complexes with many signaling 

proteins, including Grb2, Shc, phospholipase C-γ1 (PLC-γ1), the p85α subunit of PI3K (p85), 

p120 rasGAP, Src, Stats, and Cbl [2, 24-26] [2]. The formation of the receptor-signaling protein 

complexes then initiates the activation of various signaling pathways (Fig. 3A)[9-11, 27-29].  

 

Figure 2. Dimerization of EGFR and the association with signaling proteins. EGFR is homodimerized or 

heterodimerized with other ErbB proteins in response to ligand.  
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Figure 3. Signaling pathways activated by EGFR. (A) Binding of EGF to EGFR at the plasma membrane 

initiate the activation of various signaling pathways. The well-defined pathways include Ras-Erk 

pathway, PI3K-Akt pathway, PLC-γ1 pathway, Stat pathway and Src pathway. (B)The signaling 

cascade of Ras-Erk pathway. (C) The signaling cascade of PLC-γ1 pathway. (D) The signaling cascade of 

PI3K-Akt pathway. 
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The activated EGFR interacts with Shc and Grb2 through multiple phosphorylated tyrosine 

(pY) residues localized at the C-terminus, which results in the recruitment of Sos to the 

plasma membrane to activate Ras. Activated Ras mediates Raf activation, which then 

phosphorylates and activates MEK. Activated MEK then phosphorylates and activates ERK. 

Activated ERK phosphorylates Rsk, which in turn translocates into the nucleus to activate 

transcription factors such as c-fos and SRF. Activated ERK may also translocate into the 

nucleus to activate transcription factors such as Elk1 and c-fos, which is critical in 

controlling cell mitogenesis (Fig. 3B) [2, 24, 30-34]. 

Activated EGFR also interacts with PLC-γ1 with multiple pY residues at the C-terminal 

regulatory domain, which results in the phosphorylation of PLC-γ1 and an increase in its 

enzymatic activity [35-37]. Active PLC-γ1 hydrolyzes phosphatidylinositol 4, 5-

bisphosphate (PtdIns(4,5)P2) to form the second messengers inositol 1, 4, 5-triphosphate 

(InsP3) and diacylglycerol (DAG). InsP3 and DAG mobilize intracellular calcium and activate 

protein kinase C (PKC), respectively. Recent studies have shown that PLC-γ1 is involved in 

broad cell signaling. Interestingly, most recently identified interactions between PLC-γ1 and 

its binding proteins are mediated by its SH3 domain. EGF stimulates the interaction 

between PLC-γ1 and PLD2, which is mediated by the PLC-γ1 SH3 domain [38]. PLC-γ1 

binds directly to Akt in response to EGF through its SH3 domain [39]. The PLC-γ1 SH3 

domain acts as a guanine nucleotide exchange factor (GEF) for PIKE [40], dynamin [41] and 

Rac1 [42]. The activated PLC-γ1 regulates cell mitogenesis and migration (Fig. 3C)[39, 42-

44].  

Activated EGFR also activates PI3K either through its direct interaction with the p85α 

subunit or through the activated Ras [45, 46]. Activated PI3K then catalyzes the production 

of the second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) by phosphorylating 

phosphatidylinositol-4,5-bisphosphate (PIP2). A direct antagonist of PI3K is the phosphatase 

and tensin homologue deleted on chromosome 10 (PTEN). PTEN dephosphorylates PIP3 

into PIP2 to reverse the activity of PI3K and therefore function as an important negative 

controlling element of incoming signals. PIP3 transduces activating signals by binding to 

pleckstrin homology (PH) domains of proteins to recruit them to the cell membrane. One 

centrally important downstream mediator of the PI3K signalling cascade is the serine 

threonine (Thr) kinase Akt. Akt is recruited to the plasma membrane by its SH3 domain 

interaction with PIP3, which exposes Akt Thr 308 for phosphorylation by 3-

phosphoinositide-dependent kinase 1 (PDK-1), which is already located at the membrane. 

The rapamycin complex 2 (mTORC2) phosphorylates Ser 473 in the C-terminus, which leads 

to full Akt activation. Activated Akt then mediates signals promoting cellular growth and 

survival and suppresses pro-apoptotic signals. Akt phosphorylates several intracellular 

proteins, including forkhead box O transcription factors (FoxO), the BCL2-associated 

agonist of cell death (BAD), and the glycogen synthase kinase 3 (GSK3), to promote cell 

cycle entry and cell survival. The proteins TSC1 (Hamartin) and TSC2 (Tuberin) form a 

complex that inhibits the activity of the small G-protein ras homologue enriched in the brain 

(Rheb), which is necessary for mTORC1 activation. The Akt-mediated phosphorylation of 

TSC2 releases Rheb from its inhibited state. Rheb then accumulates in a GTP-bound state 
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and can directly activate mTORC1, which phosphorylates the p70S6 kinase (S6K1) and the 

eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), leading to increased 

protein translation (Fig. 3D), which protects the cell from undergoing apoptosis [45, 47, 48].  

