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1. Introduction

The perennial interest in studying the physical properties of nanofilms has increased sub‐
stantially over the last few years due to the development of nanotechnologies and the syn‐
thesis of new compounds – especially those based on carbon, which are extremely
interesting for both fundamental research and potential applications.

An important feature of carbon nanofilms (including those with defects) is a close relation
between the electronic and phonon properties, which is exhibited, for example, in the gra‐
phene-based systems with superconducting properties [1,2].

It is well known that graphene monolayers cannot exist as planar objects in the free state,
because in flat 2D-crystals the mean-square amplitudes of the atoms in the direction normal
to the layer plane diverge even at T =0 (see, e.g., [3]). So we can study and practically apply
only such graphene, which is deposited on a certain substrate providing the stability of the
plane carbon nanofilms (see, e.g., [4-6]). Only small flakes can be detached from the sub‐
strate and these flakes immediately acquire a corrugated shape [7]. When studying the elec‐
tronic properties of graphene a dielectric substrate is often used. The presence of the
substrate greatly increases the occurrence of various defects in graphene and carbon nano‐
films. Our investigations make it possible to predict the general properties of phonon and
electron spectra for graphene and bigraphene containing different defects.

This chapter consists of three sections: first section is devoted to the calculation of local dis‐
crete levels in the electron spectra of graphene with different defects. In the second section
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we describe the electronic properties of bilayered graphene and, finally, the third section
deals with the influence of defects on electron spectra of bigraphene.

2. Impurity levels in the electron spectra of graphene

The exceptionality of graphene is manifested in the phonon and electron properties. Gra‐
phene is a semimetal whose valence and conduction bands touch at the points K and K’ of
the Brillouin zone [8,9]. In the pure graphene unique electronic properties are manifested by
the charge carriers behaving as massless relativistic particles - the dependence of energy on
the momentum is linear rather than - as in ordinary solids - quadratic. Thus, the lower-di‐
mensionality affects the formation of phonon localized states [10] and also the formation of
localized states in the electronic spectrum. Absent gap between the valence and conduction
bands is a consequence of the symmetry between two equivalent sublattices in graphene
[11]. Presence of impurities lowers the symmetry. The influence of vacancies placed into one
of the graphene sublattices was investigated in [12], where it was shown that the equiva‐
lence of the sublattices is broken.

In this section we describe the characteristics of localized and local states present in gra‐
phene due to the impurities of nitrogen and boron, respectively. The presence of the sub‐
strate greatly increases the possibility to introduce various defects into graphene. For
example, in the graphene deposited on silicon, vacancies can occur [13, 14], whereas in
graphite (a set of weakly interacting graphene monolayers) vacancies heal and form a stack‐
ing fault with local fivefold symmetry axis [15]. Impurity atoms embedded in graphene may
lead to the appearance of impurity states outside the band of quasi-continuous spectrum. At
low impurity concentrations (when impurity is considered as an isolated defect) these states
appear in the form of local discrete levels (LDL).

Although such levels in various quasiparticle spectra have been known and studied over 60
years, an adequate description is still absent, even in the harmonic approximation for suffi‐
ciently realistic models of the crystal lattice. The dependence of the appearance conditions
and characteristics of LDL on the parameters of a perfect lattice and defect was identified
only in the most general terms. However, LDL may be used as an important source of infor‐
mation about the defect structure and force interactions in real crystals. To extract such in‐
formation it is useful to have analytical expressions that relate main characteristics of LDL to
the parameters of both the defect and the host lattice.

Here we present the results of our calculations and analyses of the characteristics of the elec‐
tronic local discrete levels for substitutional impurities in graphene, especially for a boron
substitutional impurity, using an analytical approximation based on the Jacobi matrices
method [16, 17].

The fact that the charge carriers in graphene are formally described by the Dirac equation
and not by the Schrödinger equation is due to the symmetry of the crystal lattice of gra‐
phene, which consists of two equivalent carbon sublattices. Electronic subbands formed by
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the symmetric and antisymmetric combinations of wave functions in the two sublattices in‐

tersect at the edge of the Brillouin zone, which leads to a cone-shaped energy spectrum near

the K and K´ points of the first Brillouin zone. The electrons obey the linear dispersion law

(in ordinary metals and semiconductors the dispersion law is parabolic).

The electronic spectrum of graphene can be described by a strong coupling approximation,

and it is sufficient to consider the interaction between nearest neighbors only (see, e.g.,

[5,6,18-20]). The corresponding Hamiltonian is

Ĥ =∑
i

εi | ii | −∑
i, j

J ij | i j | (1)

where i and j are the labels of the nodes of the two-dimensional lattice, εi is the energy of

electron at node i, and J ij is the so-called overlap integral.

