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1. Introduction

Image  analysis  is  a  scientific  discipline  providing  theoretical  foundations  and  methods
for  solving  problems  appearing  in  a  range  of  areas  as  diverse  as  biology,  medicine,
physics, astronomy, geography, chemistry, meteorology, robotics and industrial manufac‐
turing, among others.

Inside any image analysis system, an aspect of vital importance for pattern recognition and
image interpretation that has to be taken into account is segmentation and contour extrac‐
tion. Both problems can be really difficult to face due to the variability in the form of the
objects and the variation in the image quality. An example can be found in the case of bio-
medical images which are frequently affected by noise and sampling, that can cause consid‐
erable difficulties when rigid segmentation methods are applied [Chin-Hsing et al., 1998;
Kenong & Levine, 1995; Koss et al., 1999; Rodríguez et al., 2002].

Many segmentation techniques are available in the literature and some of them have been
widely used in different application problems. Most of these segmentation techniques were
motivated by specific application purposes. Many different approaches for image segmenta‐
tion there are; which mainly differ in the criterion used to measure the similarity of two regions
and in the strategy applied to guide the segmentation process. The definition of suitable simi‐
larity and homogeneity measures is a fundamental task in many important applications, rang‐
ing from remote sensing to similarity-based retrieval in large image databases.

Segmentation is an important part of any computer vision and image analysis system,
wherein regions of interest are identified and extracted for future processing. Of the quality
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of segmentation depends, on great measure, the good performance of higher level analysis
steps such as recognition and interpretation.

However, in spite of the most complex algorithms developed until now, segmentation con‐
tinues to be very application dependent. A single method that can solve the multitude of
present problems there is not. It still remains a complex problem with no exact solution that
by means of traditional low-level techniques, such as: thresholding, region growing and oth‐
er classical operations requires a considerable amount of interactive guidance in order to at‐
tain satisfactory results. Automating these model-free approaches is difficult because of
complexity, shadows, and variability within and across individual objects.

For years, the most suitable algorithms have been the iterative methods. These cover a varie‐
ty of techniques, ranging from the mathematical morphology based methods, the deforma‐
ble models up to thresholding based methods. However, one of the problems of these
iterative techniques is the stopping criterion, for which many strategies have been proposed
[Vincent & Soille, 1991; Cheriet et. al., 1998; Chenyang et. al., 2000].

Mean shift (MSH) is a robust technique which has been applied in many computer vision
tasks, as by example: image segmentation, visual tracking, etc. [Shen & Brooks, 2007]. MSH
technique was proposed by Fukunaga and Hostetler [Fukunaga et. al., 1975] and largely for‐
gotten until Cheng´s paper [Cheng, 1995] rekindled interest in it. MSH is a versatile non‐
parametric density analysis tool and it can provide reliable solutions in many applications
[Comaniciu, 2002]. In essence, MSH is an iterative mode detection algorithm in the density
distribution space. The MSH procedure moves to a kernel-weighted average of the observa‐
tions within a smoothing window. This computation is repeated until convergence is ob‐
tained at a local density mode. This way the density modes can be located without explicitly
estimating the density. An elegant relation between the MSH and other techniques can be
found in [Shen & Brooks, 2007].

The iterative algorithm that is used in this chapter is based on the mean shift and in several
works was previously introduced and applied [Rodríguez & Suarez, 2006; Rodríguez, 2008;
Domínguez & Rodríguez, 2009; Domínguez & Rodríguez, 2011; Rodríguez et. al., 2011a; Ro‐
dríguez et. al., 2011b; Rodríguez et. al., 2012]. In those papers, entropy was used as a stop‐
ping criterion. Entropy is not a new concept in the information theory field and it has been
used in image restoration, edge detection and as an objective evaluation method for image
segmentation [Zhang, 2003].

In this chapter is presented a research, using standard images and real images, based on a seg‐
mentation algorithm which used an iterative computation of the mean shift filtering. A com‐
parison of the obtained results was carried out, according to the number of iterations and the
degree of homogenization of the segmented images. Also, a comparison of the obtained results
with our algorithm with other segmentation methods already established was carried out.

The aim of this chapter is to present the advances that the authors have obtained in the field
of the image segmentation. Also, some strategies that constitute suitable tools are presented,
which it can be used in many system of image analysis where methods of segmentation are
required. The main contribution of this chapter is to analyze how the quality of the segment‐
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ed images varies for different values of the window sizes (hr and hs) and the stopping crite‐
rion. Many of the obtained results were compared with other methods.

This chapter continues as follows: In Section 2 the most significant theoretical aspects on
mean shift are detailed. In Section 3, we shortly introduce the entropy concept and we also
give some comments on this. The iterative algorithm of the mean shift is described in Sec‐
tion 4. In Section 5 the used standard images are presented. Moreover, some of the charac‐
teristics of the real images are described. In Section 6 the experimental results are exposed,
and also an analysis and discussion of these are carried out. Finally, in Section 7 the most
important conclusions of this chapter are given.

2. Theoretical aspects

The iterative procedure to compute the mean shift is introduced as normalized density esti‐
mate of the gradient. By employing a differentiable kernel, an estimate of the density gradi‐
ent can be defined as the gradient of the kernel density estimate; that is,

∇
^

f (x)=∇ f̂ (x)=
1

nh d ∑
i=1

n
∇K ( x − xi

h ) (1)

Conditions on the kernel K(x) and the window radio h are derived in [Fukunaga & Hoste‐
tler, 1975] to guarantee asymptotic unbiasedness, mean-square consistency, and uniform
consistency of the estimate in the expression (1). For a radial symmetry kernel,
K (x)=ck ( x 2)

where the profile is r = x 2, then; for example, for Epanechikov kernel (other choices are
possible as will be seen below),

KE (x)= {1 / 2cd
−1(d + 2)(1 - x 2)if x 2≤1

0 otherwise

The density gradient estimate becomes,

∇
^

f E (x)=
1

n(h dcd )
⋅

d + 2
h 2 ∑

xi∈Sh (x)
(xi − x)=

nx

n(h dcd )
⋅

d + 2
h 2 ( 1

nx
∑

xi∈Sh (x)
(xi − x)) (2)

where the region Sh (x) is a hypersphere of radius h having volume h dcd , centered at x, and
containing nx data points; that is, the uniform kernel. The last term in expression (2) is called
the sample mean shift,