Activated EGFR also activate Stats directly by binding to and phosphorylating Stats, or 

indirectly by activating c-Src. Activation can occur via cytokine signaling (IL-6), growth 

factor receptor signaling (EGFR), or non-receptor tyrosine kinase signaling (Src). JAK is not 

required when Stats bind directly to EGFR for activation, but JAK provides maximal 

activation of Stats phosphorylated by EGFR-activated Src. Grb2 and SOCS can inhibit Stat-

mediated EGFR signaling respectively, by either binding to the STAT activation site on 

EGFR or by binding to JAK to suppress Src activation of Stats. Once activated, Stats 

dimerize and translocate to the nucleus where they activate the transcription of genes 

involved in proliferation, differentiation, and survival [49].  

Importantly, Src kinases, which have been reported to be activated in many cancers with 

high EGFR levels, have been shown to potentiate EGFR signaling [50-52]. The c-Src 

potentiation of EGFR has been demonstrated to be associated with the c-Src-dependent 

phosphorylation of EGFR and the complex formation between c-Src and EGFR [50, 51]. In 

addition to focal adhesion kinase (FAK), which is involved in the regulation of adhesion and 

migration, PI3K and Stat3 are also substrates for c-Src [53]. Although the Src kinase has been 

linked with the development and progression of cancer for many years, we still do not 

completely understand its role in cancer [54]. Src is a member of a ten-gene family (FYN, 

YES, BLK,FRK, FGR, HCK, LCK LYN, and SRMS) of non-RTKs that play a fundamental role 

in the regulation of cell proliferation, migration, adhesion, and tumor angiogenesis [55, 56]. 

Src signaling is cross-connected with many signaling pathways, such as the PI3K and Stat 

pathway [55, 56]. Even though tyrosine kinase activity of Src is independent of RTK 

signaling, it may interact with RTKs such as EGFR. As such, Src-EGFR interaction may 

enhance EGFR signaling, and on the other hand it may be involved in resistance to EGFR-

targeted therapy [54, 57]. 

3. EGFR-mediated endocytosis 

3.1. Clathrin-dependent and clathrin-independent endocytic pathways 

The concept of receptor-mediated endocytosis was formulated in 1974 to explain how the 

sequential cell surface binding, internalization, and intracellular degradation of plasma low 

density lipoprotein (LDL) regulates cellular cholesterol metabolism [58]. Receptor-mediated 

endocytosis is a multiple step event [58]. In general, receptor-mediated endocytosis consists 

of two stages: internalization and intracellular trafficking. Endocytic pathways are generally 

classified as either clathrin-dependent or clathrin-independent. Much work has focused on 

clathrin-mediated endocytosis (CME). In this process, cargo proteins are recruited into 

developing clathrin-coated pits (CCPs), and subsequently form clathrin-coated vesicles 

(CCVs) [59]. Several proteins or protein complexes, including clathrin, adaptin AP-2, 

dynamin and Eps15, participate in the CME of all receptors. Adaptin AP-2 is a cytoplasmic 

protein complex that interacts with the cytoplasmic tails of various receptors. These 
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interactions are thought to account for the ability of cells to selectively direct receptors to 

CCVs. Clathrin is ideally designed to form a scaffold which, when attached to the 

membrane, causes the membrane to deform into a budding vesicle. Clathrin presumably 

binds to the membrane by interacting with membrane-bound AP-2. Dynamin has been 

identified as a major player in the endocytic pathway and is essential for the scission of 

coated vesicles. Eps15 is an essential component of the early endocytic pathway [59-61].  

Although CME is certainly an extremely important endocytic mechanism, accounting for a 

large proportion of endocytic events, an ever expanding array of cargos has been shown to 

undergo non-clathrin-mediated endocytosis (NCE) [62]. Many NCE pathways have been 

reported, including caveolar-type endocytosis, CLIC/GEEC-type endocytosis, the putative 

flotillin-associated endocytic structures, phagocytosis, macropinocytosis, dorsal ruffles (or 

waves), and entosis [62, 63]. Caveolar-type endocytosis is the best studied NCE.  

3.2. Endocytic and sorting signals 

The targeting of transmembrane proteins to different compartments of the endocytic 

pathways is largely dependent upon sorting signals contained within the cytoplasmic 

domains of the proteins [64-66]. Most of these sorting signals are short, linear sequences of 

amino acid residues. These signals can be classified to two groups. One group of signals is 

referred to as tyrosine-based sorting signals and the other group of signals is known as 

dileucine-based signals. All of these signals are recognized by components of protein coats 

peripherally associated with the cytosolic face of membranes [66]. 

Tyrosine-based signals constitute a family of degenerate motifs minimally defined by the 

presence of a critical tyrosine residue [66]. Most tyrosine-based signals conform to the 

consensus motifs YXXΦ (Y is tyrosine, X is any amino acid and Φ is an amino acid with a 

bulky hydrophobic side chain) [67] or NPXY (N is asparagine and P is proline) [68-71]. It 

was shown by several groups that the substitution of tyrosine residues in the cytosolic 

domains of various endocytic receptors devoid of NPXY motifs impaired internalization [72-

77]. NPXY signals have been shown to mediate only the rapid internalization of a subset of 

type I integral membrane proteins, and not mediate other intracellular sorting events. The 

interaction between NPXY motif and endocytic protein is less understood. However, several 

proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition 

proteins for NPXY signals. There are several NPXY motifs located in the EGFR C-terminus 

[78]. Systematic mutational analyses led to the identification of another tyrosine-based 

motif, YXXΦ, as the major determinant of endocytosis of the mannose 6-phosphate as well 

as many other transmembrane proteins [67, 78, 79]. In mammalian cells, virtually all YXXΦ 

signals mediate rapid internalization from the cell surface. Some YXXΦ signals can 

additionally mediate lysosomal targeting [64-66]. Recent evidence suggests that the µ2 

subunit of AP2 directly interacts with YXXΦ to mediate rapid internalization [80-83].  