Curve 1 in Figure 1 shows the density of electronic states of graphene as calculated using the

method of Jacobi matrices [16, 17]. In a perfect graphene the local Green's function

G(ε, i)= i |(εÎ − Ĥ )−1 | i coincides with the total Green’s function

G(ε)= lim
N →∞

1
N ∑i=1

N
i |(εÎ − Ĥ )−1 | i because of the physical equivalence of the atoms of both sub‐

lattices. Peculiarity of the density of states at ε =ε(K ) (the value ε(K ) corresponds to the Fer‐

mi energy εF  in graphene) determines the behavior of the real part of the Green's function

near εF  . For a wide class of perturbations caused by defects we can find, using the Lifshitz

equation [21], quasilocalized states in the interval −ε(M ), ε(M )  (in this model ε(M )= J  ).

This equation, which determines the energy of these states, can be written as (see, e.g.,

[3,17])

ReG(ε)=S(ε, Λik ) (2)

where the S (ε, Λik ) function is determined by the perturbation operator Λ̂ ( Λik  are matrix

elements of this operator on defined basis).

The local spectral densities ρ(ε, i)≡
1
π lim

γ↓0
ImG(ε + iγ, i) of impurity atoms are calculated in

[6]. For an isolated substitutional impurity with the energy ε0 = ε̃ of the impurity node i =0

and with the overlap integral J i0 =(1 + η)J  , the function S (ε, ε̃, η) has the form
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Figure 1. Electronic density of states of perfect graphene (curve 1) and the local density of states for an isolated boron
substitutional impurity (curve 2).

S (ε, ε̃, η)=
(1 + η)2

ε̃ + εη(2 + η) (3)

For a nitrogen impurity ε̃ −ε(K )≈ −0.525J  and η ≈ −0.5 (according to [4]). As shown in [22],
equation (2) has a solution for both interval −ε(M ), ε(K )  and interval ε(K ), ε(M )  .

The local density of states of the nitrogen substitutional impurity calculated in [11] has qua‐
si-local maxima in both intervals. For an boron substitutional impurity ( η ≈0.5 ) [6], quasi-
localized states are absent in the −ε(M ), ε(M )  interval [12]. Figure 2 shows the graphical
solution of the Lifshitz equation (2) for a given impurity atom. In this case the Lifshitz equa‐
tion has no solutions in interval −ε(M ), ε(M )  (corresponding dependences S (ε) are shown
as curves 3 in Figure 2). The local Green's function of the boron impurity (curve 2 in Figure
1) has two poles outside the band of quasi-continuous spectrum, which are called local dis‐
crete levels and which are also solutions of equation (2). As is clearly seen in Figure 1 the
area under the curve 2 is smaller (by the sum of the residues at these poles) than the area
under the curve 1.

Local discrete levels can be an important source of information about defective structure
and force interactions in real crystals. To extract this useful information we should have ana‐
lytical expressions that relate the main characteristics of LDL (primarily their energy) to the
parameters of the defect and the host lattice.
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Figure 2. Graphical solution of equation (2) for boron substitutional impurity in graphene. Curve 1 is the electronic
density of states of ideal graphene, curve 2 is the corresponding real part of the Green's function. Curves 1′ and 2′ are
the “approximations of two moments” of these functions. Curve 3 represents the function S (ε) .

Such expressions were obtained in [23] for localized vibrations in the phonon spectrum of
a three-dimensional crystal. Authors proposed an analytical approximation of the basic char‐
acteristics of local vibrations based on the rapid convergence of the real part of the Green's
function outside the band of quasi-continuous spectrum using the method of Jacobi matri‐
ces [16,17].

Let us, briefly, to the extent necessary to understand the use of the classification of the eigen‐
functions of Hamiltonian (1), to present the basics of the method of Jacobi matrices. This
method allows, without finding the dispersion laws, to calculate directly the local partial
Green's functions of the system, corresponding to the perturbation of one or more atoms.
This perturbation is described by the so-called generating vector h

→
0∈H  , where H is the

space of electronic excitations of atoms. Its dimension is qN  , where N is the number of
atoms in the system, and q is the dimension of the displacement of a single atom (q = 1, 2, 3).
Vectors of the space H are denoted by an arrow above the symbol, and “ordinary” q-dimen‐
sional vectors are in bold italics.