Mh ,U (x)=
1
nx
∑

xi∈Sh (x)
(xi − x)=

1
nx
∑

xi∈Sh (x)
xi − x (3)
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The quantity 
nx

n (h dcd )
 is the kernel density estimate f̂ U (x) (the uniform kernel) computed

with the hypersphereSh (x), and thus we can write the expression (2) as:

∇
^

f E (x)= f̂ U (x)⋅
d + 2
h 2 Mh , U (x) (4)

which yields,

2

, 

ˆ ( )( ) ˆ2 ( )
E

h U
U

f xhM x
d f x

Ñ
=

+ (5)

Expression (5) shows that an estimate of the normalized gradient can be obtained by com‐
puting the sample mean shift in a uniform kernel centered on x. In addition, the mean shift
has the direction of the gradient of the density estimate at x when this estimate is obtained
with the Epanechnikov kernel. Since the mean shift vector always points towards the direc‐
tion of the maximum increase in the density, it can define a path leading to a local density
maximum; that is, to a mode of the density (see Fig. 1).

Figure 1. Gradient mode clustering.

In addition, expression (5) shows that the mean is shifted towards the region in which the
majority of the points reside. Since the mean shift is proportional to the local gradient esti‐
mate, it can define a path leading to a stationary point of the estimated density, where these
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stationary points are the modes. Moreover, as it was pointed out the normalized gradient in
expression (5) introduces a desirable adaptive behavior, since the mean shift step is large for
low density regions corresponding to valleys, and decreases as x approaches a mode. This is
possible to see in a clear way in Figure 2.

Figure 2. Local maxima of the probability density given by samples.

Mathematically speaking, this is justified since . Thus the corresponding

step size for the same gradient will be greater than that nearer mode. This will allow obser‐
vations far from the mode or near a local minimum to move towards the mode faster than

using  alone.

In [Comaniciu & Meer, 2002] it was proven that the mean shift procedure, obtained by successive:

• computing the mean shift vector Mh (x)

• translating the window Sh (x) by Mh (x) ,

guarantees convergence.

Therefore, if the individual mean shift procedure is guaranteed to converge, it is hoped that
a recursively procedure of the mean shift also converges. In other words, if we consider an
iterative procedure like the individual sum of many procedures of the mean shift and each
individual procedure converges; then, the iterative procedure also converges. The question
that continues open is when to stop the recursive procedure. The answer is in the use of the
entropy, as it will be shown in next Section.

2.1. Generalization

Employing the profile notation the density estimate can be written as [Comaniciu, 2000],

( )K̂ d
i 1

2n
i1 x xf (x) k hnh =

-
= å (6)
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By denoting withg = −k ′, that is, the profile defined by the derivative of profile k with the
sign changed (we assume that the derivative of k exits∀ x∈ 0, ∞)), excepting a finite set of
points), then the density gradient estimate (see expression (1)) becomes,

∇
^

f K (x)=∇ f̂ K (x)=
2

nh d +2∑
i=1

n
(x − xi)k

′( x − xi

h
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2
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h
2)
∑
i=1

n
xig( x − xi

h
2)

∑
i=1

n
g( x − xi

h
2) − x

(7)

where  is assumed to be nonzero.

One can observe that the derivate of the Epanechnikov profile is the uniform profile, while
the derivate of the normal profile remains as exponential.

The last bracket in expression (7) contains the mean shift vector computed with a kernel G(x)
defined by G(x)= cg( x 2), where c is a normalization constant, that is,
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Then, the density estimate at x becomes,
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By using the expressions (8) y (9), the expression (7) becomes,

∇
^

f K (x)= f̂ G(x)⋅
2

h 2c
Mh ,G(x) (10)

from where it follows that,

2

, 

ˆ ( )( ) ˆ2 ( )
K

h G
G

f xh cM x
f x
Ñ

= (11)
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Expression (11) is a generalization of the mean shift vector. This allows to use other kernels;
for example, Gauss kernel, which gives wonderful results.

On the other hand, a digital image can be represented as a two-dimensional array of p-di‐
mensional vectors (pixels), where p =1 in the gray level case, three for color images, and p > 3
in the multispectral case. As was pointed in [Comaniciu & Meer, 2002] when the location
and range vectors are concatenated in the joint spatial-range domain of dimension d = p + 2,
their different nature has to be compensated by proper normalization of parameters h s and
h r . Thus, the multi-variable kernel is defined as the product of two radially symmetric ker‐
nels and the Euclidean metric allows a single bandwidth for each domain, that is:

 2 ps r
s r

2 2s r

, h h h hs r

C x x
(x) k  k K h h

=
æ ö æ ö
ç ÷ ç ÷

ç ÷ç ÷
è øè ø

(12)

where x s is the spatial part, x r is the range part of a feature vector, k(x) the common profile
used in both domains, h s and h r the employed kernel bandwidths, and C the corresponding
normalization constant.

One can observe in Figure 2 that the l2norm is implicitly used in order to define the neigh‐
borhoods of pixels. From a mathematical point of view the concept of norm is associated
with the size of the elements of a given space. Given a linear space L over a field K and an
element x∈ L  is defined as norm of x, denoted x , a finite functional which satisfies some
conditions [Domínguez & Rodríguez, 2009]. As we have pointed out, when Sh (x)is defined

as expression (2) implicitly makes use of the l2 norm defined as, x 2 = ∑
j=1

d
xj

2, x∈ℜd , since

Sh (x)= {x ´ : x − x´ 2≤h }.
Note that in order to verify the condition xi∈Sh (x) in (2), for each xiit is necessary to calcu‐
late x - xi 2which entails conducting d elevations to the second power, d-1 sums and calcu‐
lating one square root. Verifying the same condition using the l∞ norm, defined as

x ∞ =max
j

| xj |  only involves calculating the maximum value in the module of compo‐

nents of the difference vectorx − xi.

In [Domínguez & Rodríguez, 2009; Domínguez & Rodríguez, 2011], we carried out a theo‐
retical and practical study related with this issue. We proved the convergence of the mean
shift by using the l∞ norm. The convergence of mean shift for discrete data was proved in
[Comaniciu, 2000] using the l2 norm for defining the hypersphereSh (x). The following theo‐
rem guarantees the convergence when it replaces the l2 norm by the l∞norm. The proof is
similar to the theorem proved in [Comaniciu, 2000] and it can be found in [Domínguez &
Rodríguez, 2011].