Di-leucine-based sorting signals have been implicated in various sorting process [78]. Two 

classes of di-leucine-based sorting motifs have been distinguished. [DE]XXXL[LI] signals 

play critical roles in the sorting of many type I, type II and multispanning transmembrane 
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proteins. The [DE]XXXL[LI] signals in mammalian proteins mediate rapid internalization 

and target the proteins to endosomal-lysosomal compartments, suggesting that they can be 

recognized both at the plasma membrane and at intracellular locations. [DE]XXXL[LI] 

signals are recognized by the adaptor protein (AP) complexes. DXXLL signals are present in 

several transmembrane receptors and other proteins that cycle between the TGN and 

endosomes. DXXLL signals are recognized by another family of adaptors known as GGAs. 

Ubiquitination of cytosolic lysine residues constitutes another important signal for sorting 

transmembrane receptors at various stages of the endosomal-lysosomal system. Ubiquitin is 

a globular protein consisting of 76 amino acids that is able to covalently conjugate to other 

proteins [84]. Ubiquitin is covalently conjugated to proteins by forming a bond between the 

carboxy-terminal glycine of ubiquitin and the ε-NH2 group of a lysine residue in the 

substrate protein. Alternatively, ubiquitin can be conjugated to the α-NH2 group of the N-

terminal amino acid of the substrate [85, 86]. Conjugated ubiquitin is recognized by UIM, 

UBA, or UBC domains present within many components of the internalization and 

lysosomal targeting machinery. It has been shown that EGFR is ubiquitinated in response to 

EGF, which plays an important role in EGFR degradation in lysosomes. The presence of 

these various type of sorting signals within the transmembrane receptors and their 

interaction with the signal recognition proteins ensures the dynamic but accurate 

distribution of transmembrane proteins to different compartments along the endocytic 

pathways. 

3.3. Endocytosis of EGFR 

The first comprehensive study of EGF endocytosis, in which many of the key concepts of 

internalization and lysosomal degradation of EGF have been established, was published by 

Carpenter and Cohen [87]. The binding of EGF results in the clustering and internalization 

of EGFR. The accumulation of EGF and EGFR can be detected in the early endosome after 1-

5 min of incubation with EGF at 37oC. EGF and EGFR accumulate in late endosomes after 

10-20 min at 37oC. A substantial number of EGFR can be detected in organelles with typical 

biochemical and morphological features of mature lysosomes only after 40-60 min of 

continuous internalization at 37oC [16, 88]. Intracellular trafficking of receptors involves a 

series of membrane budding and fusion events [89]. Endosome fusion is regulated by 

specific cytosolic and membrane-associated protein factors, including a group of Ras-like 

small guanosine triphosphatases (GTPases) called Rabs [90-92]. Four classes of endocytic 

organelles are typically distinguished based largely on their relative kinetics of labeling by 

endocytic tracers: early endosomes (EEs), late endosomes (LEs), recycling vesicles (RVs), 

and lysosomes [65]. The precise relationship among these structures has yet to be 

determined, and in fact may never be known because of the great plasticity and dynamics of 

the system. 

The internalization of constitutively internalized receptors is largely mediated by sorting 

signals such as YXXΦ and NPXY. However, for the receptors that are internalized in 

response to ligand binding, there is likely some means of switching their sorting signals on 

and off [93]. Given that ligand binding is essential for the rapid internalization of EGFR, the 
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events induced by the ligand binding likely contribute to the regulation of ligand-induced 

EGFR internalization. These events include receptor dimerization, activation of intrinsic 

tyrosine kinase activity, autophosphorylation and association with various binding proteins.  

The initial results are very controversial regarding the role of EGFR kinase activity in EGFR 

internalization. Data from some research groups suggest that kinase-dead EGFR is deficient 

in EGF-induced internalization [94, 95]; however, data from other research groups suggest 

that kinase-dead EGFR is internalized normally like wild type EGFR, but is quickly recycled 

back to the plasma membrane [96, 97]. Since the mid 1990s, most studies suggest that EGFR 

kinase activity is required for EGF-induced EGFR internalization. It was reported that EGFR 

kinase activation is required for the recruitment of EGFR into coated pits [98]. The EGFR 

activation of c-Src tyrosine kinase has been implicated in the regulation of the clathrin-

dependent endocytosis of EGFR through the ability to phosphorylate clathrin heavy chain 

[99]. The EGFR activation of Eps15 has been shown to be required for the internalization of 

EGFR [100]. The inhibition of EGFR kinase activity by AG1478 and PD158780 was shown to 

block EGFR internalization [101, 102].  