If, using the generating vector  (p is the number of excited atoms) and the

Hamiltonian (1), we construct the sequence {Ĥ nh
→

0}n=0
∞  , then the linear envelope covering the

vectors of this sequence forms, in the H space, a cyclic subspace invariant to the operator Ĥ  .
This subspace contains, within itself, all the atomic displacements generated by the vector
h
→

0 . The corresponding partial Green's function is determined as a matrix element

G00(λ)≡ (h→ 0, εÎ − Ĥ −1h
→

0) , where λ ≡ω 2 is the eigenvalue. Quantity ρ(λ)≡π −1ImG00(λ) is
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called the spectral density generated by the initial displacement h
→

0 . In the basis {h→ n}n=0
∞

which is obtained by the orthonormalization of the sequence {Ĥ nh
→

0}n=0
∞  , the operator (1) is

represented in the form of a tridiagonal Jacobi matrix (or J-matrix). This matrix has a simple
spectrum, what greatly simplifies finding the partial Green's functions and spectral densi‐
ties. As can be seen, this method does not use explicitly the translational symmetry of the
crystal, making it extremely effective for treating systems in which such symmetry is bro‐
ken. The method of Jacobi matrices is particularly effective for treating systems with a sim‐
ply connected quasi-continuous band of spectrum D. In this case, with increasing rank of the
J-matrix ( n →∞ ), its diagonal elements an converge to a corresponding to the middle of the
bandwidth D, and nondiagonal elements b n converge to b corresponding to the one-quarter
of the bandwidth D.

For the local Green's function (LGF), corresponding to the excitations of one or more atoms,
which are determined by the generating vector h

→
0 , we get following expression using the J-

matrix method

G(ε, h
→

0)= (h→ 0, εÎ − Ĥ −1h
→

0)= lim
n→∞

Qn(ε)−bn−1Qn−1(ε)K∞(ε)
Pn(ε)−bn−1Pn−1(ε)K∞(ε) (4)

where Î  is the unit operator and polynomials Pn(ε) and Qn(ε) are determined by the follow‐
ing recurrence relations

bn{P , Q}n+1(ε)= (ε −an){P , Q}n(ε)−bn−1{P , Q}n−1(ε) (5)

The initial conditions are P−1(ε)=Q0(ε)≡0 , P0(ε)≡1 , Q0(ε)≡0 , and Q1(ε)≡b0
−1 , function

K∞(ε) corresponds to the LGF operator, with all elements of its J-matrix being equal to their
limit values a and b:

K∞(ε)=2b −2 ε −a−Z (ε)⋅ (ε −a + 2b)(ε −a−2b) (6)

Z (ε)≡Θ(a−2b−ε) + iΘ(ε −a + 2b)⋅Θ(a + 2b−ε)−Θ(ε −a−2b) (7)

The method of Jacobi matrices can treat as a regular singular perturbation a much larger num‐
ber of perturbations of the phonon spectrum due to the presence of various crystal defects
than the traditional methods [19, 20]. In addition, perturbations do not change the band‐
width of the quasi-continuous spectrum, and consequently, the asymptotic values of the ele‐
ments of the J-matrix can be regarded as an asymptotically degenerated regular perturbation
[23]. This type of perturbations covers virtually all perturbations of the phonon spectrum
caused by local defects. The calculation of vibration characteristics of such systems is per‐
formed, using the method of J-matrices, with the same accuracy as for the initial ideal system.
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In practice, it is usually possible to calculate the Jacobi matrix of the Hamiltonian of a finite
rank. The expression

G(ε, h
→

0)≈
Qn(ε)−bn−1Qn−1(ε)K∞(ε)
Pn(ε)−bn−1Pn−1(ε)K∞(ε) (8)

is called analytical approximation of LGF. All dependences in Figure 1 and curves 1 and 2 in
Figure 2 were calculated by the formula (8), using the Jacobi matrix of the Hamiltonian (1)
with rank n =600 . If we count the energy from the Fermi energy level, then all diagonal ele‐
ments of Jacobi matrices are zero ( an =a =0; b =ε0 / 2 , where ε0 =3J  is the half-width of the
quasi-continuous spectrum). A good accuracy of the approximations shown in figures is
confirmed also by the fact that they show the nonanalyticity effects corresponding to the
densities of states of systems with the dimension larger than unity (so-called van Hove sin‐
gularities). In the vicinity of these singularities the expression (8) slowly converges to the
true values of the really and imaginary parts of LGF.

Curves 1′ and 2′ in Figure 2 show local density of states and their corresponding real parts
of the LGF calculated by formula (8) with n=1. As can be seen in the band of the quasi-con‐
tinuous spectrum these relationships have very little in common with curves 1 and 2. Thus,
the curve 1′ does not even hint at the V-shaped “Dirac” singularity at ε =ε(K )=εF  , and on

the curve 2′ in the interval −ε(M ), ε(M )  both non-monotonous parts and the logarithmic
singularities at the edges of the band of quasi-continuous spectrum, characteristic for the 2D
systems are absent. However, outside the band of quasi-continuous spectrum (also in the
area of intersection of the real part of LGF with curve (3)) curves 2 and 2′ practically coin‐
cide, and if we put in the Lifshitz equation (2) instead of LGF its approximation (8) for n=1,
the obtained solutions give the energies of LDL with quite high accuracy. Moreover, these
solutions can be easily found analytically. The LGF approximation by formula (8) for n=1
was named the approximation of two moments in [23]. Indeed, it follows from the orthonor‐
mality of the polynomials defined in [16,17] that