Image Segmentation Through an Iterative Algorithm of the Mean Shift
http://dx.doi.org/10.5772/50474

55



Theorem 1

Let f E

∧

=  {fk
∧

(yk, KE)} the sequence of density estimates obtained using Epanechnikov kernel and
computed in the points yk  defined by the successive locations of the mean shift procedure with uni‐

form kernel and N(x), denoting x N , a norm that satisfies N (x) ≤ x 2, ∀ x∈ℜ d . If the hyper‐
sphere Sh ( yk ) is defined using N(x) ∀ k∈И, then the sequence is convergent.

As a direct consequence of this theorem, the mean shift algorithm converge using the l∞
norm when defining the hypersphere Sh (x)because x ∞ ≤ x 2, ∀ x∈ℜd .

3. Entropy

From the point of view of digital image processing, entropy of an image I is defined as:

E (I )= −∑
x=0

2B−1
p(x)log2p(x) (13)

where B is the total quantity of bits of the digitized image and by agreement log2(0)=0; p(x)
is the probability of occurrence of a gray-level value. Within a totally uniform region, entro‐
py reaches the minimum value. Theoretically speaking, the probability of occurrence of the
gray-level value, within a uniform region is always one. In practice, when one works with
real images the entropy value does not reach, in general, the zero value. This is due to the
existent noise in the image. Therefore, if we consider entropy as a measure of the disorder
within a system, it can be used as a good stopping criterion, by the use of the mean shift
filtering, for an iterative process. Entropy within each region diminishes in measure in that
the regions become more homogeneous, and at the same time in the whole image, until
reaching a stable value. When convergence is reached, a totally segmented image is ob‐
tained, because the mean shift filtering is not idempotent. In addition, as in [Comaniciu &
Meer, 2002] was pointed out, the mean shift based image segmentation procedure is a
straightforward extension of the discontinuity preserving smoothing algorithm and the seg‐
mentation step does not add a significant overhead to the filtering process.

The choice of entropy as a measure of goodness deserves several observations. Entropy reduc‐
tion diminishes the randomness in corrupted probability density function and tries to counter‐
act noise. Then, by following this analysis, as the segmented image is a simplified version of the
original image, entropy of the segmented image should be smaller. Recently, it was empirical‐
ly found that the entropy of the noise diminishes faster than that of the signal [Suyash et. al.,
2006]. Therefore, an effective criterion to stop would be when the relative rate of change of the
entropy from one iteration to the next, falls below a given threshold. All these observations
were the main motivation in seeking a segmentation procedure from the iterations of the mean
shift filtering. This new algorithm is much simpler [Rodríguez & Suarez, 2006].
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4. Algorithms

In general, an image captured with a real physical device is contaminated with noise and in
most cases a statistical model of white noise is assumed, mean zero and variance σ. For
smoothing or elimination of this form of noise many types of filters have been published,
the most classic being the low pass filter. This filter indiscriminately replaces the central pix‐
el in a window by the average or the weighted average of pixels contained therein. The end
result with this filtering is a blurred image; since this reduces the noise but also important
information is taken away from the edges. However, there are low pass filtering techniques
that preserve the discontinuities and reduce abrupt changes near local structures. A diverse
number of approaches have been published taking into consideration the use of adaptive fil‐
tering. These range from an adaptive Wiener filter, local isotropic smoothing, to an aniso‐
tropic filtering. The mean shift works in the spatial-range domain, but differs from it in the
use of local information. The algorithm that was proposed in [Comaniciu & Meer, 2002] for
filtering through mean shift is as follows:

Let {xi}i and{zi}i, i =1, …, n be the input and filtered images in the joint spatial-range domain.

For each pixel p∈ xi, p =(x, y, z)∈ℜ3 , where (x, y)∈ℜ2 andz∈ 0, 2β −1 , β being the quanti‐
ty of bits/pixel in the image. The filtering algorithm comprises the following steps:

For each i =1, …, n

1. Initialize j =1 and y i,1 = p i.

2. Compute the mean shift in order to obtain the mode where the pixel converges; that is,
the calculation of the mean shift is carried out until convergence, y = y i,c.

3. Store at Z i the component of the gray level of calculated value:Zi = (xi
s, yi , c

r ), where xi
s

is the spatial component and yi ,c
r  is the range component.

4.1. Segmentation algorithm by recursively applying the mean shift filtering

4.1.1. Algorithm No. 1

Let ent1 be the initial value of the entropy of the first iteration. Let ent2 be the second value of the
entropy after the first iteration. Let errabs be the absolute value of the difference of entropy be‐
tween the first and the second iteration. Let edsEnt be the threshold to stop the iterations; that is,
to stop when the relative rate of change of the entropy from one iteration to the next, falls below
this threshold. Then, the segmentation algorithm comprises the following steps:

1. Initialize ent2 = 1, errabs = 1, edsEnt = 0.001.

2. While errabs > edsEnt, then

3. Filter the image according to the steps of the previous algorithm; store in Z [k] the fil‐
tered image.

4. Calculate the entropy from the filtered image according to expression (8); store in ent1.
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5. Calculate the absolute difference with the entropy value obtained in the previous step;
errabs = /ent1 – ent2/

6. Update the value of the parameter; ent2 = ent1; Z [k +1] = Z [k]

It can be observed that, in this case, the proposed segmentation algorithm is a direct exten‐
sion of the filtering algorithm, which ends when the entropy reaches stability. The effective‐
ness of this algorithm will be proven along this chapter. In this work the thresholding value
(edsEnt ) was empirically obtained. Recent investigations have proven that smaller values of
the threshold do not affect, qualitatively nor quantitatively in dependence on original im‐
age, the final result of the segmentation. One will be able to see these results in this chapter.
More details and discussion on this issue will be given in the next section.