While most studies indicate that EGFR kinase activity is essential for EGF-induced EGFR 

internalization [94, 95, 98-102], it was shown recently that EGFR kinase activity is not 

required for EGF-induced EGFR internalization [103-107]. Inhibition of EGFR kinase 

activation by the specific inhibitor AG1478 and PD158780 in BT20, MDCK, Cos7 and Hela 

cells did not block EGFR internalization. When transiently expressed in 293T cells or stably 

expressed in CHO cells, a kinase-dead EGFR (EGFR K721A), was internalized following 

EGF stimulation in a similar pattern to wild type EGFR, which indicates that EGFR kinase 

activation is not required for EGFR internalization [103-107].  

If kinase activity is not necessary for EGF-induced EGFR endocytosis, an EGF-induced event 

before or independent of EGF-induced EGFR kinase activation must be responsible for 

mediating EGF-induced EGFR endocytosis. The only significant event induced by EGF 

before the activation of EGFR kinase is the dimerization of EGFR. It is well established that 

receptor dimerization is critical for EGFR kinase activation [108]. In fact, it is generally 

believed that the only function of receptor dimerization is to allow the activation of EGFR 

kinase and the trans-autophosphoylation of the two receptors. However, it was shown 

recently that EGFR dimerization is necessary and sufficient to stimulate EGFR 

internalization, independent of EGFR kinase activation [105]. EGF-induced EGFR 

dimerization in the absence of kinase activation is sufficient to stimulate EGFR 

internalization. Non-ligand-induced dimerization of EGFR without kinase activation is 

sufficient to stimulate EGFR internalization. Moreover, the inhibition of EGF-induced EGFR 

dimerization by deleting the receptor dimerization loop abolishes EGF-induced EGFR 

internalization [105]. It has also been reported that the crosslinking of two EGFR with 

antibody stimulates the endocytosis of EGFR without activating EGFR kinase [109]. How 

dimerization may mediate EGFR endocytosis independent of its role in EGFR kinase 

activation is not known. Several possibilities have been suggested. It is possible that EGF-

induced EGFR dimerization causes necessary conformational changes of the receptor to 

expose the cryptic internalization codes. Alternatively, the internalization regulating 
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proteins essential for EGFR internalization may have a dimeric nature and can only bind to 

dimerized EGFR [105].  

Many studies have also focused on the role of EGFR C-terminus in EGFR internalization 

(Fig. 4). The EGFR mutants truncated from the C-terminus to residue 991 [110] or to residue 

973 [111] are internalized inefficiently and the mutant truncated at residue 958 is not 

internalized [110]. Simultaneous point mutation of the five-tyrosine residues (Y992, Y1068, Y 

1086, Y1148 and Y1173) to phenylalanines significantly reduces EGFR internalization [112]. 

EGFR is co-immunoprecipitated with adaptin AP-2 [88]. The binding between EGFR and 

AP-2 is mediated by EGFR amino acid residues 970-991, especially Y974 [113, 114]. This 

interaction accelerates EGFR internalization when EGFR is expressed at high levels, but is 

not required for EGFR internalization when EGFR is expressed at low levels [83, 113, 114]. A 

15-amino acid domain (residues 943-957) was found to be essential for binding sorting 

nexin-1 (SNX1) which is involved in targeting EGFR to lysosome [115], but not EGFR 

internalization. It was shown that the EGFR C-terminal sequences from 992 to 1044 are 

essential for mediating EGF-induced EGFR internalization with or without the inhibition of 

EGFR kinase activation [105]. It was further shown that EGFR residues 1005-1017, especially 

the di-leucine 1010LL1011 is required for EGF induced rapid internalization of full length EGFR 

and the role of 1010LL1011 in EGFR internalization is independent of EGFR kinase activation 

[106]. The identification of 1010LL1011 as essential for EGFR internalization is very interesting. 

EGFR di-leucine motif 1010LL1011 proceeded with TSRTP, which is different from the two 

classes of di-leucine-based sorting signals described above. Two di-leucine motifs including 
679LL680 and 1010LL1011 have been implicated in EGFR sorting. It was reported that 679LL680 is 

required for the efficient transport of EGFR to lysosomes and for the retention of EGFR in 

endosomes [116, 117]. It was also shown that 1010LL1011 is critical in the tyrosine 

phosphorylation of β2 subunit of clathrin adaptor complex AP-2 and is required for EGFR 

degradation [118]. The only data suggesting a possible role of 1010LL1011 in EGFR endocytosis 

is that it regulates the slow endocytosis of a mutant EGFR truncated at amino acid 1022 

[119]. However, other data from the same group showed that 1010LL1011 is not involved in the 

endocytosis of full length EGFR [118, 119].  

The role of various EGFR binding proteins in EGFR endocytosis has also been extensively 

studied. Some proteins that bind to pY sites of EGFR have also been implicated in EGFR 

endocytosis. These proteins including Grb2, Eps15, PLD, Cbl, Rin1, and Src [41, 99, 100, 119-

123]. Grb2 regulates EGFR endocytosis, possibly through its SH3 domain interaction with 

dynamin [120]. Knocking-down Grb2 with siRNA also blocks EGFR endocytosis [119, 124]. 