∫
−ε0

−ε0

P1(ε)ρ(ε)dε =0⇒a0 = ∫
−ε0

−ε0

ερ(ε)dε =M1,

∫
−ε0

−ε0

P1
2(ε)ρ(ε)dε = ∫

−ε0

−ε0 (ε 2−a0
2)

b0
2 ρ(ε)dε =1⇒b0 = M2−M1

2

Finding the characteristics of LDL is more convenient without using equation (2), looking
for them as the poles of the LGF perturbed Hamiltonian G̃(ε, h

→
0)= (h→ 0, εÎ − Ĥ − Λ̂ −1h

→
0) . In

the approximation of two moments for the subspace generated by the excitation of an im‐
purity atom, we get
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G̃(ε)=
1

ε −a0−b0
2K∞(ε) (9)

For the case of an isolated substitutional impurity

a0 = ε̃;b0 = 3(1 + η)J =
1 + η

3
ε0 (10)

from where we get

G̃(ε)=
(1−γ)ε −a0 + Z (ε)γ |ε 2−ε0

2 |
R(ε)

(11)

where R(ε)= (1−2γ)ε 2−2(1−γ)a0ε + a0
2 + γ 2ε0

2 and

γ ≡b0
2 / 2b 2 =2(1 + η)2 / 3 (12)

Local discrete levels are poles (11), i.e. the roots of R(ε) are

εd
(±) =

(γ −1)a0 ± γ a0
2 + (2γ −1)ε0

2

2γ −1
(13)

Residues at these poles μ0
(±) = r e‵ s

ε=εd
(±)

G̃(ε) are called intensities of LDL and they determine the

relative LDL “amplitude” on the impurity atom: μ0
(±) =1−π −1 ∫

−ε0

ε0

ImG̃(ε)dε . The condition that

the intensity differs from zero defines the existence region of LDL. In this case

μ0
(+) =

γa0 + (γ −1) a0
2 + (2γ −1)ε0

2

(2γ −1) a0
2 + (2γ −1)ε0

2
⋅Θ( a0

ε0
−1 + γ);

μ0
(−) =

−γa0 + (γ −1) a0
2 + (2γ −1)ε0

2

(2γ −1) a0
2 + (2γ −1)ε0

2
⋅Θ(γ −1−

a0
ε0

).
(14)

It was shown in [23] that
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Gmn(ε, h
→

0)= (h→ m, εÎ − Ĥ −1h
→

n)= −Pm(ε)Qn(ε) + Pm(ε)Pm(ε)G(ε, h
→

0) (m <n).

This implies that the damping of LDL, i.e. the decay of its intensity with the increasing dis‐
tance from the impurity atom (i.e. with the increase of n) follows the equation

μn
(±) = Pn

2(εd
(±))⋅μ0

(±) . Using the method of mathematical induction we can prove that

Pn(εd
(±))= 2γ ⋅ ±

a0
2 + (2γ −1)ε0

2∓ a0
ε0(2γ −1)

n

(15)

The intensities μn
(±) decay with increasing n according to μn0

(±) =2γ ⋅q n ⋅μ0
(±) , that is, starting

from n=1 they form an infinitely decreasing geometric progression whose denominator

q (±) =
a0

2 + (2γ −1)ε0
2∓ a0

ε0(2γ −1)

2

(16)

Summing these progressions we see that ∑
n=0

∞
μn

(+) =∑
n=0

∞
μn

(−) =1 , that is the formation of each

LDL is the formation of one quasi-particle outside the band of the quasi-continuous electron
spectrum.

Formulas (10, 12-14, 16) give simple analytical expressions of the local conditions of the exis‐
tence of discrete levels due to the presence of a substitutional impurity in graphene.

Regions of the LDL existence for εd
(+) (in this case ε̃ε0(1−γ)=ε0 1−2(1 + η)2 / 3  ) and for εd

(−)

(in this case ε̃ε0(γ −1)=ε0 2(1 + η)2 / 3−1  ) lie above and under curves in Figure 3, as indicat‐

ed by arrows.

It is seen that such levels exist in a very wide range of variables ε̃ and η . The absence of

LDL is possible only in a narrow range of values ε̃ at η 3 / 2−1 . If η 3 / 2−1 at least one local
discrete level exists. In fact, the lines delineating the area of existence of LDL in graphene in
the plane {ε̃, η} must pass through the origin of coordinates, since ReG(ε)→∞ for ε → ± ε0 .