In [Christoudias et. al., 2002], it was stated that the recursive application of the mean shift
property yields a simple mode detection procedure. The modes are the local maxima of the
density. Therefore, with the new segmentation algorithm, by recursively applying mean
shift, convergence is guaranteed. Indeed, the proposed algorithm is a straightforward exten‐
sion of the filtering process. In [Comanociu, 2000], it was proven that the mean shift proce‐
dure converges. In other words, one can consider the new segmentation algorithm as a
concatenated application of individual mean shift filtering operations. Therefore, if we con‐
sider the whole event as linear, the recursive algorithm converges.

4.1.2. Algorithm No. 2: Binarization algorithm by recursively applying the mean shift filtering

This algorithm is very similar to the algorithm No. 1, only that in this occasion two steps are
added. This continue of this way,

1. Initialize ent2 = 1, errabs = 1, edsEnt = 0.001.

2. While errabs > edsEnt, then

• 2.1. Filter the image according to the steps of the previous algorithm; store in Z [k] the
filtered image.

• 2.2. Calculate the entropy from the filtered image according to expression (6); store
in ent1.

• 2.3. Calculate the absolute difference with the entropy value obtained in the previous
step; errabs = /ent1– ent2/.

• 2.4. Update the value of the parameter; ent2 = ent1; Z[k +1] = Z[k].

3. To carry out a parametric logarithm (parlog = 70, this is the parameter).

4. Binarization: to assign to the background the white color and to the objects the black color.

In the experimentation was proven that the final result is not very sensitive to this parame‐
ter, because a variation in the range from 60 to 90 led to the same result [Rodriguez, 2008].
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5. Used standard images and utilized real images. Some characteristics

In Figure 3 a representation of the used standard images for this research appear. Some
characteristics on these standard images can be commented.

Figure 3. Standard images. (a) Cosmonaut, (b) Baboon, (c) Barbara, (d) Bird, (e) Cameraman, (f) Peppers, (g) Lake, (h)
Mountain, (i) Lena.

For example, one can observe that some of these images are rich in high frequencies (Ba‐
boon and Barbara), other are rich in low frequencies (Bird and Peppers, these have more
homogeneous  zones)  while  other  images  have  both,  low and high  frequencies  (Cosmo‐
naut and Cameraman). These characteristics will influence on the behavior of iterative al‐
gorithm, in particular, on the number of iterations. This issue will be deeply analyzed in
Section of experimental results.

Other real images used in this work can be seen in Figure 4. These images are biopsies,
which represent an angiogenesis process in malignant tumors. These were included in par‐
affin by using the inmunohistoquimic technique with the complex method of avidina bioti‐
na. Finally, monoclonal CD34 was contrasted with green methyl to accentuate formation of
new blood vessels (angiogenesis process). These biopsies were obtained from soft parts of
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human bodies and the images were captured via MADIP system with a resolution of
512x512x8 bit/pixels [Rodríguez et. al., 2001].

Several notable characteristics of these images there are; which are common to typical im‐
ages  that  we  encounter  in  the  tissues  of  biopsies.  For  example,  the  intensity  is  slightly
darker  within  the  blood vessel  than in  the  local  surrounding background.  It  is  empha‐
sized that this observation holds only within the local surroundings. In addition, due to
acquisition  protocol,  the  images  are  corrupted  with  a  lot  of  noise.  For  more  details  on
these images refer to [Rodríguez et. al., 2005].

Figure 4. These images represent the angiogenesis process. The blood vessels are marked with arrows.

6. Experimental results and discussion

Image segmentation, that is, classification of the image intensity-level values into homoge‐
neous areas is recognized to be one of the most important steps in any image analysis sys‐
tem. Homogeneity, in general, is defined as similarity among the pixel values, where a
piecewise constant model is enforced over the image [Comaniciu and Meer, 2002].

All the segmentation experiments in this work were performed by using a uniform kernel.
In order to be effective the comparison of the obtained results with our algorithm and with
the EDISON system [Christoudias et. al., 2002], the same parameters (hr and hs), in both pro‐
cedures, were used.

The value of hs is related to the spatial resolution of the analysis while the value hr defines
the range resolution. It is necessary to note that the spatial resolution hs has a different effect
on the output image when compared to the gray level resolution (hr, spatial range). Only fea‐
tures with large spatial support are represented in the segmented image with our algorithm
when hs is increased. On the other hand, only features with high contrast survive when hr is
large. Therefore, the quality of segmentation is controlled by the spatial value hs and the
range (gray level) hr, resolution parameters defining the radii of the (3D/2D) windows in the
respective domains. As our algorithm is a direct extension of the filtering algorithm similar
behavior was also reported in [Comaniciu and Meer, 2002]. In addition, as our algorithm
does not need parameter M, for the effects of the comparison the same one was set to M = 1
in the EDISON system.
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The first preliminary results when applying our algorithm were published in the year 2006
[Rodríguez & Suarez, 2006]. In those researchers a quantitative comparison was not carried
out, the comparison was only visual. The aim of that moment was alone to give to know the
existence of our algorithm and to carry out a comparison with another established already
[Christoudias et. al., 2002]. A deeper explanation on the characteristics of our algorithm was
published in the year 2011[Rodríguez et. al., 2011a]. Nevertheless, two examples of the re‐
sults reached in the year 2006 appear in the Figure 5 and 6.

Figure 5. a) Original image, (b) Segmented image according to our algorithm (hs, hr) = (12, 15), (c) Segmented image
by using EDISON system (hs, hr, M) = (12, 15, 1).

Figure 6. a) Original image, (b) Segmented image by our strategy (hs, hr) = (12, 15), (c) Segmented image according to
EDISON system, (hs, hr, M) = (12, 15, 1). The arrows in the Fig. 2(b) indicate better segmented regions.

From the point of view of the final result, the image segmented with our algorithm has a
more natural aspect. In many occasions, given the application, segmentation imposes certain
conditions (elimination of regions, pruning or integration of certain maxima, etc). This can
originate a biased image with regard to the original image. With our algorithm the resolu‐
tion is only imposed on the segmentation process; that is, the parameters hr and hs. For this
reason, our algorithm does not make mistakes; that is, a segmented image, very different to
the original image, is not obtained. This is one of the most important experimental results
obtained with our algorithm.