EGF receptor endocytosis is dependent upon PLD and the PLD1 regulators, protein kinase 

C alpha and RalA [125]. Tyrosine phosphorylation of Eps15 is necessary for the 

internalization of EGFR [100]. Eps15 functions as a scaffolding adaptor protein and is 

involved in both secretion and endocytosis. Eps15 has been shown to bind to AP-1 and AP-2 

complexes, to inositol lipids, and to several other proteins involved in the regulation of 

intracellular trafficking [126]. Phosphorylation of clathrin heavy chain by Src facilitates 

EGFR endocytosis [99]. Rin1 binds to EGFR and regulates EGFR endocytosis through its 

SH2 domain [123]. Although it is generally agreed that Cbl acts to negatively regulate EGFR 
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activity by promoting the intracellular trafficking and degradation of EGFR, it is still 

disputed whether Cbl binding or Cbl-mediated ubiquitination is altogether required for 

ligand-induced EGFR endocytosis [122, 127]. Some recent data indicate that Cbl-mediated 

ubiquitin of EGFR is not required for EGFR endocytosis [127, 128]. While PI3K is required 

for β-PDGFR endocytosis and down-regulation [129-131], PI3K activity is not required for 

EGFR endocytosis [132].  

 

Figure 4. Internalization and sorting signals within EGFR intracellular domain. 

Strong evidence suggests that CME is the major pathway of EGFR endocytosis. EGF and 

EGFR are found concentrated in CCP and CCV. EGFR endocytosed with a rate similar to 

those of other receptors that are internalized by CME, such as LDL and transferrin (Tfn). 

Knockdown of clathrin heavy chain or dynamin by RNA interference (RNAi) inhibits EGFR 

endocytosis [18]. Although CME is certainly an extremely important endocytic mechanism, 

accounting for a large proportion of endocytic events, an ever expanding array of cargos has 

been show to undergo endocytosis in clathrin-independent manner [62, 133]. Clathrin-

independent endocytosis itself has been further dissected into seemingly distinct pathways, 

based on the reliance of these pathways on certain proteins and lipids, their differential drug 

sensitivities and their abilities to internalize particular cargos [134]. Many NCE pathways 

have been reported including caveolar-type endocytosis, CLIC/GEEC-type endocytosis, the 

putative flotillin-associated endocytic structures, phagocytosis, macropinocytosis, dorsal 

ruffles (or waves), and entosis [62, 63]. New evidence suggests that EGF-induced EGFR 

endocytosis may also be mediated by NCE. NCE of EGFR via dorsal waves was observed in 

several types of cells [135]. This pathway required the activity of the EGFR kinase, PI3K and 

dynamin [135]. The NCE of EGFR involving cholesterol-rich lipid rafts and/or caveolar has 

also been reported [136]. This cholesterol-dependent endocytosis was observed under 

conditions of high EGFR occupancy by EGF in Hela cells. All of the reported NCE pathways 
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are significantly slower than CME, although they are faster than constitutive receptor 

endocytosis [18].  

4. Regulation of EGFR signalling by endocytosis 

Endocytosis is essential for cells to perceive extracellular signals and transduce them in a 

temporally and spatially controlled fashion, directly influencing not only the duration and 

intensity of the signaling output, but also their correct location. It is well established that the 

endocytosis of EGFR from the plasma membrane to lysosomes results in the degradation of 

the receptor, which can attenuate receptor signaling and may even be conceived of as a 

tumor suppressor pathway [19]. On the other hand, accumulated evidence suggests that the 

internalized EGF-EGFR complex may maintain its ability to generate cell signaling from 

endosomes [19-23].  

4.1. Downregulation of EGFR by endocytosis 

Endocytosis has been recognized as the most significant pathway to downregulate EGFR by 

removing the receptor from the cell surface for degradation in lysosomes [137]. This 

downregulation of EGFR is a complicated and tightly regulated process. During this process 

the EGFR-containing internalized vesicles mature into multivesicular bodies (MVBs), which 

then fuse with lysosomes to allow degradation of their content. This was first shown by 

Cohen and his colleagues, who observed that ferritin-conjugated EGF was rapidly 

internalized upon binding to EGFR and trafficked to MVBs within 15 minutes exposure of 

cells to ligand [87, 138]. The impaired endocytic downregulation of signaling receptors is 

frequently associated with cancer, since it can lead to increased and uncontrolled receptor 

signaling [139].  

The role of endocytosis in the downregulation of EGFR signalling is best illustrated by the 

findings that the inhibition of EGFR endocytosis frequently leads to cancer. The best 

characterized EGFR mutant with impaired endocytosis is EGFRvIII. EGFRvIII has been 

implicated in many types of tumors [140-145]. EGFRvIII is a mutant EGFR with the deletion 

of amino acid residues 6–273 in the extracellular domain of EGFR. This results a truncated 

145 kDa receptor with a non-functional ligand binding pocket and no dimerization arm. In 

spite of not binding any ligands, the receptor is constitutively active [146], and is able to 

activate Ras-Erk1/2 and PI 3-kinase-Akt pathways [142, 147]. In concordance with this, 

EGFRvIII was shown to transform fibroblasts and to enhance the proliferation and/or 

tumorigenicity of cells both in vivo and in vitro [142, 148-152]. The constitutive activity may 

be important for tumorigenicity, but impaired downregulation certainly enhances the effect. 