However, since this divergence is logarithmic, for any appreciable splitting of LDL from the

boundary of quasi-continuous spectrum there is a certain threshold. Curves 2 and 2′ in Fig‐
ure 2 merge at |ε | >ε0 .
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Figure 3. Regions of the existence of discrete levels for substitutional impurities in graphene.

Figure 4 shows, for ε̃ ≈0.525J  (for boron, from [6]), the dependences of energies, the LDL in‐
tensities at the boron impurity and the damping parameters of the value η that characterizes
the change in the overlap integral of the boron impurity atom (10). Solid lines show the char‐
acteristics of LDL, calculated using the approximation of the Green's function (9), i.e. accord‐
ing to the analytical formulas (13), (14) and (16). Open circles show the results of numerical
calculations of dependences εd

(±)(η) and μ0
(±)(η) , using the Green's function in the form of (8),

calculated by the Jacobi matrices of the n ≥100 rank.

Figure 4. The basic characteristics of LDL in the presence of a boron substitutional impurity in graphene.

It is seen that at the threshold values εd
(±) = ± ε0 of the LDL formation, the intensities of LDL

equal zero and the parameters of damping are equal to unit. Further increase of |εd
(±) |  is

accompanied by the increase of μ0
(±) and by the strengthening of the containment level.
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So, a good agreement between the results of numerical calculation of the LDL characteris‐
tics using Jacobi matrices of high rank, and their analytical description by the Green's func‐
tion (9), which relates these characteristics to the parameters of the defect (13) (14), makes it
relatively easy to extract the defect parameters from the known characteristics of LDL. Exper‐
imental measurement (e.g. by scanning tunneling microscopy) of values εd

(±) should lead, us‐
ing (10), (12) and (13), to the determination of the parameters ε̃ and η and this might represent
a significant advance in creating nanomaterials with predetermined spectral characteristics.
As can be seen from Figure 4, with increasing η the intensity of LDL μ0

(+) →μ0
(−) →1 / 2 . That

is, the impurity levels can not be completely localized on the impurities, but they also ap‐
pear in the spectra of surrounding carbon atoms. This greatly increases the probability of ex‐
perimental detection of such levels, even at low concentrations of impurities.

3. The electronic spectrum of bilayer graphene

Bilayer graphene is a carbon film consisting of two graphene monolayers, linked together by
(as in bulk graphite) van der Waals forces. Since the distance between the layers (film thick‐
ness) h ~3.5 Å the bilayer graphene can be considered not a nanofilm but a subnanofilm. The
constants of the interatomic interaction of bilayer graphene were determined and its phonon
density of states and partial contributions to this quantity from the atomic displacements
along different crystallographic directions were calculated [7,24]. On the basis of the analy‐
ses of the mean-square amplitudes of atomic displacements calculated using data from the
spectral densities, we have shown that the flat shape of a free bilayer graphene remains sta‐
ble up to the temperatures much higher than the room temperature, which makes this com‐
pound promising for nanoelectronics. In this section we calculate and analyze the electronic
spectrum of a defect-free bilayer graphene. Naturally of greatest interest is its behavior in
the energy range close to εF  where there are characteristic Dirac points on the spectrum of
graphene monolayer (whose plane shape is unstable).

The unit cell of graphene contains two physically equivalent atoms and therefore local
Green's function and the local density of states (LDOS) of the atoms of different sublattices
are identical. On the other hand, bilayer graphene unit cell contains four atoms, and atoms
of different sublattices of a single graphene layer interact differently with the atoms of the
other layer and their physical equivalence is disrupted (Figure 5a).

The electronic spectrum of bilayer graphene, as well as the electronic spectrum of graphene
can be described in the strong coupling approximation. Corresponding Hamiltonian has
form (1). For graphene and bigraphene we assume that the electron hopping within the lay‐
er is possible only between nearest neighbors J ij = J ≈2.8 eV (see for example [25]). Electron
hopping between layers is also assumed to be possible only between nearest neighbors from
different layers, that is, between those which lie at a distance h from each other. Denote the
corresponding hopping integral J ′ . Note that only half of the bilayer graphene atoms have
such neighbors (sublattice AI and AII, see Figure 1). In sublattices BI and BII no such neigh‐
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bors exist, since nearest neighbors from different layers are at a distance h 2 + a 2 ( a≈1.415
Å is the distance between nearest neighbors in the layer plane). Since this distance is only by
less than 10% greater than h  , we can neglect the interaction with the atoms of the sublattices
BI and BII and this does not lead to qualitative changes in the behavior of the spectra near εF

(see, e.g. [6]). Then the dispersion relation of each of the four branches of the electronic spec‐
trum of bilayer graphene can be written as