It is important to point out that with both algorithms (the proposed one and the EDISON
system) very similar results were obtained (only differences in very few regions; see the ar‐
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rows). The substantial difference between both algorithms is the one shown in Fig. 6(c), it
was necessary to carry out a filtering step and later on a segmentation step. In this last step,
one can have certain complexity when adjacency graphs and hierarchical techniques are
used [Comaniciu, 2000]. With our algorithm the segmented image is directly obtained from
the filtering process. However, it is necessary to have in mind that segmentation is very de‐
pendent on the application. For this reason, in order to compare our proposal with EDISON
system, the most remarkable differences were looked for.

Figure 7. a) Original image, (b) Binarized image by using our new algorithm, (c) Binarized image by using graph [Ro‐
driguez, 2008], (d) Binarized image via Otsu’s method [ Otsu, 1978].

Note in Figure 5 that the clouds and the sky were better isolated with our algorithm. This
result is explained by the fact that our algorithm is a direct extension of the filtering process
and, therefore, it does not produce many mistakes. In [Grenier et. al., 2006] the mean shift
filtering was also iteratively applied in order to increase the smoothing effect. However, the
difference with our algorithm is that in that work a stopping criterion was not given. The
authors iterated the mean shift 10 times before starting the segmentation process.

A direct application of our algorithm for the binarization of blood vessels in an angiogen‐
esis  process was published in [Rodriguez,  2008].  Two examples appear in the Figures 7
and 8. In the year 2005 were obtained a similar result with a more complicated algorithm
[Rodríguez et. al., 2005].
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Figure 8. a) Original image, (b) Binarized image by using our new algorithm, (c) Binarized image by using graph, (d)
Binarized image via Otsu’s method.

It is evident to observe that the binarized image by using the new algorithm has a better ap‐
pearance than the obtained image by using graph. Note, in this case, that the binarization
algorithm by using graph made a mistake (see arrow in Figure 8 (c)). In practice, it has been
proven that this behavior did not always happen with all images and in the corners of the
images this was manifested fundamentally. We note in Figures 7 and 8 that the binarized
image using the algorithm No. 2 was cleaner and it did not accentuate the spurious informa‐
tion that appears in the original image (see arrows in Figure 7(a)). According to criterion of
pathologists these objects (spurious, with little contrast) were originated by a problem in the
preparation of the samples. The obtained result by using Otsu’s method is evident, a lot of
noisy arose. This best result with the new binarization algorithm is because the same one is a
direct extension of the filtering process. The parameter used to carry out the parametric log‐
arithm was similar to 70 and this value was the same for all the binarized images. For more
details on these results see [Rodriguez, 2008].

As it was expressed previously the l2norm is implicitly used in order to define the neighbor‐
hoods of pixels when working with the mean shift. An interesting issue is to analyze that it
happens when substituting the l2norm by the l∞ norm. In such a sense, we will show a series
of experiments conducted with the aim of comparing, in terms of execution time and degree
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of homogenization, the obtained results by two segmentation algorithms. The graphic of the
time spent by both algorithms on a group of standard images is presented and analyzed. In
order to carry out the comparison of the obtained results the same parameters (h r = 15 and h
s = 4) in both procedures, by using the l∞norm and the l2 norm were used.

In Fig. 9 (c), the segmentation of the image Astro is presented by using the algorithm No.1
described in Section 2.3.1. In Fig. 9 (b) the result using the algorithm that makes use of the l∞
norm is shown. In Fig. 9 (b) it can be seen that the segmented image using the l∞norm
presents a greater degree of homogenization. Comparing these images visually, it is evident
that the use of the l∞ norm leads to a greater similarity in the value of intensity of certain
groupings of pixels (see Earth zone). This greater degree of homogenization can be seen as
an advantage if the algorithm is used in an application where one wants to extract the figure
of the astronaut. However, in an application where the objects of interest are the clouds,
their elimination would become a drawback. This corroborates that the segmentation is
heavily dependent on the application.

Figure 9. a) Original image, (b) Segmented image using the l∞norm, (c) Segmented image using the l2norm.

Figure 10. a) Original image, (b) Segmented image using the l∞ norm, (c) Segmented image using the l2 norm.

Other example of segmentation is presented in Figure 10 by using standard images. As in
the previous example, there is again a greater homogenization when the neighborhood by
using the l∞ norm is defined. In this case, from a standpoint of a visual comparison, in Fig‐
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ure 10(b) the arrows indicate parts of major homogenization. For example, in the image of
Figure 10(c), where the l2norm is used, the boxes indicate parts which have a lesser degree of
homogeneity between the pixels that represent the grass of the field.

Figure 11 shows a graphic of the execution times of the algorithms that make use of the l∞
and l2 norms. The values of the runtime for each image using the l2norm in the definition of
Sh (x)are represented by circles, while the squares represent the runtime associated with the
l∞norm. As is shown in Figure 11, in general, the runtime of the algorithm that makes use of
the l∞norm is higher than using the l2 norm.

Figure 11. Runtime of the algorithms for standard images.

The greater homogenization observed using the l∞norm to defineSh (x) suggests the search
for values h s and hr in order to obtain more efficient results and smaller runtime. The read‐
ers interested in deepening in these results to see [Domínguez & Rodríguez, 2009].

Another issue that attracted the attention of the authors was the theoretical demonstration
of the mean shift when the l∞norm is used. The convergence of the algorithm by using the l∞
norm was empirically shown through an extensive experimentation [Domínguez & Rodrí‐
guez, 2009]. In [Domínguez & Rodríguez, 2011] was proven a theorem which guarantees the
convergence of the l∞norm instead of the l2 norm in order to define the regionSh (x). The
convergence of mean shift for discrete data was proved in [Comaniciu, 2000] using the l2
norm for defining the hypersphereSh (x).

Table 1 shows the obtained results using hr=8 and hs=2. As can be seen, for these values, execu‐
tion times were lower using thel2norm. The values were comparable with those obtained using
the l∞ norm in order to define the neighborhoods of the pixels and the maximum difference be‐
tween the runtimes was 96,876 seconds, which was obtained with the image Baboon.
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Image Norm hr hs Time

Cosmonaut256 l2 8 2 186.1410

Cosmonaut256 l∞ 8 2 207.6880

Baboon256 l2 8 2 76.4370

Baboon256 l∞ 8 2 173.3130

Barbara256 l2 8 2 96.6570

Barbara256 l∞ 8 2 156

Bird256 l2 8 2 82.7810

Bird256 l∞ 8 2 78.6250

Cameraman256 l2 8 2 124.0470

Cameraman256 l∞ 8 2 209.2030

Peppers256 l2 8 2 94.0780

Table 1.