Two recent reports show that EGFRvIII is not degraded in cells with endogenous levels of 

Cbl, instead, internalized EGFRvIII is recycled back to the plasma membrane [153].  

It is generally accepted that ErbB2 avoids efficient endocytic downregulation [154-158], 

which contributes to its important role in the development of various cancers [2, 10]. As 

ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis [158], 

EGFR-mediated cell signaling are significantly sustained in the cells with overexpressed 
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ErbB2 due to the formation of EGFR-ErbB2 heterodimers. EGFR signaling can also be 

sustained if the molecular machinery normally involved in receptor downregulation does 

not function optimally. Indeed, several mutations of such proteins have been found in 

tumors, including Cbl, TSG101 (an ESCRT-I subunit), and VPS25 (an ESCRT-II subunit) 

(recently reviewed in [159]. In conclusion, endocytic impairment may be a returning theme 

of oncogenic EGFR mutants.  

The role of endocytosis in the downregulation of EGFR signalling is also frequently and 

successfully explored as a therapy for cancer. Since the lack of endocytic downregulation is 

an emerging theme in ErbB cancer biology, it is evident that the stimulation of ErbB 

endocytosis and lysosomal degradation is an attractive means to inhibit tumor growth. 

Polyvalent antibodies have been developed to stimulate EGFR and other ErbB endocytosis 

by crosslinking the receptors together [156, 160]. One good example is trastuzumab 

(Herceptin). Trastuzumab is a humanized recombinant mAb that binds to the extracellular 

domain of ErbB2 protein [161, 162]. Currently, it is the only ErbB2-targetted therapy 

approved by FDA for metastatic breast cancer treatment [163]. Although several recent 

studies suggest that Trastuzumab does not induce the endocytosis of ErbB2 to a significant 

degree [154, 156, 157], the dominating opinion has been that Trastuzumab causes endocytic 

downregulation of ErbB2 [2, 164-166]. 

Cetuximab is an antibody targeting EGFR that is currently used in treatment of colorectal 

cancer and head and neck cancer [167]. Several studies have shown that Cetuximab induces 

the internalization of EGFR [109, 168]. Cetuximab-induced EGFR internalization is 

independent of receptor tyrosine kinase activity, and it is both slower and less efficient in 

terms of receptor downregulation than ligand-induced endocytosis [109]. At present, the 

knowledge of mechanisms underlying antibody-mediated endocytic downregulation is 

relatively sparse. A useful observation is that extensive antibody-based crosslinking of ErbB 

receptors is far more efficient at inducing ErbB endocytic downregulation than single 

antibodies are [156, 160]. Crosslinking can either be done using antibodies that form 

multivalent aggregates via secondary antibodies or gold particles (Hommelgaard2004}, or 

by a more clinically relevant approach using combinations of monoclonal antibodies against 

distinct epitopes in an ErbB receptor [160]. Thus, whereas the administration of 

Trastuzumab alone did not induce significant ErbB2 endocytosis, the combination of 

Trastuzumab with another monoclonal antibody to ErbB2 was very efficient at 

downregulating ErbB2. In addition, the combination of two antibodies was much more 

efficient at inhibiting tumor growth in a mouse model compared to Trastuzumab 

administered alone [160, 166]. 

Although the endocytic downregulation of EGFR has been mostly attributed to clathrin-

dependent endocytosis [18], other endocytic pathways have also been proposed during 

recent years, especially following stimulation with high concentrations of EGF [136]. The 

concentration of EGF varies greatly throughout the human body. The EGF concentration in 

most tissue fluid is about 1–2 ng/ml, but it is much higher, up to 100 ng/ml or more, in 

tubular duct lumens of kidney, salivary glands, and the mammary gland [87, 169]. 

Normally, EGFR is not reached by the high luminal concentrations of EGF in these systems, 
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since the receptor is present at the basolateral site of the epithelial cells. However, during 

wound healing or malignant transformation, the tight junctions disappear and allow the 

high concentrations of EGF to access the receptor [170]. Very high EGF concentration can 

also be found in solid tumors [171]. It was reported that at high concentrations of EGF (20 

ng/ml) the receptor became ubiquitinated and was to a high degree internalized by caveolae 

[136]. Incubation of epithelial cells with 30 ng/ml of EGF for 5–20 min resulted in an eight to 

tenfold increase in the number of plasma membrane caveolae due to EGF-induced tyrosine 

phosphorylation of caveolin-1 [172]. Moreover, live cell imaging revealed increased 

dynamics of green fluorescent protein (GFP)-tagged caveolin upon stimulation of cells with 

30 ng/ml EGF. Thus, some studies suggest a role of caveolae in EGFR endocytosis. More 

interesting, it was further revealed by Sigismund et al that EGFRs internalized via CME are 

not targeted for degradation, but instead are recycled to the cell surface. By contrast, 

clathrin-independent internalization preferentially commits the receptor to degradation 

[173]. A prior study has shown that TGFβ receptor is internalized by two distinct endocytic 

pathways, clathrin-mediated endocytosis leading to TGFβ receptor signaling and lipid-raft-

mediated endocytosis leading to the degradation of TGFβ receptor [174]. 