ε1,2(k )= ± ε0
2(k ) +

J ′2

2 − J ′ ε0
2(k ) +

J ′2

4 ;

ε3,4(k )= ± ε0
2(k ) +

J ′2

2 + J ′ ε0
2(k ) +

J ′2

4 ,

(17)

where ε0(k ) is the electronic spectrum of graphene, calculated in the strong coupling approx‐
imation:

ε0(k )= ± J 1 + 4cos(k ⋅ a1 - a2
2 ) cos(k ⋅ a1 + a2

2 ) + cos(k ⋅ a1 - a2
2 ) (18)

where a1 = ( a
2 ,

a 3
2 ,0) and a2 = ( a

2 , −
a 3

2 ,0) are two-dimensional Bravais lattice vectors (see

Figure 5b).

Figure 5. The structure of bilayer graphene (a); Bravais lattice and the first Brillouin zone (b).
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Dispersion curves along highly symmetric directions ΓK, ΓM and KM for J’ = 0.1J are shown
in Figure 6. Region near the K-point Κ = (0,±4π / 3a 3,0) and Κ = (±2π / 3a, ±2π / 3a 3,0) is
shown in the inset. The same inset shows also the dispersion curves for graphene (18). We
clearly see the quasi-relativistic nature of the electronic spectrum of graphene as well as or‐
dinary quadratic dispersion curves ε1,2(k ) for bigraphene. Spectral branches

ε3,4(k )∉ (− J ′, J ′) are determined in the (− J ′, J ′) interval. Indeed, if k takes value along ΓK,

then ε0(k )= ± (1 + 2cos
ak 3

2 ) and putting k =Κ + κ ( κ1 ) we find ε0(Κ + κ)≈ ∓
3aκ

2  , i.e. a line‐

ar (relativistic) dispersion relation. For electronic modes of bilayer graphene ε1,2(k ) near the
Κ point, we can write

ε1,2
2 (Κ + κ)≈

J1
2

2 + ε0
2(Κ + κ)− ( J1

2

2 + ε0
2(Κ + κ))2

−ε0
4(Κ + κ)≈

J1
2

2 + ε0
2(Κ + κ)−

−
J1

2

2 + ε0
2(Κ + κ) ⋅ {1− ε0

4(Κ + κ)

2 J1
2 / 2 + ε0

2(Κ + κ) 2 }=
ε0

4(Κ + κ)

J1
2 + 2ε0

2(Κ + κ) ≈
81J 4a 4κ 4

16J1
2 ,

(19)

that is, we get an ordinary quadratic dispersion law

ε1,2(Κ + κ)≈ ±
9J 2a 2κ 2

4J1
(20)

Figure 6. Dispersion curves along high-symmetry directions of bilayer graphene.
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The electron effective mass in considered branches, determined from the relation
ε =(ℏκ)2 / 2m * , is equal to

m * =
2ℏ2J ′

9J 2a 2 (21)

In the case considered above J ′ =0.1J  the effective mass is m *≈2.75⋅10−32 kg, and if J ′ → J  it
tends to a value close to the free electron mass. Since m * ~ J ′ , then by changing the interlayer
hopping integral we can change the effective mass of charge carriers.

It should be noted that for J ′ →0 , that is for the transition from bilayer graphene to two non-
interacting graphene monolayers the effective mass, m * →0 , and formulas (19 - 21) cannot cor‐
rectly describe this transition, since they were obtained under the assumption ε0(k )< < J ′ .

Electron density of states for values of energy near εF is determined by branches of ε1 and ε2

only, and it follows from (3) that g1(ε)= g2(−ε) . Then

g(ε)=
Σ0

(2π)2 ∮
ε(κ)=ε

dl1,2
|∂ε1,2 / ∂κ | (22)

where Σ0 =3a 2 3 / 2 is the area of the two-dimensional Bravais cell, and integration is done
along a closed isoenergetic line ε1,2(k )=ε . At ε =0 (Fermi level) the line contracts into a point
and near εF the contour of integration is a circle. Taking into account (20) we may write

g1,2(εF )≈
S0

(2π)2 ∮
ε(δ)=ε

δdφ
|∂ε1,2 / ∂κ | =

3a 2 3
2(2π)2 ⋅2π

δ
18J 2a 2κ

4J ′

=
J ′ 3
6πJ 2 =const

g3,4(εF )=0; ⇒ g(εF )≈ J ′

J 2 3
.