Image Norm hr hs Time

Cosmonaut 256 l2 15 4 164.8590

Cosmonaut 256 l∞ 15 4 179.2660

Baboon256 l2 15 4 332.5160

Baboon256 l∞ 15 4 348.3130

Barbara256 l2 15 4 235.2970

Barbara256 l∞ 15 4 134.0780

Bird256 l2 15 4 107.2810

Bird256 l∞ 15 4 127.0630

Cameraman256 l2 15 4 263.4380

Cameraman256 l∞ 15 4 317.1870

Peppers256 l2 15 4 267.2650

Peppers256 l∞ 15 4 328.3590

Table 2.

In Table 2, it can be seen that for window sizes hr=15 and hs=4 the runtime was in favour of
the l2norm (difference of 61,094 seconds). This result was obtained with the image Peppers.
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However, one can observe that in most of the images the difference of the runtimes were
decreased when the values hr=8 and hs=2 were used (see Table 1). Moreover, in case of im‐
age Barbara the runtime using the l∞ norm was smaller than the runtime using l2norm. The
difference was 101.219 seconds.

This suggests the use of the l∞norm in segmentation of high-resolution images, which may
be necessary in many practical cases; it can be an interesting tool in order to obtain more
efficient results. It was evidenced, through an extensive experimentation using standard im‐
ages, that the use of the l∞ norm, instead of l2norm, decreases the runtime of the mean shift
when the values of bandwidths h s and h r increase. For more details on this issue see [Domí‐
nguez & Rodríguez, 2011].

Another application of our algorithm was in the medical image segmentation. It is of noticing
that the mean shift can be considered as a segmentation unsupervised method. Unsupervised
methods, which do not assume any prior scene knowledge which can be learned in order to
help segmentation process, it are obviously more challenging than the supervised ones.

In order to have more clarity of the medical images that will be segmented, some details of
the original images are given. Studied images were of arteries, which have atherosclerotic
lesions and these were obtained from different parts of the human body. These arteries were
contrasted with a special tint in order to accentuate the different lesions in arteries. The ar‐
teries were digitalized directly from the working desk via MADIP system with a resolution
of 512x512x8 bit/pixels [Rodríguez et. al., 2001]. For more details on the characteristics of
these images one can see [Rodríguez & Pacheco, 2007]. Another lesion type that were isolat‐
ed is caused by disease of the visual system, glaucoma. "Glaucoma" is a term used for a
group of diseases that can lead to damage to the optic nerve and result in blindness.

Figure 12. a) Original image, b) Unsupervised segmentation by using our algorithm. The arrows mark the isolated lesions.

In Figure 12, an example of segmentation on artery by using our algorithm is shown. Al‐
though another segmentation method was already applied to other atherosclerotic lesions
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[Rodríguez & Pacheco, 2007]; here one can observe the obtained result when applying our
unsupervised strategy.

In Figure 12, one can note that the lesion IV that appears in the original image was isolated
(see arrows in Fig. 12 (a)). According to the criterion of physicians this is a good result, be‐
cause the algorithm is able to isolate the lesion without any previous condition. Moreover,
one also can see that the segmented image with the mean shift algorithm is totally free of
noise. This is another important aspect when the mean shift filtering is used.

Figure 13. a) Original image. b) Segmentation by using our unsupervised strategy. The arrow indicates the isolated lesion.

Another example is shown in Figure 13. In this case, the main objective is to isolate the oval
from the vascular net of the eye (see arrow). This is of great importance for the study of the
glaucoma disease. According to the criterions of physicians, the discrimination of this area is
of great importance in order to know the advancement of the disease. In this case, this zone
is isolated appropriately. A quantitative comparison of all the shown experimental results
can be found in the presented references of the own authors [Rodríguez & Tovar, 2010].

Other issue of interest of the authors was to study the behaviour of the algorithm, taking
into consideration the number of iterations and the degree of homogenization of the seg‐
mented images, for different values of the stopping threshold and window sizes. First, we
go to analyze what happens when the values of the stopping threshold goes decreasing, and
later on we will carry out an analysis when varying the window sizes.

The segmentation of the Astro's image for different values of the stopping threshold is
shown in Figure 14. One can appreciate that the number of iterations increased in an abrupt
way when the parameter edsEnt diminished from 0.001 to 0.0001. However, from the point
of view of a visual analysis a substantial change is not noticed in these segmented images
(see Figures (f) and (g)). Homogenization is very similar. For such a reason in [Rodríguez et.
al., 2012], a comparison through the XOR was carried out in order to better appreciate the
difference among these images.
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Figure 14. a) Original image (Astro), (b) Segmentation for edsEnt = 0.1, 2 iterations, (c) Segmentation for edsEnt =
0.05, 2 iterations, (d) Segmentation for edsEnt = 0.01, 4 iterations, (e) Segmentation for edsEnt = 0.005, 5 iterations, (f)
Segmentation for edsEnt = 0.001, 7 iterations, (g) Segmentation for edsEnt = 0.0001, 60 iterations.

In this research, all the segmentation procedures were carried out by using a uniform kernel.
We used the same window size in all the experiments (hr = 15, hs = 4), with the aim that the
comparison of the obtained results was valid for different values of the stopping threshold
(parameter edsEn).

One can observe that, in dependence on the image features the number of iterations varied
and the same one has not a lineal behaviour. Figure 15, it presents the obtained segmenta‐
tion results with the baboon's image. To observe, for example, that for edsEnt = 0.005 the im‐
age of Figure 14 (e) was obtained in 5 iterations, while for that same value, the image of
Figure 15 (e) was attained in 14 iterations. This is due to the quantity of low or high frequen‐
cies of the original image. Note that, the image of Figure 14 is rich in low frequencies (this
image has more homogeneous areas). Opposite happens with the image of Figure 15 (this
image is rich in high frequencies).
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Figure 15. a) Original image (Baboon), (b) Segmentation for edsEnt = 0.1, 2 iterations, (c) Segmentation for edsEnt =
0.05, 3 iterations, (d) Segmentation for edsEnt = 0.01, 5 iterations, (e) Segmentation for edsEnt = 0.005, 14 iterations,
(f) Segmentation for edsEnt = 0.001, 27 iterations, (g) Segmentation for edsEnt = 0.0001, 57 iterations.