4.2. Signalling endosomes 

The concept of EGFR signalling from endosomes or "signalling endosomes" has been 

gradually developed. Early evidence to support signalling from endosomes was reported in 

middle to late 1980s. These researches showed that internalized EGFR is 

autophosphorylated and catalytically active [175-177]. Various signaling molecules that 

regulate Ras activity, including Grb2, SHC, Sos and GAP, are co-internalized with EGFR 

into endosomes and remain associated with the receptor in endosomes [20, 178-181]. 

Afterwards, more results confirmed the interaction between EGFR and various signaling 

proteins in endosomes [182-186].  

The major evidence supporting endosomal EGFR signalling came from endocytosis 

inhibition experiments. Since the mid 1990s, researchers have developed many ways to 

inhibit EGFR endocytosis and then examine the effects on cell signalling. These experiments 

have yielded mixed results regarding what signalling pathways activated by endosomal 

EGFR and the physiological relevance of EGFR signaling from endosomes. The inhibition of 

EGFR endocytosis by a dominant-negative mutant dynamin enhances the activation of PLC-

γ1 and cell proliferation, but decreases ERK activation [187]. In a study of EGFR 

transactivation by G-protein coupled receptors, it was found that the inhibition of EGFR 

endocytosis by either mutant dynamin or β-arrestin abolished ERK activation [188, 189]. The 

inhibition of EGFR endocytosis by phospholipase D also blocks EGF stimulated-ERK 

activation [125]. However, none of these researches provided a mechanism to explain why 

activated EGFR at the plasma membrane is unable to activate ERK. On the other hand, other 

research showed that the inhibition of EGFR internalization enhances ERK activation [190, 

191]. EGFR efficiently activates mitogen-activated protein kinase in HeLa cells and Hep2 

cells, which is conditionally defective in clathrin-dependent endocytosis by overexpressing 

dominant negative dynamin [191]. Sprouty2 attenuates EGFR ubiquitination and 
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endocytosis, and consequently enhances Ras/ERK signalling [190]. Initially, in the few cases 

where biological end points were measured, inhibition of endocytosis did not result in the 

attenuation of biological effects [187, 192]. These results argue against a physiological 

relevance of endosome-originated signals [193].  

The controversy over endosomal signaling and its physiological relevance is in part due to 

the limitation of current approaches. For example, while it has made significant contribution 

and remains a powerful tool to study endosomal signaling, this endocytosis-inhibition 

approach has its limitations. While the inhibition of EGFR endocytosis eliminates endosomal 

signaling, the retention of EGFR at the cell surface also enhances signaling from the plasma 

membrane. Thus, it is difficult to determine whether the observed effects are due to the lack 

of endosomal signaling or due to prolonged plasma membrane signaling. Blocking EGFR 

endocytosis by mutant dynamin or β-arrestin affects all endocytic events mediated by these 

factors. Thus, it is difficult to determine whether the observed effects are due to the 

inhibition of EGFR endosomal signaling or due to a broad inhibition of endocytosis. 

Moreover, this approach is not suitable for studying the dynamics of endosomal signaling. 

None of these approaches offered mean to get activated receptors inside a cell without initial 

activation at the cell surface [194] 

In the early 2000s, a novel system was established to allow the specific activation of 

endosome-associated EGFR without the initial activation at the plasma membrane and 

without disrupting the overall endocytosis pathway. To specifically activate endosomal 

EGFR, cells were treated with EGF in the presence of AG1478, a specific EGFR tyrosine 

kinase inhibitor, and monensin that blocks the recycling of EGFR. This treatment led to the 

internalization of inactive EGF-EGFR complex into endosomes. The endosome-associated 

EGFR was then activated by removing AG1478 and monensin. No surface EGFR 

phosphorylation was detected [103, 104]. The specific activation of endosome-associated 

EGFR was also achieved without using monensin[103, 104]. In this system EGFR follows the 

same endocytic pathway as the control: EGF receptor is first internalized into Rab5-positive 

endosomes and eventually traffics to lysosomes for degradation. The only difference is that 

the EGF receptor is not activated during its internalization from the plasma membrane to 

endosomes and stops at endosomes until being activated. Thus, this system not only allows 

the generation of specific endosomal signaling of EGFR, but also under a condition very 

similar to the endosomal signaling of EGFR following its activation at the plasma 

membrane. By using this system, it was shown that 1) endosomes can serve as a nucleation 

site for the formation of signaling complexes, 2) endosomal EGFR signaling is sufficient to 

activate the major signaling pathways leading to cell proliferation and survival, and 3) 

endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum-withdrawal 

[103] and to stimulate cell proliferation [195].  