(23)

This means that the electron density of states (DOS) is constant and different from zero. As
follows from (20), DOS is an analytical function and has minimum at ε =0 and near εF  the

function g(ε)~ε 2 .
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Total electron DOS can be represented as a mean-arithmetic function of the two LDOS corre‐
sponding to atoms of sublattices A and B: ρAI (ε)=ρAII (ε)≡ρA(ε); ρBI (ε)=ρBII (ε)≡ρB(ε) and
g(ε)= ρA(ε) + ρB(ε) / 2. For each sublattice with perfect structure the LDOS may be written as

ρs(εF )≈
S0

(2π)2∑
α=1

4 ∮
ε(δ)=ε

δdφ |ψs(α, κ)| 2

|∂ε1,2 / ∂κ | (24)

where index s is the designation of sublattice, index α is the designation of branch, and
ψs(α, κ) are the eigenwave functions corresponding to atoms from sublattices. LDOS are cal‐
culated by the method of Jacobi matrix [16, 17] and are shown in Figure 7.

In this figure we clearly see two-dimensional van-Hove peculiarities at energy values corre‐
sponding to points Γ and Μ of the first Brillouin zone ( see Figure 5b). These eigenvalues are
given in the top inset in Figure 7. The bottom inset shows LDOS, in enlarged scale, near εF  .
It is seen that near the Fermi level the local density of states as well the total density of states
are analytical and their dependences on energy are essentially nonlinear (for comparison the
DOS of graphene is also shown in the same inset). Besides, ρA(ε) differs from both ρB(ε) and
the total density of states and it approaches to zero for ε →0 .

Figure 7. LDOS for atoms of different sublattices of bigraphene.
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Indeed, putting zero eigenvalue in the equation of eigenfunctions of Hamiltonian (1) we get
the values ψAI ~ψAII =O(κ 2) , ψBI ~ψBII ~1 . Therefore, near the Fermi level ρA(ε)~ε 2ρB(ε) .

Peculiarities at both ends, i.e. at ε ≈ ± 0.1J = ± J ′ , originate from the contribution of modes ε3,4

which are not represented on interval ε∈ − J ′, J ′  . Peculiarities at ε ≈ ± 0.05J  are due to the
fact that beginning from these energies the anisotropy of isofrequency lines becomes essential.

So we can conclude that, in contrary to graphene, the bigraphene has an ordinary non-rela‐
tivistic form of the electronic dispersion law. The effective mass of electron in the bigra‐
phene strongly depends on the value of integral describing the hopping between two layers,
and this value may be changed by external conditions (for example by pressure). Near the
Fermi level the LDOS of atoms of different sublattices qualitively differ from each other. If
the LDOS for the atoms of sublattice A at the Fermi level equals to zero and it slowly in‐
creases near this level (“a quasi-gap” appears), then the LDOS of sublattice B for the same
energy values differs from zero and increases very quickly.

4. The influence of defects on the electron spectrum of bigraphene

Some peculiarities in the behavior of the bigraphene electron spectrum near ε =ε(Κ) , that is
near the Fermi level, indicate the possibility of a strong influence of various defects [26-28].

Let us first consider point defects [26]. Figure 8 shows the real parts of the local Green's
functions ReGA(ε) and ReGB(ε) of atoms of the sublattices A and B.

Figure 8. Real parts of the local Green’s functions for the atoms of the two sublattices of bigraphene. The dashed lines
are S (ε) functions correspond to substitutional impurities of Boron (B-curves) and Nitrogen (N-curves).
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This figure also shows the dependences S(ε) appearing in the Lifshitz equation (2) and corre‐
sponding correspond to the presence of substitutional impurities of boron and nitrogen in
bigraphene.

For an isolated substitutional impurity that differs from the atom of the basic lattice by the
values of energies at the impurity site and also by the overlap integral, function S (ε) has for
each sublattice form (3). Also, as in the case of graphene, for the nitrogen impurity in the
interval ε2(Μ), ε1(Μ)  equation (2) has a solution and this impurity forms quasilocalized
states in this interval. For the boron impurity, equation (2) has two solutions outside the
band of quasi-continuous spectrum ε4(Μ), ε3(Μ)  , corresponding to local discrete levels.

LDOS of isolated impurity atom of nitrogen in sublattice A or B are shown in Figure 9 (we
remind that atoms AI and AII as well as BI and BII are physically equivalent).

As the inset shows, the nitrogen impurity does not forms a quasilocal maximum on LDOS
and substantially changes it near the Fermi level. Figure 10 shows a LDOS of the boron im‐
purity in sublattices A and B. As in the case of boron impurity in graphene (see Figure 1),
the area under this curve is less than unity. Outside the band of the quasi-continuous spec‐
trum local discrete energy levels are formed.

Figure 9. LDOS of nitrogen impurity in the sublattices of bigraphene (red curve is for A sublattice, purple is for B sub‐
lattice). For comparison the figure shows the DOS of graphene (black dashed line) and LDOS (thin solid gray and dash‐
ed gray, respectively).
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Figure 10. LDOS of the boron impurity in different sublattices of bigraphene (designations are the same as in Figure 9).