Image EdsEnt No. Iterac EdsEnt No. Iterac EdsEnt No. Iterac

Astro 0.1 2 0.05 2 0.01 4

Baboon 0.1 2 0.05 3 0.01 5

Bird 0.1 2 0.05 2 0.01 3

Barbara 0.1 2 0.05 2 0.01 2

Image EdsEnt No. Iterac EdsEnt No. Iterac EdsEnt No. Iterac

Astro 0.005 5 0.001 7 0.0001 60

Baboon 0.005 14 0.001 27 0.0001 57

Bird 0.005 4 0.001 18 0.0001 19

Barbara 0.005 8 0.001 8 0.0001 42

Table 3. Values of the stopping threshold (EdsEnt) and number of iterations.
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Figure 16. a) Original image (Astro), (b) Segmentation for hr = 5 and hs = 2, 6 iterations, (c) Segmentation for hr = 7
and hs = 4, 7 iterations, (d) Segmentation for hr = 9 and hs = 6, 12 iterations, (e) Segmentation for hr = 11 and hs = 8,
65 iterations, (f) Segmentation for hr = 13 and hs = 10, 70 iterations, (g) Segmentation for hr = 15 and hs = 12, 11
iterations, (h) Segmentation for hr = 17 and hs = 14, 39 iterations, (i) Segmentation for hr = 19 and hs = 16, 55 itera‐
tions, (j) Segmentation for hr = 21 and hs = 18, 7 iterations, (k) Segmentation for hr = 23and hs = 20, 7 iterations, (l)
Segmentation for hr = 25 and hs = 22, 37 iterations, (m) Segmentation for hr = 27 and hs = 24, 4 iterations, (n) Seg‐
mentation for hr = 29 and hs = 26, 23 iterations, (o) Segmentation for hr = 31 and hs = 28, 17 iterations. The arrow
indicates the cloud permanency for that window size (image (h)).
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It is necessary to point out that, for large values of the stopping threshold (edsEnt), the num‐
ber of iterations had a very similar behaviour for images rich in low frequencies as well as
for images rich in high frequencies (see Table 3 and Figures 14 and 15). On the other hand,
one can appreciate that, in this image (see Figure 15), the number of iterations also increased
abruptly when the stopping threshold was from edsEnt = 0.001 to 0.0001. However, between
the two images (see Figures 15 (f) and (g)), the difference is not visually appreciated. This
appreciation was also analysed with more detail in [Rodríguez et. al., 2012].

This same study was carried out, fixing the value of stopping threshold, for different values
of window sizes (parameters hs and hr). In this case the selected stopping threshold was ed‐
sEn = 0.001 (see algorithm No. 1). The segmentation of the Astro's image for different param‐
eters hr and hs, in Figure 16 is represented.

Figure 17. Graph that represents the number of iterations vs. the window sizes. Note the undulant behavior of the
number of iterations with regard to the window sizes.

Some interesting comments arise of the obtained results that appear in Figure 16. Observe
that, proportionally to the increase of the width of the radii hr and hs, the homogenization
degree increased in the segmented image. However, the number of iterations had a behavior
that fluctuated. In other words, the number of iterations did not increase lineally, in this im‐
age, when increased the radius hr and hs. Note that, in small radius the segmentation was
very rude. One can observe that visually, homogeneous areas were not denoted with regard
to the original image (see Figures 16 (b), (c) and (d)).
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Figure 18. a) Original image (Lena), (b) Segmentation for hr = 5 and hs = 2, 14 iterations, (c) Segmentation for hr = 7
and hs = 4, 16 iterations, (d) Segmentation for hr = 9 and hs = 6, 25 iterations, (e) Segmentation for hr = 11 and hs = 8,
48 iterations, (f) Segmentation for hr = 13 and hs = 10, 25 iterations, (g) Segmentation for hr = 15 and hs = 12, 20
iterations, (h) Segmentation for hr = 17 and hs = 14, 26 iterations, (i) Segmentation for hr = 19 and hs = 16, 24 itera‐
tions, (j) Segmentation for hr = 21 and hs = 18, 21 iterations, (k) Segmentation for hr = 23and hs = 20, 26 iterations, (l)
Segmentation for hr = 25 and hs = 22, 13 iterations, (m) Segmentation for hr = 27 and hs = 24, 5 iterations, (n) Seg‐
mentation for hr = 29 and hs = 26, 8 iterations, (o) Segmentation for hr = 31 and hs = 28, 10 iterations. The arrows
indicate the permanency of stains for those window sizes.
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However, for window sizes very big the earth is totally homogeneous (see arrow in Fig. 16
(i)). In other words, starting from hr = 19 and hs = 16, the earth in totally uniform (see Figures
16 (j), (k) and (l)). Moreover, one visually does not observe difference among these images.
Alone, in the images of Figures (n), (m) and (o), the feet of the cosmonaut were combined
with the gray level of the earth. In order to verify this visual impression, a comparison of
these images through the Xor was carried out in [Rodríguez et. al., 2011b]. On the other
hand, it is possible to see that, in all these segmented images (for big window sizes), the be‐
havior of the number of iterations was also oscillating; that is, these did not grow propor‐
tionally when increased the window sizes (see Fig. 17).

Figure 18 shows the obtained results with the image of Lena. Observe in Figure 18 that,
the same as in the previous example, proportionally to the increase of the width of the ra‐
dius hr and hs, the degree of uniformity increased in the segmented images. However, in
this case for small radii, contrary to the previous example, the numbers of iterations were
bigger. The explanation of this behavior, it comes given by the characteristics of the origi‐
nal image (high frequencies in the image). On the other hand, the number of iterations in
this example also had an oscillating behaviour, that is; these did not increase proportion‐
ally with the window sizes.

Figure 19. Graph that represents the number of iterations vs. the window sizes. Note the undulant behavior of the
number of iterations with regard to the window sizes.