In most cases, the endosomal EGFR signaling is the continuation of EGFR signaling at the 

plasma membrane, serving to maintain EGFR signaling and provide spatial-temporal 

regulation of EGFR signaling. However, in some cases, specific and novel signaling may be 

initiated only from endosomes as these signaling events require factors to be brought 

together by endocytosis. While specific signaling complexes can be assembled through their 
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recruitment to the early endosomal resident protein RAB5, there are no convincing 

examples that specific and novel signaling is initiated from endosomes in the context of 

EGFR signaling. However, it is well illustrated in TGFβ signaling that specific and novel 

signaling may be initiated only from endosomes. TGFβ receptors (TGFβR) become 

phosphorylated at Ser residues and are internalized by endocytosis following ligand 

binding. Once localized into endosomes, TGFβR can bind to SMAD anchor for receptor 

activation (SARA). The protein complex induced phosphorylation of the transcription 

factors SMAD1 or SMAD2 by their Ser/Thr kinase receptors. Upon phosphorylation, SMADs 

are released into the cytoplasm, bind to a cofactor (SMAD4), enter the nucleus, and promote 

gene transcription [137, 174].  

Together, it is clear that EGFR signals from both the plasma membrane and the endosomes, 

and that the signals from both locations are able to activate major signaling pathways, 

stimulate cell proliferation, and promote cell survival. However, following EGF stimulation, 

activated EGF receptors only stay at the plasma membrane briefly (5-10 min), but stay in the 

endosome much longer (1 h) (Fig. 5) [88]. This argues for a more physiologically important 

role for endosomal signaling. The plasma membrane EGFR signaling are usually 

exaggerated by studies with the inhibition EGFR endocytosis, as activated EGFR that stay at 

the plasma membrane are artificially over extended. 

 

Figure 5. A model to describe the EGFR signaling along its endocytic route. Following its activation at 

the plasma membrane EGFR continues to signal along its endocytic route till its degradation in 

lysosome. EGFR signaling from both the plasma membrane and the intracellular endocytic 

compartment regulates major signaling pathways leading to cell proliferation and survival. The 

Activated EGFR may stay 1-5 minutes at the plasma membrane and 1 - 1.5 h along the endocytic 

compartments. PM: plasma membrane. CP: coated pit. CV: coated vesicle.  
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5. Remaining questions, perspectives and future research 

In spite of intensive research and significant progress, many important issues remain 

unsolved regarding EGFR endocytosis and its regulation of cell signaling. One issue is 

clathrin-mediated endocytosis vs non-clathrin-mediated endocytosis. Significant evidence 

supportting the presence of non-clathrin mediated endocytosis and EGFR also internalized 

through non-clathrin mediated endocytic pathways. However, the mechanisms dictating 

which endocytic pathways EGFR follows under various conditions are far from clear and 

the functions of these different endocytic pathways are not clear either. While a few recent 

researchers showed that EGFR undergoes non-clathrin mediated endocytosis at high EGF 

concentrations and leads to EGFR degradation [137], the extensive data that support the role 

of chathrin-mediate endocytosis in EGFR internalization and degradation in lysosomes in 

the past several decades are mostly obtained at high EGF concentrations. A recent study 

showed that during cell mitosis, EGFR follows non-clathrin mediated endocytic pathway 

under both low and high EGF concentrations [107], which suggest that EGF concentration is, 

at least, not the only factor dictating the entry of EGFR into different endocytic pathways. It 

is also difficult to explain why cells choose the much slower non-clathrin mediated 

endocytosis to degrade EGFR, because it provides the heavily phosphorylated EGFR too 

much time to signal before degradation.  

Another issue is the role of EGFR kinase activity in EGFR endocytosis. Both of the opposing 

claims that EGF-induced EGFR endocytosis is dependent on EGFR kinase activity and that it 

is independent of EGFR kinase activity are supported by many data. It is difficult to 

reconcile the differences in the literature. However, a recent piece of research may shed 

some light. It was recently reported that EGF-induced EGFR endocytosis is independent of 

EGFR kinase activity during interphase, but is dependent on EGFR kinase activity during 

mitosis [107]. During mitosis, EGF-induced EGFR endocytosis is slower and independent of 

clathrin [107]. As previous research never distinguished the cells at interphase from cells at 

mitosis and at any given time there is a portion of cells at mitosis, the reported results are 

always a combination of kinase-independent and kinase-dependent endocytosis. Depending 

on the cell type and experimental conditions, the data may vary significantly. Moreover, 

EGFR may also undergo both kinase-dependent and kinase independent endocytosis during 

interphase depending on the cell type and experimental conditions. It has been shown that 

antibody-induced EGFR endocytosis is independent of EGFR kinase activity [109]. Future 

research is needed to elucidate the molecular mechanisms underlying kinase-independent 

and kinase-dependent endocytic pathways.  

Last, but not least, the function and significance of EGFR signaling from endosome vs EGFR 

signaling from the plasma membrane provides room for further research. It is clear that 

EGFR signals from both the plasma membrane and the endosomes, and that the signals 

from both locations are able to activate major signaling pathways, stimulate cell 

proliferation, and promote cell survival. However, the extent of the difference between these 

two signals is unclear. So far, the results have come from either the comparison between 

endosomal signaling and standard EGFR signaling, or the comparison between plasma 

membrane signaling and standard EGFR signaling. A direct comparison between 
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endosomal EGFR signaling and the plasma membrane EGFR signaling is needed to define 

the functional difference and their physiological significance of these two signals. The 

spatio-temporal dynamics of EGFR signaling in controlling cell function has become a new 

focus of current research. EGFR signaling along the endocytic route from the plasma 

membrane to endosomes allows a vigorous regulation of spatio-temporal dynamics of EGFR 

signaling. 
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