The energies of these levels for the considered ratio between the overlap integrals J and J’
are slightly different. As can be seen from Figure 8, the energies of the local discrete levels
for the substituted boron atom in sublattice A or sublattice B can be calculated using the
two-moment approximation (13). Near the Fermi level the LDOS of the boron atom, substi‐
tuting an atom of sublattice B, is considerably lower than the LDOS of the carbon atom of
this sublattice. That is the boron impurity lowers the conductivity of bigraphene.

Because in bigraphene atoms of sublattices A and B are physically inequivalent, the influ‐
ence on their electron spectra by various defects is different. In the first part of this section
we have described the influence of substitutional impurities on the electron density of states.
However, the influence of vacancies in sublattices on the electron DOS is even more pro‐
found. Figures 11 and 12 show the LDOS of neighbors of vacancies in sublattices A (Figure
11) and B (Figure 12).

Neighboring atoms are in the same layer as a vacancy, either in sublattice B (top) or in sub‐
lattice A (bottom). Insets show the arrangement of atoms. Atoms are shown in the same col‐
or as the corresponding LDOS.
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Figure 11. LDOS of bigraphene atoms which are neighbors of a vacancy in the sublattice A. Neighboring atoms are in
the same layer as a vacancy, either in sublattice B (top) or in sublattice A (bottom). Insets show the arrangement of
atoms. Atoms are shown in the same color as the corresponding LDOS.

Electronic and Vibrational Properties of Adsorbed and Embedded Graphene and Bigraphene with Defects
http://dx.doi.org/10.5772/50562

153



Figure 12. LDOS of bigrafene atoms which are neighbors of a vacancy in the sublattice B.

New Progress on Graphene Research154



The reason for the specific evolution of the LDOS with increasing distance from the vacancy
has been explained in [22]. In bigraphene there is an analogous situation. Electronic spectra
of vacancy neighbors belonging to other sublattice also have sharp resonance peaks at ε = εF

(see upper parts Figure 11 and 12). So, if the vacancy is in the sublattice A, then the maxi‐
mum of the LDOS of the sublattice B atoms is sharp, and the maximum on the spectrum the
sublattice A atoms is blurred. Therefore we can conclude that the vacancy in bigraphene
should have a more pronounced effect.

5. Conclusion

Unique properties of both graphene and bigraphene are caused, above all, by an unusual
symmetry leading to the absence of a gap between the valence and conduction bands. The
quantum states of quasiparticle in these bands are described by the same wave function, i.e.
quasiparticle in graphene and bigraphene have the so-called chiral symmetry. In graphene
this leads to the fact that dispersion relation of electron spectrum is linear and is described
by the Dirac equation, characteristic for massless ultrarelativistic quasiparticle in quantum
electrodynamics. On other hand, in bigraphene the presence of chiral symmetry leads at low
energies to an ordinary parabolic dispersion relation, i.e. quiasiparticle of a new type appear
– massive chiral fermions having no analogy in quantum electrodynamics. At symmetry
breaking a gap between the valence and conduction band appears, allowing to tune the con‐
ducting properties of these materials.

In this chapter, using the method of Jacobi matrices, we analyzed how different impurities
affect the energy gap width and the local density of states. The method of Jacobi matrices
enables to investigate heterogeneous systems and to calculate the densities of states for each
atom in different sublattices. Such analysis is necessary for correct comparison with experi‐
mental results. As defects we considered the vacancies and the impurity of nitrogen or bor‐
on. The presence of nitrogen leads to the formation of sharp resonance peaks (quasilocal
states) inside the continuous spectrum; on the other hand, the boron impurity leads to states
outside the continuous spectrum (local states). Both quasilocal and local states can be inves‐
tigated experimentally by, for example, a scanning tunneling microscope. In the presence of
vacancies we have analyzed how the density of states in each of the sublattices A or B
changes. Different situations were analyzed. For example, if the vacancy in this sublattice
vanishes at Fermi level, whereas in sublattice B the density has maximum at this point. We
also investigated the conditions for opening the gap and changing its width. Main attention
was paid to the analysis of electronic properties of considered systems. Moreover, computa‐
tional method we used has also been successfully applied to the analysis of vibrational
states. For example, increasing the overlap integral between the boron impurity and carbon
atom leads to the strengthening of force interaction contacts between them. In addition, bor‐
on atom is 16% lighter than carbon atom, i.e. all necessary conditions are sent for the appear‐
ance of local vibrations in the phonon spectrum of both graphene and bigraphene with
boron impurity. We hope that predicted peculiarities in electronic and vibrational spectra of
perfect graphene and bigraphene as well as of graphene and bigraphene with defects will be
detected experimentally.
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