In this result, one can see that, starting from hr = 13  and hs = 10,  the face of woman be‐
gins to be uniform and the stain below of the left eye disappeared (see arrow in Fig. 18
(e)). Moreover, starting from hr = 19 and hs = 16, the face of woman is totally uniform and
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the shade that is under the nose also disappears (see arrow in Fig. 18 (h)).  Here also in
these results  the behavior  of  the number of  iterations,  in  relation to  the  increase of  the
window  sizes  hr  and  hs,  were  oscillating;  these  did  not  grow  proportionally  when  in‐
creased the window sizes (see Fig. 19).

By way of summary, in Table 4, the window sizes and the iteration numbers appear for each
of the segmented images.

Astro(hr, hs) No. Iter. Lena (hr, hs) No. Iter.

5 2 6 5 2 14

7 4 7 7 4 16

9 6 12 9 6 25

11 8 65 11 8 48

13 10 70 13 10 25

15 12 11 15 12 20

17 14 39 17 14 26

19 16 55 19 16 24

21 18 7 21 18 21

23 20 7 23 20 26

25 22 37 25 22 13

27 24 4 27 24 5

29 26 23 29 26 8

31 28 17 31 28 10

Table 4. Window sizes (hr and hs) and the iteration numbers.

Table 4, it offers a comparative panoramic vision of all the segmented images. Also, one can
see the behaviour of the iteration numbers with regard to the window sizes. This behaviour
can be explained via Figure 20. In Figure 20, the value of hs is related to the spatial resolu‐
tion of the analysis while the value hr defines the range resolution. The spatial resolution hs
has a different effect on the output image when compared to the gray level resolution (hr,
spatial range). Only features with large spatial support are represented in the segmented im‐
age with our algorithm when hs is increased. On the other hand, only features with high
contrast survive when hr is large. Then, as 2xhs establishes the range of the movement spa‐
tially and in the range of 2xhr is carried out an averaged; then the characteristics of image in
this range (2xhr) will influence on this average (bigger quantity of low or high space fre‐
quencies). This issue is what produced the oscillation, in the iteration number, when varying
the window sizes (hr and hs). In addition, it is necessary to point out that the iteration num‐
ber did not have relationship some with the quality of the segmented image. For example,
with small windows can be bigger the number of iterations that with big windows; howev‐
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er, it was observed that with small window sizes the segmentation was rude. A quantitative
comparison of these results can be found in [Rodríguez et. al., 2011b].

Figure 20. Graphic representation of the radius hr and hs. Movement through an image.

6.1. Some related philosophical issues with image segmentation

Segmentation is recognized to be one of the most important steps in most high-level image
analysis systems. Its precise functioning highly determines the performance of the entire
system. Image segmentation is today routinely used in a multitude of different applications,
such as: medical diagnosis, treatment planning, robotics, pathology, geology, anatomical
structure studies, meteorology and computer-integrated surgery, to mention a few. Howev‐
er, image segmentation remains a difficult task due to both the diversity of the object’s
shape and image’s quality. In spite of the most elaborated algorithms developed until now,
segmentation remains a very dependent procedure of the application. Until now any single
method that can cope with all the problems that can be found does not exist and unfortu‐
nately, segmentation remains a complex problem with no exact solution.

For example, of the segmented images those appear in Figure16, which to select as the best
segmented image? The answer to this question is not direct, because it depends on the aim
of observer. If one wants, for example, a good segmentation of the sky and the earth, the

Advances in Image Segmentation76



segmented images of Figure 16 (m), (n) and (o), these would be the most appropriate. How‐
ever, one can observe in these images that the feet of the astronaut are practically lost.
Therefore, if the aim of observer was a good segmentation of the astronaut, these images
(Figs. 16 (m), (n)) would not be the best selection. For this aim, the images chosen in Figure
16 would be those (i), (j) or (k). This corroborates that the segmentation is heavily dependent
on the application. All this analysis, the reader could carry out it to the segmented images
that in Figure 18 appear.

In those segmentation applications where one wants a binary image and the background and
objects only should appear; for example, to count regions, the problem could be a little less
complicated. An example of this issue is in the count of blood vessels (see Figure 8). Here, one is
speaking of segmented images where the final result is a bit/pixel. The problem of segmenta‐
tion begins to get complicated when the segmented image has several regions, more than 5, 6,
7, 8, 9, …… bit/pixel, and mainly when one is working with unsupervised segmentation strat‐
egies. In the measure that is bigger the number of bit/pixel of the segmented image, the seg‐
mentation  problem  is  much  more  complicated.  For  example,  in  the  case  of  supervised
segmentation the number of bit/pixel (number of regions) is controlled by the observer and in
many practical applications this segmentation method is not very problematic.

On the other hand, one should have in mind the features of the original image. In general, be‐
fore that the segmentation process is carried out, the original image should be filtered through
a low pass filter. In many practical applications this step is very important and many times the
final result of segmentation depends on this step. When one uses the iterative algorithm of
mean shift this step is implicit, because the mean shift itself is a low pass filter.

The election of one or another segmentation method depends on several factors, namely: a) on
the knowledge that the observer has on the method, b) of the application in itself, c) of features
of the original image, among others. A universal method of segmentation has not been created,
due to that the world of images is practically infinite. For example, the interpretation that a
pathologist makes from a biopsy image; which necessarily goes by a segmentation process, it is
different to the interpretation that a radiologist makes from a radiological image. It is evident
that both are different applications. One could continue analyzing the segmentation issue, but
this is an open theme which it will need of many more iterations.

7. Conclusions

In this chapter, we carried out an introduction on theoretical aspects of the mean shift. We
also introduced the idea of working with l∞ norm and we proved that, of this way, one can
obtain bigger homogenization degree. We proved the convergence of the mean shift by us‐
ing the l∞ norm.

The iterative algorithm that was used in this chapter, where entropy was utilized as a stop‐
ping criterion, it was presented too. Through an extensive experimentation by using real
and standard images, we showed and we discussed the obtained results with our iterative
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algorithm. We proved that our algorithm can be used as an unsupervised suitable strategy
to carry out complex problems of segmentation. Some application examples by using our al‐
gorithm were shown.

On the other hand, in order to prove the good performance of our algorithm, the same was
compared with another segmentation algorithm established already. Through several ex‐
periments with real images, we proved that the segmented images by using our iterative al‐
gorithm were less noisy than those obtained by means of other methods.

Finally, some related philosophical themes with image segmentation were discussed.
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